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Abstract

A new class of probability distributions called “bilateral phase type
distributions (BPH)” on (—oo, 00) is defined as a generalization of the
versatile class of phase type (PH) distributions on [0, c0) introduced by
Marcel F. Neuts. We derive the basic descriptors of such distributions
in an algorithmically tractable manner and show that this class has
many interesting closure properties and is dense in the class of all
distributions on the real line. Based on the established versatility and
tractability of phase type distributions, we believe that this class has
high potential for general use in statistics, particularly to cover non-
normal distributions, and also that its inherent connection to Markov
chains may make it suitable for inference based on hidden Markov
chain methods and MCMC type approaches.

1 Introduction

We begin with a quick review of phase type distributions on [0, co) and an
overview of this work which extends them to bilateral phase type distribu-
tions on (—o0, 00).

1.1 Phase Type Distributions

M.F. Neuts [12] defined the interesting class of phase type (PH) distributions
on [0, 00) as a generalization of the exponential distribution and many others
derived from exponential distributions through convolutions and mixtures.



Such distributions are obtained as distributions of absorption times in finite
state Markov chains with one absorbing state. More formally, we have the
following definition in the continuous time case.

Definition 1 Consider a continuous time Markov chain (CTMC) on the
state space S = {1,...,m,a} with infinitesimal generator

T t°
= 1
a=(o0 %) )
where T is an m x m matriz, t* is a m X 1 vector, and 0j, is a zero matriz
of order j X k. Let the initial probability vector of the CTMC be given
by (a,1 — al) where a > 0, a1 < 1, and 1 is a column vector of 1’s of

appropriate order. Then the distribution of the time until absorption in
state a has the cdf F(-) and pdf f(-) given by

F(z)=1-ae’™1, f(z)= e’ x>0, (2)

and is called the phase type (PH)-distribution with representation (o, T') and
is denoted by PH(«,T).

A similar definition may be given in the discrete case yielding PH-
distributions on the nonnegative integers. For a detailed discussion of this
class of distributions and point processes defined using such distributions,
we refer to Neuts [12], [13], [14], [15] and Latouche & Ramaswami [10].

PH-distributions have received much attention in the applied probability
literature related to queues, dams, insurance risk, reliability, etc., and the
reasons for that have been many:

e Denseness: The class of PH-distributions can be shown to be dense (in
the Prohorov metric of weak convergence) in the set of all probabil-
ity distributions on [0,00). Although fitting phase type distributions
and approximating other distributions with phase type distributions
continue to be active areas of research and many problems do remain
open, some success has been reported recently; see e.g., [5], [20].

e Closure: The class of PH-distributions is closed under finite convolu-
tions and mixtures and under Boolean operations of taking the max
or min of (independent) PH-random variables. In addition, many de-
rived distributions in models involving phase type distributions are
themselves phase type. For example, the stationary waiting time dis-
tributions in queues with renewal input and phase type service time



distributions are known [4], [17] to be of phase type. Also, the sta-
tionary distribution of the fluid level in an ergodic stochastic fluid flow
modulated by a finite state CTMC (used much in high speed network
performance modeling, e.g.) is of phase type [6], [18], [1].

e Tractability: A very attractive feature of phase type distributions is
their computational tractability. Due to the connection with an un-
derlying Markov chain, in models involving phase type distributions,
conditioning arguments become easier through the inclusion of the
state of the Markov chain as an auxiliary variable. Indeed, much of
matrix-analytic methods for queueing theory was developed in the
context of such models; see [14], [15], [19], [10].

e Point Process Models: Using the phase type distribution’s construc-
tion as a basis, one may define many tractable Markovian point pro-
cesses, and these provide a versatile class of models for practical use
and are heavily used due to their computational tractability; see [13],
[15], [16], [11]. Generalizations of these to spatial point pattern models
have also been made in the literature, see e.g., [9].

