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Preface

These notes are based on lectures that | first gave at the Summer School of Logic,
Language and Information in Lisbon in August 1993 and then in the department
of mathematics of the University of Helsinki in September 1994. Because of the
nature of the lectures, the notes are necessarily sketchy.
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Lecture 1. Basic Results

Classical logic on infinite structures arose from paradoxes of the infinite and from
the desire to understand the infinite. Central constructions of classical logic yield
infinite structures and most of model theory is based on methods that take
infiniteness of structures for granted. In that context finite models are anomalies
that deserve only marginal attention.

Finite model theory arose as an independent field of logic from consideration of
problems in theoretical computer science. Basic concepts in this field are finite
graphs, databases, computations etc. One of the underlying observatios behind
the interest in finite model theory is that many of the problems of complexity
theory and database theory can be formulated as problems of mathematical logic,
provided that we limit ourselvesto finite structures.

While the objects of study in finite model theory are finite structures, it is often
possible to make use of infinite structures in the proofs. We shall see examples of
thisin these lectures.

Notation

A vocabulary is afinite set of relation symbols R,..., R,. Each relation symbol

has a natura number as its arity. An m—ary relation symbol is denoted by
R(X;,...,%,) In some cases we add constant and function symbols to the

vocabulary.

If L={R....,R} isavocabulary with R an m-ary relation symbol, then an L-
structure isan (n +1)-tuple

A=(AR'+RY),



where A isafinite set called thedomain or universe of A, and R" isan m -ary
relation on A, called theinterpretation of R inA.

Typical examples of structures are graphs. In this case L ={E}. The binary
symbol E denotes the edge-relation of the graph. Here are two well-known
graphs:

We assume basic knowledge of first order logic FO (also denoted by L,,).
Truth -relation between structures A and sentences ¢(a,,...,a,)with parameters
a,,...,a, fromA iswritten:

AEo(a,....a,)

asusual. Elementary equivalence is denoted by A ° B, and A °" B means that
A and B satisfy the same sentences ¢ of FO of quantifier-rank gr(¢) £ n.

A model class isaclass of L-structures closed under (@, such as the class

Mod(¢p) ={A : Aisan L -structureand AE ¢} .

A model class is definable if it is of the form Mod(¢p) for some ¢ I FO.
Examples of definable model classes are the class of all graphs, the class of all
groups, the class of all equivalence-relations etc. A property of modelsis said to
be expressible in FO (or some other logic) if it determines a definable model

class. For example the property of agraph of being complete is expressiblein FO
by the sentence " X' y(XEY) .



Therelativisation ¢ ™ of aformula ¢ to aunary predicate R(x) is defined by
induction as follows

o® = for atomic o,
(Q(P)(R) = Q(p(R),

(@ U™ = o®Uy®,
$x0)® = $X(R(X)Uo'®),

Therdativisation A® of an L-structureA is
A® =(R" RC(RH™...R C(RH™).
The basic fact about relativisation is the equivaence
AE o iff AR o.

WeuseA|, todenote the reduct of the structure A to the vocabulary L.

1.1 Failure of the Compactness Theorem. Thereis a (recursive) set T
of sentences so that every proper subset of T has a model but T itself has no
models.

Proof. T :{Qen:nT N}, where 0, saysthere are exactly n elements in the

universe. Q.E.D.

Remark. T isuniversal-existential. Without constant symbols T could not be
made universal or existential. With constant symbols, we could let T be

{oc, =c,,:nt m}.

Then every finite subset of T hasamodel but T has no models.

Itisonly natura that the Compactness Theorem should fail, because its very idea
IS to generate examples of infinite models.



1.2 Example (An application of the Compactness Theorem in finite
model  theory). We show that there is no first order sentence ¢ of the empty
vocabulary so that A [ ¢ iff |4 even. Let T={o®,@¢'™} £ {"P(x) has at
least n elements’ : nT N, i =1,2} . Every finite subset of T has a finite model.
Hence T has a model A, which is infinite. Let A, <A be countable. Then
AE o™ U™ Let

B, =A"|; andB, =A{|..

Then B, =(B,), B, =(B,), where |B|=|B,|=A,. Hence B, @B,. However,
B.F ¢ and B,|- D¢ , acontradiction. Q.E.D.

An important pheanomenon in finite model theory is that individual structures
can be characterized up to isomorphism:

1.3 Proposition. (Characterization of finite structures up to iso-
morphism). For every (finite) A there is a first order sentence 6,
sothat B F 6, iff B @A.

Proof. We assume, as always, that the vocabulary L of A is finite. Let A=
{a.....a,}. Let w(x,,...,x,) bethe conjunction of

0(X,-..,x,), where ¢(x,,...,x,) isatomicand A ¢(a,,...,a,),

Q(p(xi,...,xn), where (p(xl,...,xn) isatomic and A (p(ai,...,an),
" x(x=xU..Ux=x,).

Let 6, be the sentence $x,...$x,w(x,,...,x,). Clearly A|=6,. If B F 6,, and
B w(h,...b,), then b, — a isanisomorphism B @A. Q.E.D.

1.4 Corollary. For any (finite) structures A and B we have

A° B ifandonlyif A @B. Q.E.D.



It is more interesting to study classes of structures than individual structuresin
finite model threory. Also, it is important to pay attention to quantifier-rank and
length of formulas. Note that 6, aboveisbigger in sizethan even A itself.

The Ehrenfeucht-Fraissé game
The method of Ehrenfeucht-Fraisse gamesis one of the few tools of model theory

that survive the passage to finiteness. The Ehrenfeucht-Fraissé game EF, (A,B)
between two structures A and B is defined as follows:

There are two players | and 11 who play n moves. Each move consists of
choosing an element of one of the models:

Rules: 1) x1 A® y 1 B.
2) x I B® vy 1A,
3) Il winsif x « 'y, isapartia isomorphism between A and B.

