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Abstract

An analysis of the time dependent evolution of the canonical Markov
modulated fluid low model is presented using elementary level crossing
arguments.
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1 Introduction
We consider the canonical Markov modulated fluid low (MMFF)
(F,T) =A{F@), J(@) : t =0}

here, F(t) is the level of fluid at time ¢ in an unbounded fluid buffer, and
J(t) — also called the phase at time ¢ — is the state at time ¢+ of a (finite
state) continuous time Markov chain (CTMC) modulating the fluid process.
The fluid level changes in a piece-wise linear fashion over time, and the
instantaneous rate of change of the fluid level at time ¢ depends on the state
J(t) of the modulating CTMC. Such models arise in a wide variety of areas
like the theories of queues and dams, storage processes, risk theory, etc; see
references [6], [7], [20] and citations therein. To keep the paper short, we
restrict ourselves to the case where the fluid buffer is unbounded. For a



rigorous treatment of the bounded case, we refer to Ahn & Ramaswami [4];
see Soares & Latouche [22] for a less formal treatment.

The transient (time-dependent) analysis of the fluid flow model has been
a challenging problem. Early approaches to stochastic fluid flows have been
based on matrix Wiener-Hopf factorizations (Rogers [18]), Siegmund duality
(Asmussen [7]), spectral decomposition (Anick et al [6], Kobayashi & Ren
[12]), and series expansions (Sericola [21]). Recently, Ahn and Ramaswami
[2], [3] provided an analysis based on matrix-geometric methods [14], [15]
in which a sequence of matrix-geometric queues are constructed as approx-
imations to the fluid flow and then stochastic process limit theorems are
used to obtain the (exact) results for the fluid model from those on the
matrix-geometric queues. The approach of Ahn and Ramaswami was built
on an earlier work of Ramaswami [17] which is the first systematic approach
to fluid flows based on matrix-geometric methods, as well as on a stochas-
tic discretization introduced by Adan & Resing [1]. Unfortunately, none
of these approaches is elementary, particularly for class room use, and our
main purpose here is to provide an elementary exposition. We shall also
extend our earlier formulas derived under the assumption F'(0) = 0 to an
arbitrary initial fluid level.

With the power of hindsight, we can note that the approach presented
here is none other than that originally envisaged by Ramaswami [17] for
steady state analysis using level crossing methods and extended now to
time dependent analysis. The elementary exposition here implicitly relies
on (and hides) certain results on Markov renewal processes on arbitrary
state spaces that are needed, and the work of Ahn and Ramaswami [3] can
now be viewed as providing a rigorous development of those results using
a stochastic discretization of the continuous component of the state vari-
able. In that, the work in [3], [4] is comparable to that of Athreya & Ney
[9] who demonstrated that when the state space is a metric space and the
probability measure is sufficiently regular, Markov processes on such spaces
can be handled using simple state space discretization methods and by ap-
pealing to discrete state space theory. Unlike [9] which uses a deterministic
discretization, Ahn & Ramaswami [3], [4] have used stochastic discretiza-
tion. In this context, it behooves us to bring to the attention of the reader
a seminal paper by S.M. Samuels [19] that early on demonstrated that in
“nice” spaces, despite popular belief to the contrary, conditional expecta-
tions and conditional probabilities can indeed be obtained by discretizing
the space and passing on to limits; in light of that basic characterization of
the Radon-Nikodym derivative, these results based on discretizations should
offer no surprise despite the technicalities they involve.



Being primarily pedagogical in intent and noting that despite their sim-
plicity the results here have gone unnoticed in the vast literature on fluid
models, we shall highlight some of the results with remarks despite the fact
that these should become obvious to the more advanced reader. These re-
marks also serve to highlight the technical subtleties assumed in this simple
minded approach that necessitate a rigorous treatment as for instance in [3],

[4].

2 Notations

Before we proceed, we set some basic notations that will be used throughout.
We have used notations compatible with our prior work [2]-[5] so that readers
motivated to review the rigorous counterpart of the development given here
will not have much difficulty.

The continuous time Markov chain J = {J(t),t > 0} is assumed to have
a finite state space § = 57 U S5 U S3 and infinitesimal generator () that,
when partitioned according to the sets S;, has the form

Q1 Q12 Qi3
Q=] Qau Q2 Q3 |. (1)
Q31 Q32 Q33

Specifically, the submatrix @;; contains the elements Q(r, s) of the infinites-
imal generator with » € S; and s € S;. [Throughout, for any matrix A,
we shall denote its elements by A(7,j) or by [A];; and reserve the notation
A;; for the submatrix of A with row indices in S; and column indices in Sj.
Similarly, for a matrix function A(s), we shall denote its (4, j)-th element by
[A(s)]i; and reserve the notation A;;(s) for the submatrix of A(s) formed by
row indices in S; and column indices in Sj.]