1.2 Extension to the Real Line

Our goal in this paper is to generalize the class of phase type distributions to
a class we shall call “bilateral phase type distributions (BPH)” on the entire
line (—00, 00) in a manner that retains the essential simplicity and versatility
of phase type distributions. We achieve this through the consideration of
a Markov reward (fluid flow) model defined on an absorbing continuous
time Markov chain. The details of the construction are given in Section 2
in which we also present some properties of this class that can be derived
easily. In Section 3, we briefly recall some known results on stochastic fluid
flow models and use them in Section 4 to derive a transform free formula for
the density of the bilateral phase type distribution. This is used in Section
5 to show that if X is BPH, then X* = maz(0,X) and X~ = —min(0, X)
are both phase type, a result that implies that BPH distributions are dense
in the class of all probability distributions on the real line. Then in Section
6, we recall an algorithm that provides a fast method to compute one of the
key matrices needed in the computation of the BPH distribution. In Section
7, we present some interesting examples of BPH densities computed using
that algorithm and conclude in Section 8 with a few remarks.

There have been attempts in the past to generalize phase type distribu-
tions in several directions. Important among these are the generalizations to



the class of matrix exponential distributions by Asmussen and Bladt [7] in
which they demonstrate that distributions on [0, c0) with rational Laplace
transforms can be handled by a matrix formalism similar to that of phase
type distributions; see also [8]. In that formalism, the connection to Markov
chains is lost as the matrices involved may not satisfy the conditions for
being an infinitesimal generator of a Markov chain. Another generalization
is that of J.G. Shanthikumar [21] who defined a bilateral phase type random
variable as one whose positive and negative parts can be represented as a
(possibly infinite) mixture of sums of iid exponentially distributed random
variables. Our class of distributions can be shown to be a subset of those de-
fined by Shanthikumar, but our representation is much more parsimonious
and involves only finite state Markov chains; and yet, they form a dense
set in the class of all distributions on the real line just as does the class
introduced by Shanthikumar.

2 Bilateral Phase-type Distribution

In this section, we define the bilateral phase type distribution and obtain
some of its interesting properties that are easily determined. A transform
free formula for the density will be given in Section 4 after establishing some
connections with stochastic fluid flow models.

2.1 Definition

On a probability space (2, A, P), define J = {J(¢),t > 0} to be an absorb-
ing Markov process with state space S with |S| = m + 1 and infinitesimal
generator () with the structure

T t°

o=(5 %) ®)
where T is a m X m nonsingular matrix and t® is a m x 1 vector. The
state of this CTMC at time u will be referred to as “the phase at time
u.” By the properties governing an infinitesimal generator, note that 7" has
negative diagonal and nonnegative off-diagonal elements, and furthermore

that T1 +t* = 0.
We assume that S is partitioned as S = S;US2US3, where S = {a} and

a denotes the absorbing state. The set of transient states is Sy = S1 U Ss.
We partition T and t® according to the sets S; and So and write

o Qi1 Q2 a_ [t
T_(Q21 Q22)’t_(§é)' )
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Throughout, the (j,k)-th element of a matrix A will be denoted by
A(j, k) or by [A], whereas the symbol A will always denote the submatrix
of A formed by the elements A(r,s) with r € Sj and s € Sj. For later use,
we also define the diagonal matrices

T = diag(t*(j),j € S0); T = diag(t*(j), j € S), k=1,2.  (5)

On the same probability space, define a Markov modulated reward (fluid
flow) process F = {F(t) : t > 0} with F(0) = 0 such that during each
sojourn of J in state j € Si, the total accumulated net reward F'(-) increases
at rate ¢; > 0 and during each sojourn of J in state k € So, the total
accumulated net reward decreases at rate ¢, > 0. Assume further that
once the CTMC reaches the state a, no further changes occur to the fluid
level. We shall denote this model by F (7', C*), where the diagonal matrices
Cj,j = 1,2, and C* are such that

Ci = diag(ck, k € S1), Cy = diag(ck, k € S2), and C* = diag(Cy,—C3). (6)
For later use, we also define the (m + 1) x (m + 1) diagonal matrix
C= dia‘g(cla 027 1) (7)

We denote the initial probability vector of the Markov chain by («,ay),
where the m-vector « is such that for k € Sy, a(k) is the probability that
the CTMC starts in state £ € S;. Also, we denote the absorbing time of the
underlying Markov process J by 7.

Now, we will define a bilateral phase-type random variable.

Definition 2 Let X denote the total accumulated reward until absorption,
that is, X = F(1). X is called a bilateral phase-type random variable or a bi-
lateral phase-type distributed random variable with representation (o, T, C*),
and we denote this fact by

X ~ BPH(a,T,C*).