1.5 Ehrenfeucht-Fraisse Theorem. Il has a winning strategy in
EF(A,B) iffA°" B Q.E.D.

The following is a typical application of Ehrenfeucht-Fraissé games in finite

model theory:

1.6 Proposition (Gurevich 1984). Suppose A and B are linear orders of
cardinality 3 2". Then A°"B.



Proof. We may assume A and B are intervals of the integers. Suppose
(a,b),...,(a,,b,) havebeen played:

The strategy of 11: Corresponding closed intervals have the same length unless
both are > 2" (3 2™ ,when m1 {0,n}). Suppose | playsx1 (a,a.,,).

Case 1: x isnear thelow end of theinterval.

a; X &1

Player Il playsy exactly as near to the low end of theinterval.

by y B

Case2: x isnear the high end of theinterval.

a, X ai+1

mﬁl

<2

Player |1 playsy exactly as near to the high end of the interval.

b; y bi+1

t
Q+fx

Case 3: X isnot near either end of theinterval.



i X Ayq
L L L
n-m-1 ' n-ml -

2 2

Player Il playsy sothat it is not near either end of theinterval.

b y Bis 1
' n-m-1 ' n-mil

2 2

It should be clear that Player 11 can maintain this strategy for n moves.
Q.E.D.

1.7 Applications (Gurevich 1984).

(1) Theclassof linear orders of even length is not first order definable. ("Even"
can be replaced by amost anything.) Indeed, suppose ¢ defines linear orders of
evenlength. Let n=qr(p). Let A be alinear order of length 2" and let B be of
length2"+1. By 1.6 A°" B.But AE ¢ andB |# o.

(2) Let L ={<}.Thereisno first order L-formulaQ(x) so that for linear orders

A we have AE Q(a) iff a is an even element in <*. Indeed, otherwise
$x(Q(x) U" y(y = x Uy < x)) would contradict (1).

(3) Let L ={E}. Thereisno first order L-sentence Q sothat for linear orders A
we haveAl Q iff A isaconnected graph. Let L, ={<} . Replace xEy in Q by
"y isthe successor of the successor of x, or elsex isthelast but one and y is the
first element, or x is the last and y is the second element, and the same with x,y
interchanged”. Get an L,-sentence Q,. For alinear order A, we have AE Q, iff

the length of A is odd, contrary to (1). The following two pictures clarify this

e

even number of e ements = not connected



5

odd number of elements = connected

1.8 Note. The applications of 1.7 can alternatively be obtained by the use of
ultraproducts: Let A, be a linear order of length n. Let D be a non-principal

ultrafilter onN. Let A =QO A, and B = O A, ... The order-type of A (and of
D D

B) is N+Zx2° + N". Hence A @B. However, if A_F Q iff n is even, then
AF Qand B Q.

Still another alternative is to use the compactness theorem asin 1.2.

19 Failure of Beth Definability Theorem (Hgek 1977). Thereis a
first order L-sentence ¢, which defines a unary predicate P implicitly but

not explicitly.

Proof. ¢ isthe conjunction of

"< isalinear order",
$x(P(x)U" y(y =xUx <y)),
" X" y("y successor of X"® (P(y) « @P(x))).

Every finite linear order has aunique P with ¢ . However, if o= P(x) « 6(x),
where 6(x) isan {<} -sentence, then 8(x) contradicts 1.7. Q.E.D.

Note. The proof givesfailure of the so called Weak Beth Property, too.

1.10 Failure of Craig Interpolation Theorem  (Haek 1977). Let
L={<,c}. Therearean L E { P} -sentence ¢, and an L E {Q} -sentence ¢, s0

that ¢, ¢, but no L-sentence 6 satisfies both ¢,|= 6 and 6= ¢,.

Proof. Let ¢ be asin the proof of 1.9. Let ¢( be obtained from ¢ by
replacingP by Q Let ¢, be ¢ UP(c) andlet ¢, be ¢ @® Q(c). Now ¢ ,= ¢, .
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Suppose ¢,/= 6 and 6= ¢, where 6 is an L-sentence. Then ¢ F P(c) « 0,
whence ¢ definesP explicitly, contrary to 1.9. Q.E.D.

1.11 Failure of llog-Tarski Preservation Theorem (Tait 1959). There
Is a sentence which is preserved by substructures but which is not equivalent
to a universal sentence.

Proof (hereby Gurevich 1984). Let v be the conjunction of
(1) "<isalinear order",

(2) "Oistheleast element”,

(3) "S(x,y)« (yisthesuccessor of x) U
(xisthelast lement Uy =0)".

Let @ bethe conjunction of (1)-(3) and
(4) " x$ygx,y)® $xP(x).

Now ¢ is preserved by submodels, for if AF ¢ and Bl A such that
BF" x$yS(x,y), then B=A and hence BF ¢. Suppose we have
Eo« "%.."X0(X,....x). Let A=({1,...,n+2},<,SA). Then A satisfies
v U" x3yS(x,y), but A ¢. Hence there are a,,...,a, 1 {1,...,n+2} so that
AH6(@a,....a). Let B=({1...,n+2},<,S{d}), where d#a,....a,. Then
B ¢.Onthe other hand, B F v U$xP(x), whenceB | ¢, acontradiction.
Q.E.D.

Note. Kevin Compton (unpublished) has proved that " $ sentences which are
preserved by substructures on finite models, are universal on finite models.

In conclusion, first order logic does not have such a special place in finite model
theory as it has in classical model theory. But worst is still to come: the set of
first order sentences that are valid in finite models, is not recursively enumerable.
Hence there can be no Completeness Theorem in finite model theory.
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Trakhtenbrot's Theorem

A Turing machine consists of a tape, a finite set of states and a finite set of

instructions. The tape consists of numberedcells 1,2,3, ... Each cell contains O
or 1. States aredenoted by q,...,q, (g, iscalled theinitial state). Instructions

are quadruples of one of the following kinds:

goBg’, meaning: If in state q reading o, then write  and go to state .
goRg' , meaning: If in state g reading o, then moveright and go to state q'.
goLg , meaning: If in state g reading o, then move left and go to state q'.

