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Abstract

The Markov modulated fluid model with finite buffer of size g is
analyzed using a stochastic discretization yielding a sequence of finite
waiting room queueing models with iid amounts of work distributed
as exp(n)). The n-th approximating queue’s system size is bounded
at a value g, such that the corresponding expected amount of work
gn/(nA) = B as n = co. We demonstrate that as n — oo, we obtain
the exact performance results for the finite buffer fluid model from
the processes of work in the system for these queues. The necessary
(strong) limit theorems are proven for both transient and steady state
results. Algorithms for steady state results are developed fully and
illustrated with numerical examples.

1 Introduction

This paper deals with a finite buffer, stochastic fluid flow modulated by a
finite state, continuous time, Markov process which modulates the rates of



(linear) change of the flow at any instant. For Markov modulated fluid flows,
the infinite buffer case (see [2] and references therein) has been analyzed by
many authors using a variety of methods. Just as in the infinite buffer case,
for the finite buffer case also, one can — by arguments similar to those in [3]
— derive a set of partial differential equations for the time-dependent state
probabilities of the model by considering time points ¢ and ¢t + At and by
letting At — 0. From these, by letting ¢ — oo, it is easy to obtain a finite
system of linear differential equations for the steady state probabilities of the
model (see equation (62) for that equation). While the differential equations
are the same in both cases, in the infinite buffer case, we get an initial value
problem, while in the finite buffer case we get a two-point boundary value
problem. The boundary conditions for the finite buffer case correspond to
the situations when the buffer is empty and when the buffer is full. From
the general theory of differential equations [5], it is well-known that if a
set of linear differential equations has a solution satisfying the boundary
conditions, then that solution is also unique. However, the finite buffer case
also involves an additional challenge in the determination of the boundary
conditions which are not easy to derive. Even if one could do that, as in the
infinite buffer case, approaches based on a numerical solution of differential
equations directly or using spectral methods is fraught with problems of
accuracy and efficiency. Also, for the specific set of models at hand, certain
modes of their general solution are unstable, and that causes considerable
technical difficulties; see [11] for a discussion.

In [11], V. Ramaswami developed a matrix-geometric steady state anal-
ysis of infinite buffer fluid flow models modulated by a finite state, con-
tinuous time Markov chain, and demonstrated that it can be carried out
via a discrete-time quasi birth and death process (QBD) for which efficient
algorithms are well developed. These avoid the difficulties in approaches
based on differential equations. Recently, Ahn & Ramaswami [1], [2] demon-
strated that approach to be rooted in a stochastic coupling of the fluid flow
to suitably defined Markov modulated queues. In [2], we also noted that the
matrix-geometric approach allows us to “jump” to an embedded epoch prior
to ¢t and avoids having to build the story by discretization over time as done,
for instance, in the numerical solution of differential equations. Furthermore,
although those papers deal exclusively with finite state Markovian environ-
ments, we note that the appeal of their probabilistic approach rests in the
possibility they open for generalizations using operator geometric methods
[14], [8], [10] to fluid flows modulated by general state space Markov chains.
Counsideration of such general flows is, in turn, motivated by a desire to in-
corporate effects like heavy tails and self-similarity in the model that cannot



be done using a finite state space chain for modulation.

This paper is an extension of the approaches in [1], [2] to the analysis of
a Markov modulated fluid flow with a finite buffer of size 8 > 0, which is
the continuous analog of the queue with finite waiting room. During those
intervals when the buffer is full, incoming flow in excess of the drain rate is
assumed to be lost permanently. A recent piece of work [13] by Soares &
Latouche, of which we have become aware recently, obtains the steady state
behavior of the finite buffer fluid flow model using level crossing arguments
of the type introduced in Ramaswami [11]. While, modulo notations, this
work yields the same results for the steady state distributions, through our
approach based on stochastic discretization, we are able to also set the stage
for the transient analysis.