We assume as given a set of positive constants c(i), i« € S1 U S2 and
assume that the fluid process F(-) under consideration evolves in such a
way that: during sojourn of J in state 7 € S, the fluid level increases at
rate c(i); during sojourn of J in state ¢ € Sy, the fluid level decreases at
(absolute) rate c(i) provided the fluid level is positive; during sojourn of J in
state i € S3, the fluid level remains constant. Note that when J(t) =i € So,
the instantaneous rate of change of F(-) at ¢ is given by —c(z) < 0.

For later use, we define diagonal matrices Cj, ¢ = 1,2,3 and C such that

Ci = diag(c(z'), 1 € Sl), Cy = diag(c(z'), 1 € SQ), C3 = I|53|a (2)



where I, is an identity matrix of order n, and

C= diag(01702ac3)' (3)

For a function f(t,z), f(s,z) shall denote the Laplace transform of f
with respect to . Unless otherwise stated, the argument s of such transforms
is assumed to be such that Re(s) > 0.

We also use the notations P,; and £;; to denote the conditional prob-
ability and conditional expectation respectively, given that F'(0) = z and
J(0) = i. Finally, ,Pz; and ,&;; shall denote the taboo conditional probabil-
ity and taboo conditional expectation respectively, given that F(0) = z and
J(0) = i and taken over paths wherein the MMFF avoids the fluid levels
[0,y] (except possibly at time 0.)

3 Busy period analysis

From the structure of the process (F,J), it is obvious that the successive
epochs when the fluid level returns to 0 form a semi-regenerative sequence
(see [10] for a definition), whence the time dependent evolution of the MMFF
can be determined from its behavior within passage times of the fluid level
to zero. Thus, a basic quantity in the analysis of the fluid flow model is the
matrix ¥(s) of order |S1| X |S2|, whose (7, 7)-th element, i € S7, j € So, is
the Laplace-Stieltjes transform (LST)

(¥ (s)]ij = Eoile™*"x{J () = j}],

where
7 =inf{t >0 : F(t) =0},

and x{A} denotes the indicator function of the set A. 7 is often called the
busy period of the fluid flow, and ¥(s) gives the joint distribution of the
busy period duration and the state of the environment at the termination
of the busy period, under the assumptions that the initial environment is
known and that initially the fluid buffer is empty.

We have, in [5], developed a powerful algorithm to compute the matrix
of transforms ¥(s). For the purpose of this paper, we shall assume ¥(s)
as known and derive all quantities of interest in terms of that transform
matrix.



3.1 Analysis of F in a Busy Period

Of interest here is the determination of the probabilities
[V(tP’I")]Z] = OPOi[F(t) <z, J(t) :.7]7 1€ Sla JE Sa (4)

which is the probability that a busy period starting with the environment
state ¢ € Sy lasts at least ¢ units of time and (F'(¢), J(¢)) € [0,z] x {j}.
Later, we shall use these to write down the transient distribution of the
fluid model for arbitrary initial conditions and without regard to whether
the time point ¢ is in the (first) busy period or not. We also introduce the
density [v(t,z)]i; = a% [V(t,z)]i; and the associated Laplace transform

sl = [ e vty e

These quantities define, in turn, the matrices V(¢,z), v(¢,z) and v(s,x)
respectively which are all of dimension |S;| x |S|.

Remark 1 A proof of the existence of the density v(t,x) has been given in
[8] and is beyond the scope of an elementary presentation.

The first important result we wish to prove is the following.
Theorem 1 Define the matrices O(s) and K(s) by the equations

O(s) = C7'Qus(sI —Q33)” + U(s)C5 ' Qas (sT — Q33) ™" . (5)
K(s) = C;Y(Qu1—sI)+T(s)C, Qo1 + O(5)Q31. (6)

Then, for all x > 0, when we partition the matriz v(s,x) as

v(s,z) = [¥11(s, 1) : V12(s, z) : ¥13(s, 2)], (7)

according to the sets S;, 1 < i < 3, the submatrices appearing in (7) are
given by the following formulae:

Viuls,e) = ot (8)
Vig(s,z) = eK(S)I\IJ(s)Cgl. (9)
Vis(s,z) = eK2Q(s). (10)



Remark 2 It is easy to see from the discussion to follow that when Ss
is empty, as indeed occurs in many applications, all relevant results are
obtained by simply dropping from the formulae all terms involving the set
S3. Also, when Ss is nonempty, the invertibility of (sI —Qs3) for Re(s) >0
follows from the fact that the eigenvalues of Q33 all have nonpositive real
parts.