A configuration is a sequence o,0,...o_,dot,...0, . [tS meaning is that the
machineisin state q reading o, incell i. The sequence q,0.,0t,... 0, iscalled the
initial configuration with input o,o,...00,. A computation is a sequence
l,,..., 1, of configurations so that |, is an initial configuration and 1,,, obtains
from |, by the application of an instruction. Computation halts if no instruction
applies to the last configuration. M is deterministic (default) if for all g and
there is at most one instruction starting with qo.. Otherwise M is non-
deterministic.

1.12 Trakhtenbrot's Theorem (1950). The set of finitely valid first
order sentences is not recursively enumerable.

We prove this by reducing the Halting Problem to the problem of deciding
whether afirst order sentence has afinite model. With thisin mind, let

L, ={B,, B, C,succl,N,<}.
Wethink of L,-structuresinthe following terms. Universe of the model is time,
succ!” (1) means g, B, (x,t) meansthat cell x contains symbol o at timet, and

C(t,g,x) meansthat at timet machineisin state q reading cell x.

Suppose amachine M is given. We construct a sentence ¢,, so that

12



M haltsiff ¢, hasa model.

This will be the desired reduction of the Halting Problem to the problem under
consideration.

Let ¢,, bethe conjunction of:
(1) C(1,1,1), meaning: initia stateis g,

(2) " xBy(x,1) U" X" t(B,(x,t) « @B(x,t)), meaning: initialy tapeis blank, and
|ater it contains zeros and ones.

(8) Axioms of successor function succ and the constants 1 (the first element) and
N (thelast element) in terms of the linear order <,

(4) For every instruction qofg; of M:
"X {(C(t.q,x) UB,(x,1))® (t <N UC(t+1q;,x) UB(xt+1)
Uyt x(B(y,t +1)« B (y,1)],

(5) For every instruction go.Rq; of M:
"X t[(C(t,qi,x) UB,(xt)® (t<NUC(t+1q,x+1)
U y(By(yit) « By(y,t+1))],

(6) For every instruction golLg; of M:
" x' (C(tg,x+1) Ux< NUB, (x+11)) ®
(t <N UC(t+10;,x)U" Y(By(y,t) « By(y,t+1))].

Claim. M halts b ¢,, hasa model.

Suppose the computation of M isl, I,,...,I, . We defineamode of ¢,, as
follows

A={12,.. .k},

B (x.t) follows the configuration I,
C*(qg.t,x) follows, .

13



Itiseasy to show AE(1)-(6).
Claim. ¢, hasamodel P M halts.

Suppose AF ¢,,, |AlFk. Suppose the computation of M  were infinite
1, ol Ly, By following (1)-(6) with 1, 1,,...,1, one eventually arrives
at the contradiction k<k.

Let
Vva={#(¢): ¢ afinitely vaidL -sentence},
Sat={#(¢): ¢ an L -sentence with afinite model }

where #(¢) is the Gédel number of ¢. We have proved that M halts iff
#(op,,)1 Sat. Thus we have a reduction of the Halting Problem of Turing
Machines to the problem of Finite Satisfiability of L,- sentences. Since the

Halting Problem is undecidable, so is Sat. Since Sat is trivialy recursively
enumerable its "complement” Val cannot be recursively enumerable.
Q.E.D.

1.13 Consequences of Trakhtenbrot's Theorem.
(1) Thereis no effective axiomatic system S so that ¢ valid U ¢ provable
in S. This means the total failure of the Completeness Theorem.

(2) Thereisno recursivefunctionf sothat if a first order sentence ¢ has a
model, then it has a model of size £ f(¢). This means the failure of the
Downward Lowenheim-Skolem Theorem.

Coding finite structuresinto words

Suppose A= ({a,,...a,},R....,R,), where R n -ary . The code of A , O(A), is
the binary string

A HA H#. HA

14



where

A,=n inbinary,
# =anew symbol (w.l.0.9.),
A, = binary sequence of length n" coding R.

Note that the length of C(A) islog(n)+ & n" +m.

i=1

Example. Hereis an example of a structure and its code:
Structure A:
a,

Code C(A)=11#011101110

A model class K is recursive if the language {C(A):A T K} in the alphabet
{0,1} is, i.e. if thereis a machine which on input C(A) gives output 1if AT K
and 0if AT K. K isrecursively enumerable if there is a machine which on
input C(A) haltsiff AT K.

Recall that

M haltsiff ¢, hasa model.

It is easy (but tedious) to modify the L,-sentence ¢,, to an (L, E L) -sentence
¢ ¢ with aunary predicate P so that

M haltsoninput C(A) iff ¢¢ has amodel B with B| = A,
where L isthe vocabulary of A. A model class K is arelativized pseudo—

elementary class (or RPC) if there are a sentence ¢ , and a predicate P such
that

15



K={AP| :AE o}.
It is a consequence of the proof of 1.12 that:
1.14 Theorem. A model classis RPC iff it isrecursively enumerable.
1.15 Corollary. Amodel classisRPC C co- RPC iff itisrecursive.