In [2], we considered coupled queues defined on a common probability
space through a sequence of nested “spatial uniformizations.” A spatial uni-
formization amounts to a discretization of the time axis through a Markovian
point process such that in the inter-event intervals of that process, the poten-
tial increment to the (unrestricted) flow process are identically distributed
as exponential random variables. That allowed us to measure the fluid level
approximately in terms of the number of “exponentially distributed” chunks,
and thereby obtain a queueing model for consideration that is also repre-
sented by a quasi birth and death process (QBD). By letting the parameter of
uniformization to give progressively finer and finer discretizations, the fluid
process was obtained as the (strong) stochastic process limit of the work
in the queues thus generated. The matrix-geometric analysis of the QBDs
gave, through a limit process, a complete characterization of the transient
and steady state characteristics of the fluid flow.

Unlike in [2], here we assume, however, that each associated queue has a
finite bound on the number of customers that can be present simultaneously.
These queues and their buffer sizes (in terms of the number of “customers”)
are to be constructed on a common probability space such that the fluid
flow with finite buffer of size # can be realized as the pathwise stochastic
process limit of the work processes of the associated queues. By analyzing
the associated queues using matrix-geometric methods [8], [6], the results
for the finite buffer fluid model are then obtained through a limit process.

Our approach is motivated by Figure 1 and Figure 2 showing the results
of a pair of simulation experiments for two finite buffer fluid models, of
which the first has “traffic intensity” less than unity and the second a traffic
intensity larger than unity. (For specific details of the parameters etc.,
refer to Section 3.) Stochastic discretization of the models is governed by a
parameter n, and successive discretizations get finer and finer as n — oco. In



each figure, along with the fluid level and the work in the queue which were
simulated for different values of n, we have also presented the graphs of the
difference between these. Note that in both cases, as n — oo, the processes
of work seem to converge to a limit which is the fluid flow. Indeed, one can
prove this formally as a stochastic process limit theorem in the sense of [15].
The formal proof of that limit theorem is arduous, but proceeds along the
same lines as in [2], and will therefore be only sketched here since readers
familiar with [2] should be able to complete the details. We, however, wish
to emphasize that certain aspects of the construction of the queues such as
their having #d work amounts and being modulated by a common phase
process are critical to our approach.

Our limit theorems in Section 4 concern both the transient and steady
state distributions of the finite buffer fluid flow. However, to keep the length
of this paper within reasonable bounds, in the sections following that we shall
limit ourselves only to steady state results which are simpler due to reasons
to be stated later.

2 The Model and Spatial Uniformization

We begin with a specification of the fluid model to be considered and a
review of spatial uniformization used in Ahn & Ramaswami [2].

We assume as given an irreducible, continuous time Markov chain (CTMC)
of “phases” with a finite state space S = §1 U Sy U S3 and infinitesimal gen-
erator @), such that: during sojourn of the CTMC in state ¢ € Sy, the fluid
level increases at rate ¢; > 0 as long as it is below the given buffer size (;
during sojourn of the CTMC in state j € So, the fluid level decreases at rate
c¢;j > 0 if the buffer is nonempty; and during sojourn of the CTMC in S3,
the fluid level remains constant. Numerous special cases of this canonical
model have been considered in the literature, although for the finite buffer
case no exact results are known.

For non-triviality, we assume throughout that the sets S; and S are
nonempty. Also, for any set A, we let |A| denote the number of elements
in A. Also, I will denote an identity matrix and 1 a column vector of 1’s,
both of whose dimensions will be determined by the context in which they
appear. Where it is necessary to indicate the dimension explicitly, we will
write I, to denote the n X n identity matrix.

For later use, we define the diagonal matrices

CJ = dia’g{cia (S S]}’ J=123, (1)



where we set ¢; = 1 for all 7 € S3, and let C' = diag(C1, Ca,C3). We partition
the states of the Markov chain in conformity with the three sets S; identified
above and denote its infinitesimal generator in partitioned form as

Qu Q12 Qi3
Q= Qa Q2 Q3 |. (2)
Q31 Q32 Q33

Throughout, to avoid confusion between submatrices in a partitioned struc-
ture and elements of a matrix, the (i,7)-th element of a matrix A will be
denoted by [A];; or as A(%, j) instead of as A;; as is often customary.