The above theorem was established as Theorem 13(a) by us in [3] using a
lengthy argument involving stochastic discretization and stochastic process
limits. Our first goal is to establish this result (along with the interpre-
tations of the matrices K(s) and O(s) developed in [3]) in an elementary
manner using simple arguments. We do that in the remaining subsections
of this section. After that, we shall, in Section 4, take up the problem of
determining the distribution of the fluid flow at an arbitrary time point for
an arbitrary initial condition.

3.2 A Markov renewal kernel

For z > 0, we use the notation N;(t,z), j € S, to denote the number of
epochs in the time interval [0,¢] at which a visit is made by the MMFF to
(z,7). Let

[q)(t,.’L',.’II + y)]ij = Egﬂ?i[Nj(tax + y)], t>0. (11)
B0, + 0l = g [P 5,7 + )l >0 (12)

We recognize the matrix ®(¢, z, z+y) formed by the elements [®(t, z, z+y))i;
to be a (taboo) Markov renewal kernel and ¢(¢, z, z +y) to be the associated
Markov renewal density.

Remark 3 For fized x,y,1,j, the quantity [®(t,z,z + y)];; is the expected
number of visits to (z + y,j) in the time interval [0,t] avoiding the set of
fluid levels [0,z] in the time interval (0,t], given that the MMFF starts in
the state (x,i). As a function of t, this is a non-decreasing function — i.e.,
a distribution function on [0,00). We can prove the existence and differ-
entiability of ¢ at each (t,x) using the discretization approach of Athreya
& Ney [9] or from the results in Ahn & Ramaswami [3]. This elementary
exposition, of course, will assume these technical facts without proving them
rigorously.



Remark 4 From the standard results in Markov renewal theory, for t > 0,
we may interpret the taboo renewal density [p(t,x,x+y)];; dt as the elemen-
tary probability that starting in (x,4), the MMFF visits (x+v,j) in the time
interval [t,t + dt) avoiding the set [0,z] of fluid levels in the time interval
(0,t].

Note that for y > 0, the submatrix ®;;(t,z,z +y) = 0 for i = 2,3
and 7 = 1,2, 3, because if the MMFF starts off in an environment state in
S9 U S3, then the process stays at the initial fluid level for a positive amount
of time and the required taboo visits do not occur. Also, since the flow rates
and transition rates do not depend on fluid level when F(t) > 0 (the spatial
homogeneity property), we can also assert that

O(t,z,z +y) = 0(¢,0,v). (13)

In the next theorem, we obtain an interesting and useful relation between
the functions ¢(¢,0,z) and v(¢, ).

Theorem 2 Fort >0 and x > 0, we have
(a) $11(t,0,2) = vi1(t,2)C1.
(b) $12(t,0,2) = via(t, 2)Co.

Proof: Clearly
0Poi[Nj(t+ h,x) — Nj(t,z) > 2] =o(h) as h — 0,

since the event under consideration will require at least two changes of the
environment in an interval of length h.

Now, we define d(i) = —c(z) for i € S7 and d(i) = ¢(i) for i € Sy. Then,
clearly, for i € S1 and j € S1 U Sy, and sufficiently small A > 0, we have,

OPOi[Nj(t +h,.77) — Nj(t,l‘) > 1]

h h
- /0 v(t,@ + d()w)]i {1 + [Qljju} du+ Y /0 v(t, 2 + d(r)u)]i;[Qlrju du

h " h
+ Y /0 vt 2+ d(r)u)]ps[@judu + 3 /0 N (t, 2)]or [ Qg du + ().
TTE;ZQ Tre;ff

This is got by noting that an increment in N;(-,z) occurs in the interval
(t,t + h] only if a visit is made to (z,7) at some ¢ + u with u € (0, h].



Now, divide by h and rearrange the terms to get
1
7 O'POi[Nj(t + h,z) — Nj(t,w) > 1]

h h
= 2 /0 [vito+du)lydut Y 5 /0 it @+ d(rju)lir[Qrju du

reSi

I L
+ T;S? W /0 [v(t,z + d(r)u)]i [Qlrju du + ;Sg - /0 v (t, 2)]ir [Qlrju du
to(h)/h.