Since there are digoint recursively enumerable sets that cannot be separated by a
recursive set, we have:

1.16 Corollary. There are disjoint RPC-classes that cannot be separated
by any RPC C co- RPC-class.

We may concludethat to extend FO to alogic with the so called Many-Sorted
Interpolation Theorem, one has to go beyond recursive model classes. Note
that on infinite structures RPC C co- RPC = FO, a consequence of the many-
sorted interpolation property.
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Lecture 2. Complexity Theory

Let us fix some states of the Turing machine as accepting states. Then M
acceptsaninput o.,...o,, if thereisacomputation 1,,...,1, sothat I, = go,...o,

and 1, is accepting. The time of the computation I,,...,1, is k, so that each
instruction is thought to take one unit of time. The space of 1,,...,1, is the
maximum length of |,. Note, that the space of a computation is always bounded

by the length of the input plus the time. A machine M is polynomial time (or
polynomial space) if thereisapolynomia P(x) sothat for al inputs a,...o.,, the

time (or the space) of the computation of M isbounded by P(n) . Model class K
is polynomial time (or polynomial space) if thereisapolynomia time (or space)
machine M that accepts C(A) iff AT K. We use PTIME (or simply P) and
PSPA CE to denote the families of polynomial time and, respectively, polynomial
space model classes.

PTIME and PSPACE are examples of complexity classes. Another important
complexity class, LOGSPACE , allows the machine to use log(n) cells on input
of length n, when reading input or writing output is not counted as a use of cells.

A machine M is non-deterministic polynomial time if for some polynomial
P(x) itis true that, whenever M accepts an input a,...o.,,, this happens in time

£P(n). Here M may be non-deterministic. A model class K is non-
deterministic polynomial time if thereisM as above so that

M accepts C(A) iff AT K.

We use NPTIME (or just NP) to denote the family of all non-deterministic
polynomial time model classes.

2.1 Fact. LOGSPACEI Pi NPI PSPACE, LOGSPACE! PSPACE.

17



2.2 Open problem. Isittrue, that P£ NP? Or isany other inclusion in 2.1
aproper one?

2.3 Proposition. First order logic is contained in LOGSPACE.

Proof (by example). We decide AE " x$yR(x,y) in LOGSPACE. A counter
which runs through numbers from 1 to n takes space log(n). We need a counter
for x and counter fory. A double loop scansthrough pairs (x,y) and looks up
in C(A) whether R(x,y) holds or not. Q.E.D.

A model classis existential second order definable, or S;, if it can be defined
with aformula $R...$R @, where ¢ isFO.

2.4. Fagin's Theorem (1974). NP=S..

Proof. 1° Easy part: S;l NP
Non-determinism allows guessing. For example, the Turing machine:

0,004, j
¢ 0lg, P

"guesses' a value for the first cell. If ¢ is $R...$R v, a non-deterministic
program can "guess' values for the matrices of the relations R...R, and then
check ¢y in LOGSPACE

2° Hard part: NPI Si.
Suppose that M is a non-deterministic machine. Let

K ={A : M accepts C(A)}.

Choose k so that if M accepts o.,...o.,, it happens in time £ n“. We use k -

sequences of elements of the model to measure time. Given A, where
A={1,...,n}, we use the sequence

(1L1...2),...,(n,n,...n).

nk
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asamode for tape and time. Otherwise we imitate Trakhtenbrot's Theorem. Let
L, = L E {By(%,f), B,(%,f),C(f,q,%), succ(i,t'),<,1, N} , where this time we have

X=Xy Xy T =t,..,t, B and B are k+k-ary, < isk+k-ary and C is
k+1+k -ary. By imitating the definition of ¢,¢ we get ¢ ¢ so that

M accepts C(A) iff
thereare B,, B,,C,succ,1, N,< sothat (A, B,,B;,C, succ,<,1, N)= o g iff

A= $B),B,C,...o9. Q.E.D.
2.5 Corollaries (Fagin1974).
(1) S;CPi=NPCco- NP, where P; =co- S; (Note: on all structures
S:C P =FO).
(2) S;* P;,U NP co- NPb P! NP,
(3) S;=P;U 3-colorability is P; (The same holds for Hamiltonicity. Note
that if 3-col were PJ, then 3-col would be co-NP, whence NP1 co-NP

and so S;=P7).

(4) Toprove P* NP itisenough to construct a 3-colorable graph G so that
whenever nT N and R,...,R, arerelationson G, then there are a non-3-

colorableH and R,..., P, so that
(G,R,...R,)°"(H,R...,P,).

So one approach to proving Pt NP isto be good in Ehrenfeucht—Fraissé
games!

(5) X isaspectrumiff Xis NEXPTIME (= non-deterministic exponential
time).

2.6 Theorem (Fagin 75, Hajék 75). Connectivity of graphsis not monadic
S; (i.e. $R...P.@, where R,...,P, areunary.)
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Proof (ideaonly). Suppose $R...R,¢ isamonadic Si sentence of length k
expressing connectedness. Take alarge cycle A of n nodes. Let unary R,...,P,

be given on A so that ¢ . We may color elements of A according to which
predicates B, ..., P, the element satisfies. Two elements are called similar if they

have the same color, and their correponding close neighbours have also the same
colors. Take two nodesp and g that are similar and far apart. Then brake A into
adisconnected graph B as in the picture below. Then use similarity and the fact
that p and g are far apart to prove:

(AP,....R)° (B,P,....P,).

It followsthat B models $R... P, ¢, contradicting non-connectedness of B.

2.7 Corollary. Monadic S; isnot closed under complementation .

Proof. Non-connectednessis monadic S;. QED.
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Lecture 3. Fixpoint Logic

Suppose L is a vocabulary and S is a k -ary predicate symbol no in L. Let
¢(X,S) beafirst order formulain which Sis positive and X = x,,...x,. Let A be

an L-structure. Define S =/E and S™ ={&A[= ¢(3, S)} . Clearly
S Si..isi..iA

Eventualy S*' =S. WedenotethisS by S* and cdl it thefixpoint of ¢(X,S)
on A. Theset Sfiscalled afixpoint, because for al &

AE S(@) « ¢(35%).

Example 1. o(x,y,S)° xEyU$z(xEzUS(zy)). L={E}. If G is a graph,
and we compute S* on G, we get the set of pairs(x,y) for which there is a path
fromx toy. Thus " X' yS' (x,Yy) saysthe graph is connected.