It is clear from the construction that the BPH distribution has an atom
at 0 iff ¢ = 1—al > 0; indeed, a, = P[X = 0] . Also, since T is invertible
and therefore absorption occurs in a finite amount of time w.p. 1, we have
that X is finite a.s. The assumptions about 7' also entail that there exists
a constant d < 0 such that d is an eigenvalue of 7', and furthermore that all
other eigenvalues of T have negative real parts less than or equal to d.



2.2 Characteristic Function
Define the diagonal matrix
Ty = diag{-T(1,1),--- ,—T(m,m)}.
Let [f(x)]x denote the probability density function of X given J(0) = k € S,
and let [¢(-)]x denote the associated characteristic function. That is,
[B(w)]e = Ele™ D] = Ee™¥], — o0 <u < o0, (8)

where & denotes conditional expectation given J(0) = k, and i = /—1.
Then for k € S;, [¢(u)]r satisfies the equation

0

o
+ [ ey S 2 gt
0 i#k,a
where ¢; = ¢ for k € S1, and ¢}, = —c; for k € Sy; this equation is obtained
by conditioning on the first transition epoch v of the underlying CTMC.
This may be written in matrix form as

$(u) = —(iuC* — Ty)"11* — (iuC”* — Ty) ™ (T + Ta)$(u), (9)

where ¢(u) is the m-vector of elements [¢(u)]x, k € S;. From this, we can
get the following theorem.

Theorem 1 The vector ¢(-) of characteristic functions is given by
p(u) = —(iuC* +T) 't*, — oo <u< co. (10)

Proof: The result follows immediately from equation (9) by noting that the
inverse in equation (10) exists due to the fact that all eigenvalues of T' have
negative real parts. O

Theorem 1 immediately yields the characteristic function of the BPH
r.v. X. We state the result as a theorem.

Theorem 2 If we denote the characteristic function of the BPH r.v. X ~
BPH(a,T,C*) by &(u), then
E(u) = ag — a (fuC* +T)7 1%, — oo < u < oo. (11)
Moment formulae for a BPH distribution can be derived from the above
by routine differentiation at u = 0. The general formula for the k-th moment
of X is given by
EX*]| =K o(-T71C*)*1;

we omit the details.



2.3 Properties of BPH distributions

BPH distributions share many of the properties of PH distributions. Though
easy and straightforward, we list them below to highlight the importance
and versatility of the class BPH. Of these, we note that closure under con-
volutions and mixtures is proven in a manner very similar to those for
PH-distributions using probabilistic constructions; see Chapter 2 in [10] for
proofs in the case of PH-distributions which can be adapted easily to the
present case.

e PH distributions on [0,00) form a subset of BPH distributions and
correspond to the special case where S; is empty and ¢; = 1 for all
jESy.

o If X ~ BPH(a, T,C*), then kX ~ BPH(a, T, kC*) for all real k # 0.

e The sum of a finite number of independent BPH random variables is
itself BPH.

e A linear combination of a finite number of independent BPH random
variables is itself a BPH random variable.

e A mixture of a finite number of BPH distributions is itself BPH.

In the definition of the BPH distribution, we may without loss of gen-
erality assume that ¢c; = 1 for all j. This follows from a direct verification
using characteristic functions, e.g., that

BPH(a,T,C*) = BPH (o, C™'T, T*)

where I* is a diagonal matrix with I*(j,7) = 1 for j € S; and I*(j,j) = —1
for j € Ss.

Note that in defining the BPH distribution, we could have allowed also
for the presence of a set Sj of (transient) states in the CTMC in which no
accrual of reward occurs (i.e., ¢; = 0 for k € S4). However, such a model is
not parsimonious since the CTMC obtained from it by gluing together the
paths restricted to the set S1US2U{a} would yield the same distribution for
the total reward up to the absorption epoch, but with a smaller set of tran-
sient phases 51U Ss. This observation can help to reduce the dimensionality
of the representation in some cases. However, just as with phase type dis-
tributions, the minimal representation problem — namely, that of obtaining
a representation with the smallest dimension for 7' — remains open.



In Section 5, we shall derive transform free formulae for the density of
the BPH distribution in terms of phase type densities. A consequence of
that derivation will be a demonstration of the following important result; a
proof is deferred to that section.

Theorem 3 Let X be BPH. Then X = maxz(0, X) and X~ = —min(0, X)
are both phase type random variables.

We also have the following theorem.

Theorem 4 The set of BPH distributions is dense (in the weak convergence
metric) in the class of all distributions on (—o0,00).