In the above equation, the first term in the right of course goes to
[v(t,z)]ijc(s). If we consider the second term, then

h
> %/0 [v(t, = + d(r)u)]ir [Qrju du

reS

h
<y /0 I[v(t, + d(r)w) [Qluj| du — 0as b — 0.

reSy

Similarly, the third and the fourth terms also go to 0 as h goes to 0. Thus,
the theorem follows by noting that for a non-negative integer valued random
variable X, E[X] =} -, P[X > n]. O

This theorem immediately yields the following corollary.

Corollary 1 For z > 0,
(a) ?11(8,0,.’17) = \711(8,.%)01
(b) ¢12(s,0,2) = via(s, z)Ca

Remark 5 Let i,j € Si. Clearly, [v(t,z)]ij dx has the interpretation that
starting in (0,1), the process (F,J) makes a visit at time t into the set
((z,z + dx),7) avoiding fluid level 0. When J(t) = j, note that the rate of
increase dx in the fluid level at time t is c(j)dt. Operationally, replacing
dz by c(j) dt in [v(t,x)]ij dz, we thus can interpret [v(t,z)]ijc(j) dt to be the
probability of a visit into (x,j) in the time interval (t,t+dt) avoiding level 0.
But the latter probability is [¢(t,0,x)];; dt. The above theorem and corollary
encapsulate these highly intuitive operational results in a formal manner.

3.3 Level crossing approach

Now, we use a level crossing argument to evaluate the kernels ®(¢,0, ).



The skip-free upward property of F(-) implies that, for z,y > 0, starting
at level 0, the MMFF cannot reach = + y without reaching z first. Thus,by
conditioning on the last epoch of visit to level z (a Markov renewal argu-
ment), we can see that the submatrix ¢11 of ¢ must satisfy the equation:

t
$11(t,0,2 +y) = /0 d11(t — 4,0, z) 11 (u, z, x + y) du. (14)

Remark 6 Though highly intuitive, the above and other similar Markov
renewal arguments to be used by us require a formal proof. Once again,
the techniques of [3] may be viewed as an approach to such proofs using
stochastic discretization and using standard Markov renewal calculations for
the associated discrete state processes.

We note that by the spatial homogeneity of the model, we can rewrite
Equation (14) as

t
¢11(t7 Oa T+ y) = / ¢11 (t —u, Oa I)qsll (U’a 07 y) du. (15)
0
Now, from Equation (15), we have that

§$11(3,0;37 + y) = éll(saoam)éll(saoay)' (16)

From the general results on semi-groups (see [11], Chapter 15, Sec. 11), one
can deduce that ¢11(s,0,z) must have the form

(;311(5,0,:(;) = eKO(S)w, (17)

for some matrix K°(s) which is a square matrix of order |Si|. However,
application of general semigroup theory here begs the nonsingularity of the
matrices in question; and though provable, it is not elementary to do so.
Therefore, below in Lemma, 4, we will take a more direct path and demon-
strate that not only does (17) hold, but also that it holds with K°(s) = K(s).

We can also obtain an expression for the submatrix ¢5 of ¢; this matrix
gives the elementary probabilities of a taboo visit to a higher fluid level
avoiding the current level in the environment set Ss.

Lemma 1

$12(5,0,7) = p11(5,0,2)T(s). (18)



Proof: For i € S; and j € 52, let [1)(t)];; denote the conditional density
of the busy period duration 7 x[J(7) = j], given F(0) = 0, J(0) = i. By
conditioning on the last epoch of crossing level z from below in the busy
period and letting k € S7 denote the environmental state at such an epoch,
we can write again by a Markov renewal argument,

t
6(6,0,2)];5 = 3 /0 (3Gt — u, 0, )]s [ ()] s (19)

k€ES1

here, we have used the fact that due to the spatial homogeneity of the model,
1(+) also characterizes the return times to any level z, given that the MMFF
starts in a state (z,k), k € S1. It follows that

&12(& 0, .’L') = (;511 (3, 0, "L‘)\I"(S),
and that completes the proof. O

Recall that our primary interest is in the function v(¢, z). First we show
that it satisfies the following lemma.