Example 2. ¢(x,S)° succ(l, x) USy$z(S(y) Usucc(y,z) Usuce(z X)) . In this
casel = {succ,1}. If A isamodel of the vocabulary {succ,1} where succ” is a

successor relation with 1% as the least element and the successor of the last
element being 1", then S* isthe set of "even" elementson A, and $x@S" (x)

says"A haseven cardinality" .

Fixpoints are examples of global relations. A global relation (or a query, as they
areaso called) associateswith every structure A a k-ary relation R(x1 ..xk) on

A. As an example, the fixed point of @(X,S) isaglobal relation which associates
with every A therelation S* .

We shall now introduce an elaboration of the fixpoint concept. Rather than

looking for the fixpoint of a single formula, we take the simultaneous fixpoint
of asystem of several formulas. Suppose 9,(% S R) and ¢,(%,S R) are positive

inS and R. Then we may consider the following simultaneous induction:
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{aAF ¢,(a,S,R)},
R"={aAF ¢,(&S,R)}.

For somei wehaveS™ =S and R™" = R. ThenwedenoteS* =S, R’ =R.
The pair (S*, RY) iscalled the smultaneous fixpoint of the formulase, (%, S R)
and ¢,(X,S R), because of the identities:

AES'(8) « 9,(aS",R),
AER'(@) « ¢,ES,R).

Therelations S and R* are called multiple fixpoints because they are members
of a simultaneous fixpoint. Naturaly, we can do the same for more than two
formulas.

3.2 Example. If S° and R* are fixpoints, then S’ C R’ is a multiple
fixpoint. Indeed, suppose S* isthe fixpoint of ¢,(%,S) and R* isthe fixpoint of
¢, (X,R). Consider the formulas:

b (X SRT) « ¢,(%,9),
)i W(XSRT)« ¢,(%R),
1 WX SRT)« SX)UR).

Let (S, RY, T¥) bethe simultaneous fixpoint of (+). Clearly, S'and R* arethe
fixpoints we started with, and
T*=S'CR".
Hence S* C R* isamultiple fixpoint.
3.3 Definition.  Fixpoint logic FP consists of global relations defined as

follows: Suppose
0,(X8,....8), 1=1..,k
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arefirst order formulas positivein S,...,S. Let (§,...,S) be the
simultaneus fixpoint of ¢,(X,S,...,§) i.e.inany A:

@ « ¢,&Y..5)
S(@ « ¢@ay%..5).
Then the multiple fixpoints S',...,S are, by definition, in fixpoint logic.

3.4. Proposition.
(1) FOI FP.

(2) FP1 PTIME.

(3) FP isclosed under U,U,$," , substitution and
relativisation.

Proof. (1) Every ¢(X)T FO givesriseto atrivial fixpoint S*(a) « ¢(a).

(2) Suppose S* isthefixpoint of @(%,S) (for smplicity). The following
polynomial time algorithm decides X T S* :

Step 1: Decide ¢(a,4) foreachal A“.
Let S' betheset of a for whichit istrue.

Step 2: Decide ¢(a,S) foreachal A“.
Let S° betheset of a for whichitistrue.

etcuntil S™ =S. Thereareat most | A steps.
(3) Easy. Q.E.D.

3.5. Theorem (Immerman 1986, Vardi 1982). On ordered structures
FP=PTIME.
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Proof. We imitate the proofs of Fagin's and Trakhtenbrot's theorems. Let M
be a polynomial time deterministic machine. Choosek such that oninput o.,...o,,

machine halts in time n“. Let < be the assumed order. It gives rise to the
lexicographic order of k-tuples. We express the predicates B, B,,C of Fagin's

theorem as fixpoints of a set of equations. For example, if M has only the
instructions

0,01d, 9,10
ending with q', one equation is
Ci+1.9, %) « (B(XE) UC(t,q,,%)) U(B(X.E) UC(E,0,.%)).

We copy the action of the instructions into such equations. Let g, be theaccepting
sate of M . Then M accepts C(A) iff Al= $($xC*(f,q,.%).
Q.E.D.

3.6 Corollary. P=NP iff FP=S]onordered structures
iff FP=P; on ordered structures.

Note. On countably infinite acceptable structures FP = P (Moschovakis 1974).

3.7 Definition. Suppose ¢(X,S) ispositivein S. OnastructureA we
define

lp|=leasti suchthat S™ =S5,
lal_‘[leastiwchthat al s,ifal &

i .
ilo| +1, otherwise.

3.8 Stage-Comparison Theorem (Moschovakis1974). Suppose ¢(X,S) is
positive in S. Then the global relations
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and their complements 4, £° arein FP.
Proof (Hereby Leivant 1990). Defineaso
x=<) y O Ix+1=[y].

The following equations define <,£,<,,4,£ as multiple fixpoints. We use the
shorthand notation x< y for the set {u:u< y} .

(1) x<y« $z(x£z<,Yy),
(2) XEy« @(X,%<y), meaning "xT ",
(3) X<, y« @(x,%<x), meaning"x1 S*"
U (y,Dx+ x), meaning "y ¥ S1"
Uo (yxEx) U" Z(p(z@xE x)® ¢(zx< x))] , meaning

"yT S or “Ix| isthelast stage”.

(4) x+y« $z(x£z=<,yUo(y,AU" 280 (z,A) , meaning
"yl S"or"S* =A",

(5) x££y« Do(x,Px£y), meaning"x | M.

Once we have the fixpoint (<,£,<,,%4,£) of these equationsit is not hard to prove
(=E,=, kL) =(=",E%, <7 &% £7).

Hence <?,£° and their complementsarein FP. Q.E.D.

3.9 Corollary (Immerman 1982). FP isclosed under negation.

Proof. Theclaim follows from the Stage-Comparison Theorem 3.8 and the
equivalence x| S iff x £ x. Q.E.D.
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3.10 Examples. Thefollowing globa predicatesarein FP:

"the graph is non-connected",
"thereisno path fromx toy ".