Proof: Tt is easy to see that given any two PH distributions PH(c1,77) and
PH (ag,T3) without atoms at 0 and constants 0 < p,q < 1 withp+¢ < 1,
it is possible to construct a BPH random variable such that P(X > 0) = p,
P(X < 0) =gand P(X =0) =1—p—gq, and the given PH distributions are
the respective conditional distributions of | X|, given X > 0 and given X <
0. Indeed, the BPH distribution BPH ((pa1, gas), diag(Ty,Ts), diag(I, —I))
has this property. The asserted result is now trivial from this and the fact
that in the weak convergence metric, PH distributions are dense in the class
of all distributions on [0, 00).

3 Fluid flow models

Consider the distribution BPH («, T, C*) defined in Section 2. The evolution
of the associated reward process over time is immediately seen to be the same
as that of an unrestricted fluid process on the state space S1USoUS3, where
S3 = {a} is a set after reaching which no further changes occur either to the
fluid level or to the environmental Markov chain. This allows us to draw
from the work on stochastic fluid flow models considered in [18], [1], [2]. In
particular, we note that the BPH random variable X is indeed the fluid level
F(00) in this corresponding fluid flow model, whence the BPH distribution
is also the steady state distribution of that fluid flow. Taking note of these,
in this section we recall some important results from our prior work on fluid
flow models which will be used repeatedly in what follows. For their proofs,
we refer to [2].



3.1 Restricted Fluid Flow Models

Consider the CTMC J(-) with infinitesimal generator @ on a finite state
space S = S1 U Sy U S3 and an associated fluid flow process F'*(t) starting
with F7(0) = 0 evolving in such a way that the fluid level increases at rate
¢; > 0 while J(t) = j € S1, decreases at the rate ¢; > 0 while J(t) = j € S2
and F*(t) > 0, and remains constant while J(¢) € S3. For later reference,
we shall denote this model by the symbol F*(Q, C*), or simply as F when
there is no confusion, and shall also carry over the earlier notation with re-
spect to C' and C* and their submatrices. Note that in this model, the fluid
level is restricted to nonnegative values; hence the name “restricted fluid
flow.” We characterized the transient behavior of such a fluid model in [2]
and its stationary behavior in [1] using matrix-geometric methods proposed
in [18]. Following are some key results obtained in those papers.

Busy Period

Assume that F7(0) = 0 and J(0) = j € S1; we recall that in S7, the
fluid level increases linearly. Let Z denote the duration of the busy period
of the restricted fluid flow model; i.e.,

Z=inf{t>0: F*(t) =0},

with the standard convention that the infimum over the empty set is set to
oo. For Re(s) > 0, denote by ¥(s) the |Si| x |S2| matrix whose elements
are the transforms [U(s)];; such that

o0
[0 (s)]0 = /0 etdP(Z < t,J(Z) = k), j €S, k€S,

where P;j(A) denotes the conditional probability of the event A under the
assumption J(0) = j.

Transforms W(s) for certain restricted fluid models will be used to de-
termine the joint distribution of the absorption time of the CTMC and the
fluid level thereat for the process defining a BPH random variable. How-
ever, the marginal distribution of a BPH random variable will require only
these matrices evaluated at s = 0. Efficient algorithms for computing ¥(s)
have been obtained in [3], and from among these a quadratically convergent
scheme for the matrix ¥(-) is given in Section 6 for completeness; for details
of its derivation, refer to [3].



Having defined ¥(s), we introduce the following three kernels.

T(s) = C1U(s)Cy Y, (12)
O(s) = [Qu+U(s)Qas)(sT — Qus) ™, (13)
K(s) = [(Qu—sI)+¥(s)Qa +O(s)Qa]CT . (14)

In terms of the above kernels, the following result has been obtained as
Theorem 13a in [2]. For the restricted fluid model F*(Q,C*), it provides
the conditional joint distribution of the fluid level and phase at epochs within
a busy period, given the phase at the start of the busy period.

