Terzo appello del primo modulo di ANALISI -18.07.2006-

1. Si vogliono infilare su un filo delle perle distinguibili tra loro solo in base alla dimensione: si hanno a disposizione perle grandi di diametro di 2 centimetri e perle più piccole di diametro di 1 centimetro. Con quanti distinti allineamenti è possibile coprire un filo di 10 centimetri? Più in generale mostrare che, se denotiamo con A(n) il numero dei dis-

Più in generale mostrare che, se denotiamo con A(n) il numero dei distinti allineamenti di perle (di 1 o 2 centimetri di diametro) che coprono un filo lungo n centimetri, allora c'é una semplice relazione lineare che permette di ricavare A(n) dai termini che lo precedono.

Sia $0 \le k \le 5$ un intero fissato. Se decidiamo di infilare sul filo di 10 cm k perle grosse rimarrà solo lo spazio per 10-2k perle piccole e quindi sul filo verranno infilate 10-k perle. Pertanto una configurazione sarà determinata specificando in quali dei 10-k posti si viene a trovare una perla grossa, il che equivale a selezionare un sottoinsieme di k elementi in un insieme di cardinalità n-k; questa operazione può essere fatta in $\binom{10-k}{k}$ modi diversi. Pertanto il numero totale di configurazioni possibili su un filo di 10 cm è

$$A(10) = \sum_{k=0}^{5} {10 - k \choose k} = 89.$$

Sia C_n l'insieme delle configurazioni su un filo lungo n cm, possiamo vedere C_n come unione disgiunta di due insiemi $C_n = C_n^o \cup C_n^O$ dove C_n^o denota il sottoinsieme delle configurazioni che terminano con una perla piccola mentre C_n^O denota quello delle configurazioni che terminano con una perla grande. Chiaramene C_n^o è in bigezione con C_{n-1} mentre C_n^O è in bigezione con C_{n-2}

(in entrambi i casi la bigezione si ottiene tagliando il tratto di filo su cui è infilata l'ultima perla) pertanto si ha

$$A(n) = |C_n| = |C_n^o| + |C_n^o| = A(n-1) + A(n-2).$$

Si avrà dunque A(1)=1, A(2)=2, A(3)=3, A(4)=5, A(5)=8, ... abbiamo ritrovato i numeri di Fibonacci!

2. Sia $f(x) := e^{x-1}$ e sia x_n la successione definita per ricorrenza da

$$\begin{cases} x_0 = a \\ x_{n+1} = f(x_n) \end{cases}$$

- (a) Mostrare che x_n è monotona.
- (b) Dire per quali valori del parametro $a \in \mathbb{R}$ la successione x_n risulta limitata.

Studiamo la funzione $g(x):=e^{x-1}-x\colon$ da $g'(x)=e^{x-1}-1$ deduciamo che g è decrescente sull'intervallo $]-\infty,1]$ e crescente sull'intervallo $[1,+\infty[$ dunque $g(x)\geq g(1)=0$ per ogni $x\in\mathbb{R}$ e di conseguenza $f(x)\geq x$ $\forall x\in\mathbb{R}$ e quest'ultima disuguaglianza implica la crescenza di x_n .

Se $a \leq 1$ x_n è limitata: infatti, visto che $f(]-\infty,1]) \subset]-\infty,1]$, è facile verificare per induzione che $x_n \in]-\infty,1] \forall n \in \mathbb{N}$ e dunque $x_n \in [x_0,1]$ $\forall n \in \mathbb{N}$. Osserviamo inoltre che, per la monotonia, $\sup_{n \in \mathbb{N}} x_n = \lim_{n \to +\infty} x_n := \ell$. Se $\ell < +\infty$ dalla continuit'a di f segue che

$$f(\ell) = f(\lim_{n \to +\infty} x_n) = \lim_{n \to +\infty} f(x_n) = \lim_{n \to +\infty} x_{n+1} = \ell$$

da segue $\ell=1$. Da ciò deduciamo che se $x_0=a>1$ allora x_n non può essere superiormente limitata.

- 3. Sia $f(x) := (\cos x)^{1/x^2}$.
 - (a) Mostrare che f è estendibile per continuità in 0.
 - (b) Dire se 0 è punto di massimo o minimo locale per la funzione così estesa.

Studiamo dapprima la funzione $h(x) = \log f(x) = \frac{\log \cos x}{x^2}$: visto che

$$\log \cos x = -\frac{1}{2}x^2 - \frac{1}{12}x^4 + O(x^6)$$

si ha immediatamente che $h(x)=-\frac{1}{2}-\frac{1}{12}x^2+O(x^4)$ è estendibile per continuità in x=0 e l'origine è punto di massimo per la funzione così estesa. Visto che $f(x)=e^{h(x)}$ dalla crescenza della funzione esponenziale segue che le medesime considerazioni valgono anche per f.