Note. Immerman used the argument behind 3.9 to prove the surprising result
that the class of context sensitive languages is closed under complements.

Wedefined FP using formulas ¢(X,S) with S positive. A formula ¢(X,S) is
monotone in Sif ¢(X,S USI St implies always ¢(%, S§). The definition of
fixpoint logic can be repeated with monotone formulas instead of positive
formulas.

Facts. (1) If aformulaispositivein S, thenit isaso monotonein S

(2) Thereisaformulawhichismonotonein S but which is not
equivalent to aformulathat is positivein S (Ajtai-Gurevich 1988).

(3) Fixpoints of monotone formulas are till in FP.
Thus monaotone fixpoints bring nothing new, on the contrary, Gurevich (1984)
showed that we cannot effectively decide whether aformulais monotone or not.
Thisisin sharp contrast to positivity which istrivial to check. If ¢(X, S)isnot

even monotone, we can still defineinflationary fixpoints as follows:

S =£,
- dE {§:A|: (p(ﬁ,S‘)}.

Fact. Inflationary fixpoints of first order formulasarein FP (Gurevich-Shelah
1986). This follows aso from the proof of the Stage-Comparison Theorem.

Finaly, with any ¢(X, S we may try the following iteration:
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S’ =£,

s*={aAF ¢(@Ss).

« _1S°ifthereisi, sothat S° = S°**
_%AE otherwise.

)

Wecal S* thepartial fixpoint of ¢(X,S). Partial fixpoints give rise to partial
fixpoint logic PFP.

Facts. (1) PFPI PSPACE.
(2) PFP = PSPACE on ordered structures (Vardi 1982).

(3) FP=PFPU PTIME = PSPACE (Abiteboul-Vianu 1991).
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Lecture 4. Logic with k variables

A formula can be measured by its:
-length,
-quantifier-rank, or
-number of variables.

In this chapter we focus on the last possibility. By reusing variables where
possible one can write interesting and important formulas with very few
variables. This correspondsto the programming rule that one should not reserve
new memory every time one needs space but rather use the same working area
over and over again.

4.1 Example. Models with a total order <. We show that the property "x
has exactly i  predecessors’, which one normally would write with i+1
variables, isin fact definable with just 3 variables:

(P_l(x1)0 " (X <X, U‘Xl =X,)
(PI+1(X1)O$X2(X2'<X1U" X3(X, < % ® .
(% =< X3 Ux = X5)) USx (X =X, U(PI(Xl))) .

i+1

Now ¢ "~ (x) says" x, hasi predecessors’.

4.2 Definition. First order logic with k variables, FO*, is defined like FO
but only £ k distinct variables are allowed in any formula. Infinitary logic
with k variables, L, is defined similarly as FO* but the infinite disjunction
Uand conjunction U are added to its logical operations. ( Liw is commonly
used for L*). Furthermore, L° isthe union | JL*.

k

4.3 Theorem (Barwise1977). FPI L°.

Proof. Recal that S'(X)« S(X)US(X)US(X)U---. In each model the
digunction isfinite, but its length may change from model to model. Let ¢(X, S
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1 FO have S positive, where S is k-ary and X=X, % - Let
Vi, .- Y benew variables and
vo(X)° D =%
' "(X)° theresult of replacing in (X, S) every occurrence of S(t,,...,t ) by
$y,..$y (y,=tU...Uy =t U
$x,... 3% (y, = x U..Uy, =x, Uy'(X,...x,.))).

Eachy' (X) hasonly | +k variables. Moreover S(X) « y'(X). Hence
s« Uy QED.

4.4 Remark. L° can expressnon-recursive properties, hence L® i/ PTIME
and Lt FP.

Proof. Let us work on ordered models: Recall from Example 4.1 the

equivalence (p”l(xi)« "x, hasi predecessors’. Let Ai N be non-recursive.
Recall dsothat ¢ (x)1 FO®. The sentence

Usx,(0'00) U™ %06 < % Ux, = )

inL’ istruein atotal order of length n iff nT A. Henceit defines anon-recursive
model class. Q.E.D.

4.5 Remark. Every class of ordered structuresis definablein L”.

Proof. Remark 4.4 shows every element of an ordered structure is definable in
FO’. Every ordered structure is definable in FO™® where m depends on the
vocabulary. Digunctions of such definitions give al classes of ordered models.

Q.ED.

Thisexplainswhy L isonly discussed in connection with unordered structures.
The advantage of L® over FP isthat elementary equivalence relativeto L hasa

29



nice criterion. Using this criterion it is possible to show that certain concepts are
undefinablein L” and hence undefinablein FP.

4.6 Definition. Let A and B be L-models. The k-pebble game on A and B,
G*“(A,B), has the following rules:

(1) Playersarel and Il , and they share k pairs of pebbles. Pebblesin a
pair are said to correspond to each other.

(2) Player | starts by putting a pebble on an element of A (or B).

(3 Whenever | has moved by putting a pebble on an element of A (or B),
player |1 takes the corresponding pebble and putsit on an element of B (or
A).

(4) Whenever |1 has moved, player | takes a pebble - either from among the
until now unused pebbles or from one of the models - and puts it on an
element of A (or B).

(5 This game never ends.

© wins if at all times the relation determined by the pairs of
corresponding pebblesis a partial isomorphism. Otherwise| wins.

4.7 Examples.

(1) LetA and B be chains of different length. Then Il has a winning strategy
in G°(A,B) butl hasin G*(A,B).

o O O o) o
A B

(o]
o
(e}
(0]

(2) Let L=/A.Let A beasetwithi elementsand B a set with i +1 elements.
Then!l has awinning strategy in G' (A,B) but! hasin G *(A,B).
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(3) Let A beacycleof lengthn and B acycle of length m® n. Il has a
winning strategy in G*(A,B) but| hasin G*(A,B).