Theorem 5 For z > 0, Re(s) > 0, let 9(s,z) denote the transform matriz
of order | S1| x | S|, describing the behavior within a busy period, defined
by the elements

[0(s,7)|kj = /000 e*st% (PilZ > t, 0 < FT(t) <z, J(t) =j]) dt,

ke S, jeS. (15

Then, we have the following partitioned formula:

i(s,2) = Cy LeKE2[1 FF(s) P O(s)). (16)

We introduce the following notational convention to be used in the rest
of the paper. Given a transform A(s), we shall denote by A the value of the
transform A(s) at s = 0; if we have to refer to the transform we shall always
write either A(s) or A(-) so that there is no confusion. This slight abuse of
notation will obviate much clutter in the formulae we shall derive later.

3.2 Reflections

Let us denote by F = F(Q,C*) the unrestricted fluid flow model; here
the fluid level is allowed to assume negative values also, increases at rate
cj for j € 51, decreases at rate ¢; for £ € So and remains constant in S3.
Associated with this fluid flow model is the flow model F, = F(Q,—C*).
Note that for this flow, the fluid level increases at rate ¢; while J(t) = j € S,
and decreases at rate ¢y while J(t) = k € Sp; the fluid level once again
remains constant in the set S3. Thus, the roles of S; and Sy have been
reversed. Note that the paths of each of these unrestricted flow models is
obtained by reflecting the paths of the other about the time axis. For this
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reason, the flow F, will be called the reflected flow. Clearly, 7 and F, are
reflections of each other.

We now consider the fluid flow obtained by restricting the reflected fluid
flow F, to non-negative values and denote the resulting process by F,I. The
busy period kernel associated with this restricted flow F," will be denoted by
T, (s), and ¥,(s), ©,(s) and K,(s) will be defined in terms of it analogously
as in (12)-(14) and will be subject to interpretations similar to those given in
(15), (16) for the corresponding kernels of 1. These quantities characterize
the behavior of F,I within its busy period.

We will see in the sequel that the quantities ¥ and ¥, play an important
role.

4 Transform-free Formulae for BPH

We now return to the analysis of the BPH distribution and the related flow
introduced in Section 2. First, we consider the first return times to zero for
the flow of Section 2; such a return may or may not occur in a finite amount
of time. However, when a return does occur, we have two types of returns
to consider.

(a) If the initial phase is some j € Sp, then the return to the empty fluid
level can occur only with some phase k € So, and [¥(s)];x, j € S1, k € Sy
gives the joint distribution of the return time and the phase at the epoch
of return to level 0 given the phase at the start of the busy period; this is
obvious from the definition of ¥(-). The related quantity [¥];x = [¥(0)];x
gives the probability that a return occurs in a finite amount of time and
that the phase at the epoch of return to 0 is £ € S given that the initial
phase is j € 5.

(b) If the initial phase is some j € So, then the return to the empty fluid
level can occur only with some phase k € S1. A consideration of the reflected
flow yields that [¥,(s)];x, j € S2, k € S yields the joint distribution of the
return time and the phase at the epoch of return given the initial phase. Also
[¥,]; is the probability that a return to level 0 occurs in a finite amount
of time and occurs in the state k € S; given that the return time started in
phase j € Ss.

These now lead to the following result.

Lemma 1 Let [w(z)];; denote the conditional joint density of the fluid level
and the phase just prior to the absorption epoch. That is,

[w(z)]jx = %'Pj[F(T—) <z J(r—)=k|, j ke S US,.
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With our standard convention with regard to partitioning according to the
subsets of S, we have the following formulae for the submatrices w;;(-).
(a) For z > 0,

wii(z) = [I-0,]tortekore, (17)

wia(z) = [[—0¥,] 'C efo0TY, (18)

wor(z) = U [I— 0¥, CrtekoTe, (19)

wae(z) = U [I— 00,7 C ek dTe. (20)

(b) For x <0,

wii(z) = O[I— 0,00y k=G, 1o, (21)

wip(z) = [ — 0, 0] 10, tekr2iTg, (22)

wor(z) = [I— U, 0] LCytefrlel, o, (23)

(z) (24)