Lemma 2 Fort >0 and z > 0,

0
= vi(t,z) = vii(t, z)Qu1 + viz(t, £)Qa

ot
vi3(t, 7)Q31 — 82 vii(t, z)C1. (20)
€T
9 viz(t,z) = vii(t, ) Qi3 + via(t, £) Qa3 + vis(t, 2)Q33. (21)

ot
Furthermore, for all z > 0, we have v1;(0,z) =0 fori=1,2,3.

Proof: Equations (20) and (21) are indeed the Kolmogorov differential
equations obtained by considering two time points ¢t and ¢ + At and letting
At | 0; we omit the details. Now, let ¢* = max;eg, ¢(7), and consider a fixed
z > 0. Note that if F(0) = 0, then for all ¢ < z/c*, we have F(t) < z a.s.,
whence we must have vi;(0+,2) = 0,7 =1,2,3. O.

Using Lemma 2, we can derive the following two lemmas.
Lemma 3 We have,
V13(s, ) = ¢11(s,0,2)0(s), (22)
where ©(s) is defined in Equation (5).

10



Proof: If we take Laplace transform on both sides of Equation (21), then
sviz(s,z) = Vv11(s,2)Q13 + Vi2(s, ) Qa3 + V13(s, 7) Q33

It follows immediately from Corollary 1 and Lemma 1 that

V13(,2) = P11(5,0,7)[C " Qua(sT — Qs3) ™" + U(s)C5 ' Qas(sT — Qa3) '],

and the proof is complete. |

Lemma 4 For z > 0, we have
$11(s,0,3) = K7, (23)
where K(s) is defined by Equation (6).

Proof: By taking Laplace transforms on both sides of Equation (20), we
get

svi1(s,x)

. . . o .
= vi1(s,2)Q11 + Vi2(s,2)Q21 + Vi3(s,z)Q31 — p vi1(s, z)Ch.

Using Corollary 1, Lemma 1 and Lemma 3, this can be rewritten as
s11(5,0,2)C7 = 11(s,0,2)Cr Q11 + dr1(s,0,2)U(s)Cy ' Qmn
. 9 -~
+ ¢11(35 O,.’E)@(S)le - % ¢11(33 0,.’E),

which is equivalent to the equation
0 - ~ _ _
p $11(5,0,2) = ¢11(5,0,2)[C; 1 (Qu1 — sI) + ¥(s)Cy ' Qa1 + O () Q1]

= ¢11(S, 0, .’I,')K(S),
where K(s) is given by (6). Let us denote the Laplace-Stieltjes transform
of ®11(¢,0,z) by ci>11(s,0,:1c). Clearly, for z > 0, since ®11(0,0,z) = 0, for
x> 0, we have ®11(s,0,z) = ¢11(s,0,z). We also have the obvious condition
(i)ll(s, 0,0) = I. Now the differential equation for q~511 is equivalent to the
equation

0 - N
9 ®11(s,0,z) = D11(s,0,2) K (s).

This, combined with the initial condition ®;(s,0,0) = I shows that
@11(3,0,:13) = eK(s)x,

and the proof is complete. O

Proof of Theorem 1: Theorem 1 follows trivially from Lemma 4, Lemma, 1
and Lemma 3 in light of Corollary 1. m|

11



4 Transient analysis

For a > 0, the quantities of interest are the transform matrices defined by
the elements:

[@%(s, 2)]i; = /O T PRt > 5 J() = jldt, 530,05 €S,  (24)
79 (s); = /0 e PulF(t) = 0, (1) = jldt, i, € S. (25)

These provide the joint distribution of the fluid level and phase at an arbi-
trary time ¢ given that the MMFF starts at time 0 with an initial fluid level
a and phase 1.

To keep the discussion short, we will derive the formulae only for the
case when ¢ € Sp; the corresponding formulae for the other cases can be
deduced from these in an easy and obvious manner. Following our general
convention with respect to partitioning, note that for j = 1,2, 3, u")‘fj(s,w)
and z{,(s) are the submatrices of the respective matrices @?(s, z) and 2%(s)
with row indices restricted to S7 and column indices restricted to S;. These
are the quantities we shall determine. We first deal with the case a = 0
which is somewhat easier, and then take up the general case later.

4.1 Case: Initial fluid level F(0) =0

Assume that F'(0) = 0 and J(0) = ¢ € S;. As before, denote by 7 the length
of the first busy period, and let + denote the duration of the idle period
immediately following the first busy period. Now { = 7 + ¢ is the length of
the first busy cycle, i.e., the return time to the set {0} x 5.