O

4.8 Theorem (Barwise 1977, Immermann 1982). Let A and B belL -
structures. The following are equivalent

(1) A°,. B,

2 A°, B,

(3) Il hasawinning strategy in G*(A,B)
(denotethis by A °, B).

Proof. (1) ® (3) Strategy of Il : If the pairs (a,b,), i =1...,1 have been
pebbled so far, then for al @(x,,...,x)T FO* we have

(*) AF o(a,,...q) ifandonly if BF ¢(b,,...h).

This condition holds in the beginning (I=0) and it can be seen that Player 11 can
maintain it.

(3) ® (2) Oneusesinductionon @(x,,...,x)1 FO“ to prove: If I plays his
winning strategy and a position (a,b;), 1 =1,....,1 appears in the game, then
condition (*) holds again. Finally, for asentence ¢ welet [=0. Q.E.D.
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4.9 Applications. The following properties of finite structures are not

expressiblein L” and hence not in FP. In each case we choose for each k two
modelsA and B so that A °, B, A has the property in question, while B does

not.

(1) Even cardinadlity.

NG

(2) Equicardinality. |P=|qQ.

QD = k | kel

(3) Hamiltonicity (Immermann 1982).

4.10. Corollary (KolaitisVardi 1992). Let K be an arbitrary model class.
The following conditions are equivalent:

(1) K isdefinablein L,

(2) K isclosed under © .
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Proof. (1)® (2) by Theorem 4.8.
(2® (1) follows from Theorem 4.8 and the equivalence
ATKU HU{@T FO“:BE ¢} . (A normal-form for L ). Q.E.D.

4.11 Theorem (Abiteboul-Vianu1991). The global relation R(X,y) which
on any A defines the relation

(A.a,...3) % (Ab,...0)

i.e. for all @(x,...x )1 L*

AE ¢0(a,,....a)U AF o(b,....b)
isin FP.

Proof. It sufficesto show that IR(X,y) isinFP. Let D(xl,...,xk,M,...,yk) be
the global relation saying that for some atomic ¢(x,,...,X,) we have

AE 9(@,....a)U AF ¢(b,....b).

Surely D(X,y) isin FO. We can now define @R(X,y) as the solution S(X,y)
of the following equation:

S(Xye e rXis Yine Vi) € D(X(,e Xy Yinen ) U
k .
Q@x"MS(xl,---,xk,m,---.yk)U

Y XK X Yo Vi) -
Q.E.D.

412 Corollary. The global relation (A,a,...,a,)°,(B,b,...,4) is in
PTIME. Smilarly, therelation A°, B isin PTIME.

So, although L* itself can express even non-recursive concepts, elementary
equivalence®, is PTIME. The relations ©, are important polynomial time

versions of the NP concept (@.
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Further results about L and © , :

(1) Thereisaglobal relation <, , which linear orders classes
[3],, and therelation <, isin FP.

(2) Onevery A, every [3], isinFP.

(3) Every ¢ 1 L can bewritten as Uep, for some . T FO¥.

(4) On k-rigid structures FP=PTIME. A structure is k-rigid if there in no
permutation of the structure which maps ° , -classes onto © | -classes.

For details concerning these results, see Dawar 1993, Dawar-Lindell-Weinstein
1994, and Kolaitis-Vardi 1992.
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Lecture 5. Zero-One Laws

Inthissection L isarelationa vocabulary and ¢ is an L -sentence. Suppose we

choose anL -structure A at random from among all L -structures of size n. What
isthe probability that A safisfies ¢ ? Because no particular n is of interest here,

we concentrate on the limit of this probability asn® ¥ .

For simplicity, we consider only graphs. So L ={E} and L-structuresarelimited
to graphs. The case of arbitrary structuresis entirely similar. Let G, be the set of

al graphson{1,...,n}. Notethat |G, |= 2(;).

The results of this section hold also if isomorphism types of structures are
considered instead of structures themselves.

5.1. Definition Let P bea property of graphs. Then we define

{GT G, GhasP}|
Gl

u,(P)=

u(P) = I|®rr¥1 n.(P), if exists.

Thus u,(P) is the probability that a randomly chosen graph on {1,...,n} has
property P.

5.2 Example. Suppose P says "there is an isolated vertex". Then u(P) =0,
asthe following calculation shows. The isolated vertex can be chosen in n ways
and the remaining vertices can form a graph in any way.

2 5
nLEeZ "= Do
Zgzria 2
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Q.E.D.

5.3 Example. Suppose that P says "the graph is connected”. Then u(P) =1
which can be seen asfollows. Let Q be the property

"X'Y(x! y® $z2(xEzUYEZ)).

Property Q implies connectedness, so it sufficesto prove pu(Q) =1. We shall
prove u(2Q) =0. We count how many pairs(x,y) there are so that one of the
following edge patternsis realized with each of the remaining vertices z

X X e X e
\Z .Z 'Z
y. y/ y‘

o ?z
€202 "2 3" gdagy”?
u,(2Q £ 2222 = &ogtan ® 0

Q.E.D.
5.4 Examples.

(1) By 5.3. u("thegraph containsatriangle") = 1.

(2) By (1) u("thegraphisacyclic") =0.

(3) By (1) u("thegraphis2-colorable") =0.
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(4) n("evencardinality ") does not exist because 1, oscillates between 0 and 1.

The following graph property is called the extension axiom E, :

If W andW aredigoint setsof cardinality k ,
then thereisx suchthat " wi W (WEx) and " wi W¢(@WEX).

5.5 Proposition (Fagin1976). u(E)=1.

Proof. Weshow u(@E,) = 0. How can E, fal? There haveto bedigoint
k-setsW and W(¢ with no x as above.