$\begin{array}{c} {\rm Secondo~appello~del} \\ {\rm secondo~modulo} \\ {\rm di~ANALISI} \end{array}$

-18.07.2006 -

1. Mostrare che

$$\int_{1/x}^{x} \frac{\arctan s}{s} ds = \frac{\pi}{2} \log x.$$

Derivando l'espressione $f(x) = \int_{1/x}^x rac{\arctan s}{s} ds$ otteniamo

$$f'(x) = \frac{\arctan x}{x} - \frac{\arctan(1/x)}{(1/x)}(-\frac{1}{x^2}) = \frac{1}{x}[\arctan x + \arctan(1/x)].$$

Ricordando che $\arctan x + \arctan(1/x) = \pi/2$ ed osservando che f(1)=0 deduciamo che $f(x)=\frac{\pi}{2}\log x$.

2. (a) Mostrare che l'equazione

$$y'' - y = \frac{1}{e^t + e^{-t}} \quad (*)$$

ammette al più una soluzione limitata.

(b) Mostrare che l'equazione (*) del punto precedente ammette una soluzione y(t) tale che $\lim_{|t|\to\infty} y(t) = 0$.

Le soluzioni dell'equazione omogenea v''-v=0 sono del tipo $v(t)=ae^t+be^{-t}$. Se y_1 ed y_2 sono soluzioni limitate dell'equazione non omogenea (*) allora la loro differenza è una soluzione limitata dell'equazione omogenea e di conseguenza è nulla.

In effetti, applicando il metodo della variazione delle costanti arbitrarie, otteniamo che la generica soluzione dell'equazione ha la forma

$$y(t) = \left(a + \int_0^t \frac{e^{-s}}{e^s + e^{-s}} ds\right) e^t + \left(b + \int_0^t \frac{e^s}{e^s + e^{-s}} ds\right) e^{-t}.$$

Visto che $\int_0^t \frac{e^{-s}}{e^s+e^{-s}}ds=-\frac{1}{2}\log(\frac{1+e^{-2t}}{2})$ e $\int_0^t \frac{e^s}{e^s+e^{-s}}ds=-\frac{1}{2}\log(\frac{1+e^{2t}}{2})$ affinchè la soluzione sia infinitesima serve che $a=-\frac{1}{2}\log 2$ e $b=\frac{1}{2}\log 2$; in effetti per questa scelta dei parametri $y(t)=-\frac{1}{2}\log(1+e^{-2t})e^t+\frac{1}{2}\log(1+e^{2t})e^{-t}$ ed è immediato verificare che entrambi gli addendi che compongono y sono infinitesimi per $|t|\to +\infty$.

- 3. Sia $g \in C^0(\mathbb{R}, \mathbb{C})$ una funzione 1-periodica.
 - (a) Mostrare che per ogni $k \in \mathbb{Z} \setminus (0)$ si ha che

$$\lim_{n \to +\infty} \frac{1}{n} \int_0^n g(t)e^{ikt}dt = 0.$$

(b) Più in generale, mostrare che se $f \in C^1(\mathbb{R}, \mathbb{C})$ è 2π -periodica si ha che

$$\lim_{n \to +\infty} \frac{1}{n} \int_0^n g(t)f(t)dt = \left(\frac{1}{2\pi} \int_0^{2\pi} f(t)dt\right) \left(\int_0^1 g(t)dt\right).$$

(a). Visto che g è 1-periodica conviene riscrivere l'integrale

$$\int_{0}^{n} g(t)e^{ikt}dt = \sum_{h=0}^{n-1} \int_{h}^{h+1} g(t)e^{ikt}dt$$

$$= \sum_{h=0}^{n-1} \int_{0}^{1} g(t+h)e^{ik(t+h)}dt$$

$$= \sum_{h=0}^{n-1} \int_{0}^{1} g(t)e^{ikt}e^{ikh}dt = \frac{1-e^{iknh}}{1-e^{ikh}} \int_{0}^{1} g(t)e^{ikt}dt$$

È evidente che questa quantità è limitata, pertanto

$$\lim_{n \to +\infty} \frac{1}{n} \int_0^n g(t)e^{ikt}dt = 0.$$

(b). Supponiamo ora, per semplicità, che f sia a media nulla. Dato $\epsilon>0$, è possibile trovare un polinomio trigonometrico (a media nulla) σ tale che $\|\sigma-f\|_{\infty}<\epsilon$; possiamo quindi scrivere

$$\left| \frac{1}{n} \int_0^n g(t)f(t)dt \right| \leq \left| \frac{1}{n} \int_0^n g(t)\sigma(t)dt \right| + \left| \frac{1}{n} \int_0^n g(t)|f(t) - \sigma(t)|dt \right|$$
$$\leq \left| \frac{1}{n} \int_0^n g(t)\sigma(t)dt \right| + \epsilon \|g\|_{\infty}$$

Dal punto (a) segue che $\lim_{n\to\infty}\frac{1}{n}\int_0^ng(t)\sigma(t)dt=0$, pertanto si avrà che $\left|\frac{1}{n}\int_0^ng(t)f(t)dt\right|<\epsilon(1+\|g\|_\infty)$ definitivamente, e di conseguenza, visto che ϵ è arbitrario, $\lim_{n\to\infty}\frac{1}{n}\int_0^ng(t)f(t)dt=0$. Il caso in cui f non abbia media nulla si tratta semplicemente scrivendo $f(t)=\hat{f}_0+(f(t)-\hat{f}_0)$: il primo pezzo è costante mentre il secondo ha media nulla e la tesi segue immediatamente.