We note that a busy period can start only with phase in S1, and it always
ends with phase in Ss. Similarly, an idle period can start only with phase
in S5 and must end with phase in S7. Bearing these in mind, for £ > 0, let
us define the matrices Y(¢) and B(t) to be the matrix with elements:

[Y(t)]ix = Poi[e<t, Jt)=k], i€ Sy ke S

[B®)lik = Poil¢<t, J()=k], ikeSi.
Denote the respective LSTs of these matrices by T(s) and B(s). These
respectively give the distributions of the idle period and the busy cycle of
the MMFF taking note of the states at their beginning and end. It is trivial

to note that R )
B(s) = ¥(s)T(s). (26)

The following result gives a formula for T(s).

12



Lemma 5 We have

A

T(s) = (sI—-D(s)7"[Qu+Qas(s] —Qa3)'Qul,  (27)
where
D(s) = Q2 + Q23(sI — Q33) ™' Q2 (28)
Proof: It is elementary to verify that the matrix 'f(s) satisfies the equation:
T(s) = (sT — Qa2) '[Q21 + Qas(sT — Q33) ' Qs1]
+ (T — Q22) "' Qa3(sT — Q33) "' Q32T (s).
The lemma follows by re-arranging the terms of this equation. O
At this time, we introduce the matrix R(s) of Laplace transforms, which
is of order |S3| X |S2 U S3| and whose (%, j)-th element is given by
[R(s)]s; = /0 et PF(u) = 0, Y0 < u <1, J() = j], i€ Sh j € SoUSs,

(29)
which is the transform of the probability that having started in the state
(0,4), 7 € Sy, the MMFF is in the state (0, j) at time ¢ without the fluid level
becoming positive in [0,%]. Noting that the event of interest occurs only if
the set S is avoided in the interval [0, ¢], we have the formula

~

R(s) = (sI = D(s))™" |15y : Qaa(sI — Q)" (30)
where D(s) is given by (28).
Armed with these results, we can now prove the following theorem.

Theorem 3

(a) We have,
#(s)=0 (31)
[2a(s) @ 203(s)] = (I = B(s)) " ¥(s)R(s), (32)

where R(s) is given by Equation (30).

(b) For x >0, we have

@ (s,2) = (I - B(s)) (=K (s)) X0t (33)
@y(s,2) = (I = B(s)) 7 (=K (s) 1" 0(s)0, ", (34)
@3(s,2) = (I — B(s)) 7 (=K (s) 7' 70(s). (35)

13



Proof: Equation (31) is trivial by noting that for F/(¢) =0 and J(t) = j €
S1, the epoch ¢ should be the epoch of the end of the n-th busy cycle for
some n > 1 which ends through a visit into state j; the probability that
such an event happens preceisely at ¢ is zero. Equation (32) is obtained
easily from the interpretation of R(s) and by noting that if a point ¢ is
such that F(t) = 0, then ¢ is in the idle period following some n > 1 busy
periods, and the expression [B(s)]"~1¥(s) gives the transform of the joint
distribution of the length of time up to the end of the n-th busy period and
the phase at that epoch. Part (b) follows similarly by noting that if F'(¢) > 0
holds, then ¢ is an epoch in the n-th busy period for some n > 1. In the
stated formulae, the term (I — B(s))™! takes care of the busy cycles, if any,
that elapse before time ¢, and the remainder term characterizes what occurs
within the busy period containing ¢ and comes from integrating in (z,c0),
the formulae (8)-(10) of Theorem 1 for the density of the fluid level within a
busy period; we omit the details. [Incidentally, the existence of the inverse
of K(s) for Re(s) > 0 simultaneously follows from the (obvious) finiteness
of the transforms that are being evaluated.]

4.2 Case: F(0)=a>0

We begin by recalling quickly from [5] the distribution of the busy period
starting in the state (z,4), z > 0, ¢ € So; for its proof that is quite elementary
and based once again on a level crossing argument, we refer to [5].

Lemma 6 Let
H(s) = Cy {(Q22 — sI) + Cy 'Qa3(sI — Q33) ™' Q32
+ C; {Qa1 + Qas(s] — Qs3) ' Qa1 }T(s). (36)

For z >0 and i,j € Sy,, the matriz e1)% is such that its (i,7)-th element
gives for the MMFF the joint distribution of the first passage time to fluid
level O and the phase at the end of such first passage, given that the MMFF

starts in state (x,1).

The above result helps us to write the formulae for the transform of the
emptiness probability as follows.