= [I— 0,0 tc; tefrleirg, 24
Proof: For the fluid flow F starting in a state of Sy at fluid level 0, define a
busy cycle as the interval of time up to the epoch when the fluid level returns
to level 0 with phase in S;. Note that for any initial state j € S1, w.p. 1,
we may have only finitely many busy cycles in the process F; otherwise,
with positive probability absorption into ¢ may not occur, and that would
contradict our assumptions. This also implies that the j-th element of the
row sum .2, (U¥,)"1, which gives the expected number of busy cycles
starting in j € S, must be finite. Thus, the inverse [I — UW¥,]~! exists.
A similar argument for the reflected flow F, will show that the inverse
[I — ¥, U] ! also exists.
Denote by

u(z) = Cflekm[If\il],

the matrix obtained from (16) by setting s = 0. For z > 0, by multiplying
to the right in (15) by t*(j), note that for k € S1, j € S1 U Sy, the quantity
[u(z)]k;t*(j) = [u(x)T?]k; yields the density of absorption occurring into a
before the first return to fluid level 0 and from the state 5 € S1 U S2 and
fluid level z, given that the initial phase J(0) = k; this is so, since t*(j) dt
is the elementary probability that absorption occurs in (¢,t + dt) given that
the state is j at time ¢. The equations (17)-(20) are now immediate and
obtained by conditioning on the last return epoch to fluid level 0 before ab-
sorption occurs in the fluid flow model defining the BPH random variable,

12



and upon noting that the premultipiers [ — ¥¥,]™! and ¥,[I — U¥,] ! in
those formulae account for the distribution of the phase immediately after
the last return to fluid level 0 before absorption occurs from the positive
fluid level z. Equations (21)-(24) are obtained similarly by considering the
reflected fluid flow F(Q, —C*) and the associated restricted fluid flow F'.

Remark: Note that it is trivial to obtain from (15), (16) in an analogous
manner the joint distribution of the time until absorption and the fluid
level at the absorption epoch; our interest here is only on the marginal
distribution of the fluid level at the absorption epoch, and we have stated
the results in their simpler form as they relate to that marginal.

We now obtain the main result of this section.

Theorem 6 Let X ~ BPH(«,T,C*) and f(z) denote its density function.
Then

f(2) = f+(@)x(z > 0) + f(z)x(z <0), (25)

where x denotes an indicator function and
fi(@) =Pk, f_(z) = B, (26)
K=C,'KC), K,=0C'K,Cs, (27)

B = (1 +P,)[I-0T, )" k=C '+ V0, S, (28)
Br = (¥ + ) -0 Kk =007 +C7 e (29)

Proof: First of all, note that since the fluid process F(-) is a.s. continuous
at all time points ¢, we have F(r—) = F(7+) a.s., whence the distribu-
tion of the fluid level just prior to the absorption epoch is the same as its
distribution just after the absorption epoch. Now, the formula for f,(z)
is obtained from pre-multiplying (17)-(18) by the initial probabilities o,
pre-multiplying (19)-(20) by a2, post-multiplying both by the appropriate
vectors 1 (to reflect the fact that we do not care about the state from which
absorption occurs), and summing the resulting expressions. The derivation
of f_ is similar and uses (21)-(24).

For a BPH distribution, it is clear from the construction that the atom
at 0, if it exists, is of size 1 — «1; this is so since the fluid level at absorption
is zero iff absorption occurs instantaneously, i.e., the CTMC starts in the
absorbing state. We verify this directly from the formulae we have derived
for the densities by proving the following result which, incidentally, is also
a check on the correctness of the formulae in Theorem 6.

13



Theorem 7 We have ~
/ f(z)dz = al.
—o0
Proof: From equation (14), we have
K =Cr'Qu +¥C;'Qar. (30)

For the flow model F, we have established in [2] (see equation (31) in [2])
the equation

Q12 + U (5)(Qa2 — sI) + O(5) Q32 + K (5)U(s)Cy = 0,
from which it is easy to see that
CrlQus + UC; ' Qoo + KU = 0. (31)
From these, it follows that

K1 = C7Y(Qul+Qi2l) +¥C; 1 (Qail + Q1) + KU1
= Ot — 00y + KU1
= —k+ KU1

which yields
k=—-K(1—71). (32)

A similar argument for the process F, yields the equation
kr = —K, (1 —T,1). (33)

Using these, it can be easily seen from (25), (26) that
o0
| 1@ =pa - w1+ 61~ )
—00

Substituting the values for 8 and S, from (28)-(29), and simplifying the
expressions using the following equations (which are trivial from a series
expansion of the inverses appearing in them)

T [ -0, ]! = [[-T,0]7 1,
UI—-0,9]" = [[-97,]7'0,

one can now routinely verify that
o
/ fx)dz = a11 + asl = al;
—0o0

we omit the details.
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5 Phase Type Characterizations

The transform free expression for the BPH density helps us to immediately
establish that both X+ and X~ are phase type random variables. Indeed,
the following result establishes Theorem 3 stated earlier.