The number of waysto choose W and W : @9"@@' ko.
ekee k o

@ kb

The number of waysto put edgesin W E W¢: 2825,

ah—ZKE

The number of waysto put edges outside W E W¢ 2§ 20

The number of waysto put edges betweenW E W¢ and itsoutside: £ (2°) e
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Remark. Since u(E ) =1, we know that E, has finite models. This is the
easiest way of showing that E, has finite models at all. It is an example of a

probabilistic model construction, which has become more and more important in
finite model theory.

In contrast, infinite models of E, are easy to construct:

5.6 Definition. The Random Graph R hasthe vertex set {1,2,3,..} and the
edgerelation

iEj iffi <jand plj (or j<iandpli)

Here p,,p,,Ps... are the primes 2,35,7,... and p]|j means p divides j.
Equivalently, one may just toss coin to decideit iEj holds or not.

5.7. Lemma. RF[F E.

Proof. Suppose W={i,,...,i,} and We={j,....,j,} aredigoint. Let
z=p,...n, . Then

pIz....p, Iz but p,{z....p,]z.

Hencei,Ez,...i,Ez and 9 Ez,...,9) Ez. Q.E.D.
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58 Lemma. (Kolaitis -Vardi 1992). Suppose H and H' are finite graphs
suchthat H F E, and H¢F E.. Then H°, Hd.

Proof. Wedescribethestrategy of 11 in G*(H, HG) . Suppose pairs

(a,b),....(a,0h), £k

have been pebbled and then | putsa pebble on a,,,. Either | +1£ k or a pebble
istaken away from a_for somei, £1. Let

W={h:aEa,.},

we={h:PaEa,.}.

ThenW and W are digoint sets of size £ k. Since H¢E E, thereis b,, T H(¢
such that b, Eh,, for b, T W and @hEb, for b T W

a

1+1

Player |1 pebblesb,,. Clearly, {(a,b):i £1+1} remainsapartial isomorphism.
Q.E.D.
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Let E={E k=123..} be the first order theory consisting of all extension

axioms.

5.9 Lemma. Thefirst order theory E has exactly one countable model,
namely the random model R.

Proof. We know already that R is a model of E. Suppose R' is another
countable model of E. Recall the proof of 5.8: I could use E, to make a

successful move at a position where k elements had been played. This means that
now that || hasevery E, a his disposal, he can make the right move no matter

how many elements have been played. Hence he can win the infinite Ehrenfeucht-
Fraisse game EF, (R,R®. On countable structures this implies R @R' by a

classical result of Carol Karp. Q.E.D.

5.10 Corollary (Gaifman). Thetheory E is complete and decidable.

Proof. Suppose ¢ isan L -sentence, L ={E}. Suppose neither E |- ¢ nor
El Do . By the Completeness Theorem and the L dwenheim-Skolem Theorem,
there are countable models A and B of E with A |- ¢, BF @¢. By Lemma

59, A@B@R. This is a contradiction. So E is complete. Every complete
axiomatizable first order theory is decidable. Q.E.D.

511 Zero-One Law  (Glebskii et al 1969, and independently, Fagin 1976
for FO and Kolaitis-Vardi 1992 for L°). If ¢1 L”then u(p) exists and

n(e)=0o0r u(e)=1.
Proof. Weassume (w.l.o.g.) L ={E}. Suppose ¢ T L.
Case 1. For some GF E, wehave GF ¢. Then

" GGCE E P GE°, Gb GOF ¢).
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Hereweused5.8.So F E ® ¢. By 5.5. n(E) =1. Hence u(p) =1.
Case 2. For dl GF E, we have GF @¢. Since pu(E) =1, necessarily

nw(@oe)=1i.e. u(p)=0. Q.E.D.

We say that a zero-one law holds for alogic L if for all ¢ T L the limit u(¢)
existsand pu(p) =0 or u(p)=1. We just proved that zero-one law holds for
L.

5.12 Corollary. Zero-onelaw holdsfor FO and FP.

Proof. It sufficesto recall that FOI L° and FPT L°. Q.E.D.

Note. For first order ¢ we have u(¢) =1 iff RF ¢. For suppose RF ¢.
Since E is complete, E}- ¢, whence E |- ¢ for some k . Since u(E) =1,

(o) =1. Similarly, if RE @g , then p(¢) =0.

513 Corollary. The question whether p(e)=1 or pu(p)=0 can be
effectively decided for ¢ I FO.

Proof. The claim follows from the equivalence u(¢) =1 iff RF ¢, and from
the fact that the theory E of R is decidable. Q.E.D.

Note. By Trakhtenbrot's Theorem we cannot effectively decide whether
¢ 1 FO isvalidin al finite models. But we can decide whether ¢ is valid in
amost all models. Grandjean (1983) showed that this question is PSPACE-
complete.

5.14 Definition. A set A of natural numbersis called a spectrum, if there
iIsavocabulary L and an L -sentence ¢ so that A is the set of cardinalities

of models of ¢ . Then A isthe spectrumof ¢ .

An old problem of logic asks: Is the complement of a spectrum again a spectrum?
(Asser 1955). If "no" then P1 NP, soitisahard problem.
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5.15 Corollary (Fagin1976). If ¢ 1 FO, then the spectrum of ¢ or the
spectrum of Yo is co-finite.

Proof. Suppose A isthe spectrumof ¢ and w(¢) =1. Then thereis n, so that
n,(@)>05forn3 n,. Hence ¢ has a model of every size n3 n, and
[n,¥)1 A.If u(e)=0, then u(Dp)=1 and the spectrum of We contains
[n,,¥) for somen,. Q.E.D.

The zero-one law is more than an individual result - it isamethod. Zero-one laws
have been proved for many different logic e.g. fragments of second order logic
and for different classes of structures e.g. different classes of graphs and partial
orders. Furthermore, zero-one laws have been proved for different probability
measures.

Whenever a zero-one law obtains, non-expressibility results follow, e.g. "even
cardinality" cannot be expressible in alogic which has a zero-one law. Zero-one
laws have similar universal applicability in finite model theory as Compactness
Theorem hasin infinite model theory.
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