Theorem 4 We have, for the Laplace transform of emptiness probabilities
at time t, the following formulae.

74, (s) = 0. (37)
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[2?2(3) : #3(s)] =

U(s) e R(s) + U(s) 1 T(s)[Dy(5) | Z3(s)],  (38)

where [20,(s) © 2%5(s)] is given by Theorem 3.

Proof: The argument leading to (37) is similar to that of (31). The proof
of (38) follows by noting that starting in {a} x Sy, for F(¢t) = 0 and J(t) €
S5 U S3, the epoch ¢ must be in an idle period. Thus, the MMFF must first
return to a in the set {a} x Sy (this is characterized by ¥(s)), and then make
a first entrance (characterized by ef(5)%) into level 0 before time ¢. At that
point, the process is in the set {0} x So. There are now two cases to consider:
either the idle period continues to time ¢; or it ends before ¢ with a visit into
the set S;. We have noted already that T(s) governs the distribution of the
idle period. The two terms in the right side of (38) correspond to the two
respective cases identified, and we have used the interpretation of R(s) in
equation (29) in the first term and the characterization in Theorem 3 in the
second term. O

For © > 0, we now recall the matrix of transforms U(s, ) of order
|8y x |S1|, with elements U(s,z))ij, i € S2, j € Sy given by

[U(s,2))ij = /000 et o Pu[F(u) =z, J(u) = j for some u € (¢,t + dt)].

(39)
This matrix was introduced by Ramaswami in [16], and [U(s,x)];; is the
Laplace transform (with respect to time) of the density that the MMFF
crosses fluid level z in the state (z,7), 7 € S1 at time ¢ > 0 avoiding level 0
in the interval (0, ¢], given that the MMFF starts in (z,%), i € Sa. It is easy
to see that

U(s,z) = /( )eH(S)yCQ_I[Qm + Qa3(sI — Q33)_1Q31]6K(5)y dy, = > 0.(40)
0,z

The formula in (40) is trivial from the interpretations of H(s) and K(s) and
follows by noting that it is based on a conditioning argument that conditions
on the lowest level £ —y > 0 attained by the MMFF in the time interval
(0,t]. As noted in [16], we can post-multiply both sides of (40) by K(s) and
obtain, using integration by parts, the equation

U(s,z)K(s) + H(s)U(s,z) = A(s, z),
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where

A(s,z) = 207 Qa1 + Qos(sT — Q33) "1 Q31]eX()®
— 05 '[Qa1 + Qaz(sT — Q33) Q1]

As noted in [16], we can solve the above linear system uniquely and write
its solution in a computable form as

vec([j(s,m)) = [Kt(s) ® l|sy| + 15, ® H(s)]flvec(ﬁ(s,x)), (41)

where, for any matrix A, vec(A) denotes a column vector obtained by writing
the successive columns of A one below the other, B* denotes the transpose
of a matrix B, and ® denotes the Kronecker product of matrices; in [16], it
has been shown that the inverse in (41) does indeed exist.

Now, for a > 0, denote by (w®(s,z) the transform matrix whose (i, j)-th
element is the Laplace transform

o™ (s, 2)]i; = / e PuilF(t) > 7, J(t) = j]dt, i€, jES:
0

this gives the behavior of the MMFF within a busy period that starts in the
state (a,7). We need these quantities as an intermediate step in computing
the quantities w*(s,z), = > 0 of interest to us.

Lemma 7 With the convention we have adopted with respect to partitioning
matrices, we have,

(a) For 0 <a <z,
fleK(s)(ccfa)Cfl

)U (s, a) (=K (s)) "M Omag T, (42)
—16K(s)a: a) s 02

( K(s)
U(s)

+U(s)U (s, a) (—K (s)) XD U() 05, (43)
' ()
(s)

owiy (s, 2) = (=K(s)

0s(s,z) = (—K(s)) teKG) g s
+ U(s)U(s,a)(—K(s)) ' eKOE-ag(s). (44)
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(b) For 0 <z < a,

Ow?l (3’$)
= (—K(s)) 107 + U(s)(—H(s)) " HI — ef)a—a)y
X C5 Qa1 + Qas(sI — Qs3) 'Qa1](—K(s)) 'Oyt
+ U(s)eH =27 (s, 2)(—K (s)) O Y, (45)
0UWia(s,7)
= (=K (s)) 10 (s)Cy 1 + W(s)(—H(s)) "I — efl(®)a=2)}
x Cy Qa1 + Qaz(sI — Q33) "' Qa1](— K (s)) 1 0(s)Cy !
+ U(s)e" =2 (s, 1) (—K (s)) " U (s)Cy L, (46)

ow3(s, )
= (—K(s))"'O(s) + U(s)(—H(s)) I — ()a=2)}
x C5 Qa1 + Qaz(sT — Q33) ' Qz1](—K (s)) 1O (s)
+ \II(S)GH(S)(G_w)ﬁ(S,.T)(—K(S))_l@(s)_ (47)