Theorem 8 Let X ~ BPH(a,T,C*).

a) The conditional distribution of X given X > 0 is PH(v,U), where
v = 67'BA, U=A"'KA,
A = diag(l — V1), and

0 =/ f+(@) dz = B(—K) L.

b) The conditional distribution of —X given X < 0 is PH(v,,U,), where
Yr = 71/3r ry Ur= AilK rAg,
A, = diag(1—¥,1), and

6, =/ f- (@) dz = fu(—K,)!

Proof: Note that U is nonnegative and has row sums less than one since
the underlying Markov chain has an absorbing state a into which absorption
occurs a.s. Thus, A is a nonnegative and invertible matrix. From this and
the equations (30), (31), we have that that U has negative diagonal and
nonnegative off-diagonal elements, and furthermore that

K1 = C7HQul+ Qi2l) + ¥C; 1 Q11 + Qa0l) + KU1
= —C7'4} —0Cy'ts + KU1
= —Kk+ KU1
It follows that
k= (—-K)(1—-71).
Now, using (26), we can calculate for z > 0 the density of the conditional
distribution, say g(x), of X given X > 0, and get
oe) = 075N
= 0 18eK%(—K)(1 - ¥1) by (32)
= 07'B8AA T KA ATTKA)ATH(1 — T1)
= U7 (-U1).
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We also see that

0 = B(—K Yk
= B(-K')(-K)(1—-¥1) by (32)
= ﬁAl,

whence y1 = ~!3A1 = 1. Comparing the formula for g(z) with that of
the density of a PH-distribution, we note that distribution to be PH (v, U).
This proves (a). The proof of Part (b) is similar and omitted.

6 Algorithm

In this section, we briefly recall the algorithm developed in [3] for the com-
putation of the matrix ¥(s) associated with the fluid flow F = F(Q, C*).
The computation of ¥, (s) is achieved by applying the same algorithm to the
flow F.. While ¥(s) and ¥,(s) are needed to determine the joint distribu-
tion of the absorption time and the value of the BPH random variable, note
that the marginal distribution of the BPH random variable alone requires
only the evaluation of these at s = 0.

Assume as given the fluid flow F(Q,C*) and s with Re(s) > 0. We
assume the conventions for the partitioning of the state space and various
matrices as given in this paper. For A > 0, let

1

Py = XC—lQ +1.

Choose (fixed) positive numbers A and § such that
A > maxies {~[C7'Qla}
Re(s) 1
max;cg C <d<1, and

A 2
max;cs |:P)‘ — Re—(s)c_l] > 0.
A i
Define the matrices

0 0 0
AQ(S,)\) = 0 )\CQ(SI + 2)\02)_1 0 ,

0 0 0
0 0 0

A1(8,A) = AC(sT+AC)™ | IPy 3P» 1Py

Py Py Py
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P —3$C7' Py Py
Ao(s,A) = 0 0o o0 |,
0 0 0

where A = diag(AI,2M\I,\I) and P = P;.
Consider now the following algorithm.
Algorithm
Fix € > 0 and set diff = 100;
H*(1,5,)) = (I — A1(s,))) L Ag(s, \);
L7(1,5,A) = (T — A3, X)) LAs(s, N);
G**(1,s8,\) = L**(1, s, \);
T(1) = H*(1,s,A);
Do while ( diff > ¢ )
k=k+1;
U*(k,s,\) = H*(k — 1,8, \)L**(k — 1,5, A)
+ L*(k—1,8, )VH**(k — 1,5, \);
M = (H**(k - 1,8,)\))2;
H**(k,s,\) = (I —U*(k,s,\)) "' M;
M = (L**(k - l,SaA))2;
L**(k,s,\) = (I —U*(k,s,\)) " M;
G*(k,s,A) = G*(k —1,8,\) + T(k — 1) L**(k, s, A);
T(k) =Tk —1)H**(k,s,\);
diff = maX; res | [G**(k, s, )‘)]j,k —[G™(k —1,s, )\)]j,k B
end

U(s) = Gi3(k, s, N)[G33(k, s, N)] 7"

We have established in [3] that at its termination, the above algorithm
yields the matrix U(s) with error at most € in its entries, and furthermore
that the error in the k-th iterate is O[{n(s)}Qk] for a constant 0 < 7(s) < 1
so much so that the iterates converge quadratically to the required limit.
For details, refer to [3]. With this algorithm, the computation of the phase
type representations for X+ and X~ can be done efficiently.