Proof:

Let y > a. Starting in {a} x S at time 0, there are two ways in which the
MMEFF can be at {y} x S; at time ¢ avoiding the level 0 throughout: (i) the
process avoids fluid level a in the interval (0,t] altogether; (ii) the process
returns to level a, then, avoiding fluid level 0, visits the set {a} x S7 at some
later epoch, and then finally moves on to {y} x S; avoiding fluid level a.
These lead to the expression

eK(S)(y—a)Cl—l + \11(3)0(3, CL)GK(S)(y_a)Cl_l

for the transform of the density of the associated event; here, in addition to
the interpretation of the matrices K (s) and U(s,a), we have also used the
spatial homogeneity of the MMFF. For = > a, integrating this expression
with respect to y over the interval (z,00) immediately gives equation (42).
Equations (43) and (44) are proved analogously, and we omit the details.
Now, we prove (45). For 0 < z < a, starting in {a} x S; at time 0, there
are three ways in which the MMFF can be in (z,00) X S1 at time ¢ avoiding
the level 0 throughout: (i) at time ¢, it is at some (y,j) with y > a and
j € S1 and furthermore it avoids the fluid level a in (0,t]; this contributes
the term eX(5)(v—a) Ccr ! which integrated over y > a gives the first term on
the right side of (45); (ii) at time ¢, it is at (x + y, ) for some y > 0 and
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j € 851 and during such a visit, the process does indeed visit the fluid level
x; in this instance, the MMFF must first return to fluid level a, then make
a first passage to fluid level z < a, then make a visit to {z} x S; avoiding
level 0, and then finally move onto (x + y,j) avoiding fluid level z; these
lead to the transform

U (s)efT =D (s, )XV oL

this,when integrated over y in the interval (0, c0), leads to the third term
in the right of (45); (iii) in this final case to be considered, the MMFF does
drop below a but does not hit z; then we can condition on the lowest level
T+ z with 0 < z < a — = it does indeed hit and the epoch of exit from that
level z, and write a transform for the density of being at x + y as

U(s)e" D200 Q0 + Qoa(s] — Qa3) " Q]P0

integrating this expression with respect to (z,y) over the interval (0,a—z) X
(z,00) gives us the second term in the right of (45). Thus, (45) is proved.
The proof of (46) and (47) are similar and omitted. O

It is now trivial to write down a formula for the submatrices of w*(s, )
of interest to us.

Theorem 5 For a >0, and j = 1,2,3, we have,
Wl(s, ) = owi;(s,z) + T (s)i) (s, 2), = >0, (48)

where the the transforms on the right side of the above equation have been
characterized in Lemma 7 and Theorem 3.

Proof: The result is obtained by noting that the visit to a fluid level in
(z,00) could occur either avoiding fluid level 0 or after a first passage to
fluid level 0. |

5 Concluding Remarks

We have derived the time dependent distribution of the MMFF (F'(t), J(t))
for an arbitrary initial state in the form of a set of transforms. All the
terms appearing in our formulae can be expressed explicitly in terms of the
busy period transform matrix ¥(s) for which we have developed a powerful
algorithm in [5]. In [3], we have demonstrated that (even with a naive
algorithm compared to that given in [5] for ¥U(s)), these transforms lead to
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accurate numerical results compared with the time domain results of Sericola
[21], often surpassing the latter in accuracy and computational time.

The elementary presentation given here should make our work more
accessible to practitioners. However, as the discussion shows, the approach
via elementary methods based on differential equations is quite limited even
in the case of a finite dimensional phase space and requires one to make many
technical assumptions. Our own interest in the matrix-geometric approach
to fluid models in our previous work was motivated by the need to identify
a systematic approach that could possibly be generalized to the case of a
general modulating Markov process (i.e., one not necessarily with a finite
state space.) Thus, the more mathematically oriented reader should view
this paper as one that facilitates the reading and placement in a proper
context of our earlier work in [3], [4], [16] so that attempts at initiating
operator based extensions of our work could be made possible.
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