7 Examples

In this section, we present a set of examples primarily to demonstrate the
following facts: (a) a multitude of shapes for the BPH density can be gener-
ated with even a small number of phases; (b) interesting subfamilies of BPH
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Figure 1: Markov Chain of Phases

distributions with a small number of parameters exist and can be used to
model a variety of interesting characteristics.

The canonical model of the CTMC we consider to generate the examples
is one where there are 20 transient phases in the model. The first 10 have
reward rates +1 and mean sojourn times 1/, and the last ten have reward
rates —1 and mean sojourn times 1/u. Thus, S; = {1,---,10} and Sy =
{11,--- ,20}. The phase process starts in phase ¢ with probability «;. Once
it enters the set Si, the process goes through the remaining phases in that
set sequentially at the end of which it may go to phase 11 with probability
p2 or may return back to phase 1 with probability p;. Similarly, once it
enters the set So, it goes through the remaining phases in S5 sequentially
at the end of which it may loop back to either phase 1 with probability ¢;
or to phase 11 with probability g2 or may get absorbed with probability g¢3.
The general set up is shown in Figure 1.

The examples shown in Figure 2(a) correspond to the case a; = 1,
A= pu, po = q3 = 1. These examples correspond to the case where the BPH
random variable is realized as the difference of two independent iid Erlang
random variables. All distributions there have mean zero, and by choosing
the value of m and A appropriately, the variability can be controlled. Due
to the Central Limit Theorem, by choosing the parameter m governing the
number of phases, these distributions can be made arbitrarily close to a
normal distribution.

The examples shown in Figure 2(b) demonstrate a set of symmetric
distributions with tails fatter than the ones considered in the first set. Here
the return paths within each set of transient phases is used to model the
positive and negative parts as a geometric mixture of successive convolutions
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(d) Some Multimodal Distributions

Figure 2: Examples of BPH distributions

of an Erlang distribution. As would be expected, with increasing feedback
probabilities, the tails do get fatter. Here again, the intial probability vector

is such that o = 1.
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In the set of Figure 2(c) are shown a set of skewed distributions with
mean zero. Although there are many ways of generating increasingly skewed
distributions, the method we have chosen here is to hold A constant and to
vary the values of u and the feedback probability within the set S;. The
initial probability vector is once gain such that o = 1.

The denseness property demonstrates that essentially any shape can be
approached by a BPH density. Even the simple special class considered by
us can generate quite complex multimodal distributions. We have illustrated
this in the last set of examples in Figure 2(d).

8 Concluding Remarks

A naive approach to fitting a BPH distribution based on an independent
sample on X would be to consider the positive and negative observations in
the sample separately and to fit PH distributions to each of them; for the
latter, we could use, for instance, the EM algorithm given in [5]. After ob-
taining PH representations for X and X, one could use the construction
in the proof of Theorem 4 to get a BPH representation for the entire sample.
It is, however, not clear that this would be an efficient approach. The ma-
trices U and U, may not be independent parameters in that they arise from
two fluid processes that are reflections of each other and are therefore highly
dependent, and this type of dependency is not captured in this approach.
(Compare this approach, for instance, to fitting a normal distribution to
data by separating positive and negative values in the sample.) Also, while
BPH distributions can have densities that are continuous at the origin, the
type of fit one obtains by considering positive and negative values separately
will in all likelihood result in a discontinuity at zero; see the construction
in the proof of Theorem 4 when ¢ = 1 — p. Thus, the problem of fitting
BPH distributions to data appears to be legitimately new and offering some
interesting challenges.

In certain applications related to Markov additive processes to which
our setup applies, we may be interested in the joint distribution of X, 7
and J(7—), and the successive observations in the sample may not even be
assumed independent. That setup is even more complicated for statistical
inference.

Note also that it is trivial to analyze the case where, in the construction
of the BPH random variable, the initial fluid level is nonzero. One merit
in considering this is that the resulting class of distributions is also closed
under translations.
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Finally, the introduction of general reward rates may have some compu-
tational advantages in that it allows one to choose the speeds in the CTMC
conveniently.

All these deserve much further study.
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