A spatial uniformization (for the fluid flow) is effected by modeling the
Markov process of phases as a Semi-Markov process (SMP) with exponen-
tial sojourn times such that the potential changes to the fluid level be-
tween epochs of that SMP are identically distributed. To that end, we
let {(xn,tn) : n > 0} be a Markov renewal process, with successive states
Xn € S, transition epochs 0 =ty < t; < t2 < ---, and semi-Markov kernel
H(-) defined such that for i,5 € S, H(i,j;t), the (i,7)-th element of H(t),
is given by

H(i,j;t) = P{Xn—H =Jylnt1 —tn < t|Xn = Z} = (1 - e—Gcit) [P(o)]ija (3)

where

PO)=0"'C7'Q+1, and 6 > max {-1C7'Qli} - (4)

The associated continuous time process X = {x(¢) : t > 0} specified
such that it takes the value x, in the interval ¢, <t < t,1; is the SMP of
interest to us. Note that the MRP under consideration may make a self-
transition from a state to itself in one step. Nevertheless, it can be shown
that the continuous time process X is indeed a realization of the phase
process, namely the Markov chain with infinitesimal generator Q. (This is
accomplished by verifying that the sojourn time in each state i, i.e., the
time before it leaves ¢ to a different state, is exponentially distributed with
parameter —Q;; and the probability of transiting to j # ¢ from 4 is —Q;;/Qii;
see [2], Theorem 1.) The consideration of x as a SMP or as a CTMC depends
on whether self-transitions to states that occur in the underlying MRP are
considered or not.

Consider now an unrestricted fluid flow, i.e., one in which the fluid
level ranges over (—oo,00) and is modulated by the SMP X such that the
net input rate to the fluid buffer is ¢; when x(¢t) = 7 € Si, is —¢; when
x(t) =1 € S2, and is 0 when x(¢) € S3. Assume that the SMP starts



in 7 € S1, and consider its first transition interval. This is distributed as
exp(fc;), and during this, fluid accumulates at rate ¢; per unit time. Thus
the total additional fluid accumulation in that interval is distributed as
erp(f). Similarly, for i € So, the total depletion of the fluid level in the
interval of sojourn of the SMP in ¢ would be distributed as exp(#). This
underlies our reason for calling our construction by the name “spatial uni-
formization.” Unlike standard uniformization which uniformizes the inter-
event time distributions (i.e., distributions of time intervals), the procedure
adopted uniformizes the distributions over space (i.e., the fluid level). It
can be seen that for the finite queues we shall construct later, spatial uni-
formization plays a crucial role in simplifying their structure by allowing the
queues to have iid amounts of work for successive customers.

We define
no =inf{m : me N, m/B> m&x{—[CilQ]ii}}, and A =no/B, (5)

where N7 is the set of positive integers. We will consider in this paper, a
sequence of spatial uniformizations of the fluid flow given by

0n:n%:n/\,n=1,2,---, (6)

and a corresponding set of queues with finite buffer sizes ¢, — 1, where
dn = N Ny, n:1727"" (7)

The queue corresponding to 8,, will be such that each customer brings in an
exponentially distributed amount of work with mean 1/(n\). See Section 3
for details of the construction of the queues. Note that defined thus, the n-
th queue is such that when it is saturated it has g, customers in the system
and their total expected amount of work is g,/(nA) = ng/A = . Our main
thrust will be to show that the work processes of these queues converge as
n — oo to the fluid flow with finite buffer size 8 in both an a.s., sense and in
the sense of stochastic process convergence as defined in [15]. This is what
will allow us to analyze the finite fluid flow in terms of matrix-geometric
methods for the queues we construct.
In the following, the nonnegative, stochastic matrix

P(6,) = %le 41 (8)

will be denoted simply as P,, and the matrix P; simply as P. We shall
assume P, to be partitioned in conformity with the partitioning of the state



space as

Pyiv Pui2 Puis
P,=| Pu1 Pn Pz |- 9)
P31 Pz P33

Finally, for later use, we note the following equations which are easy to
verify:

P = I+ EBZ, 1= 172,3; (10)

and 1
Pnij = EI—)Z] for 4 7&]’ Z,J € {1’2’3}' (11)

3 Approximating queues

3.1 Preliminaries

We assume the following as given on a common probability space (22, A, P):
A collection of mutually independent Poisson processes, say, My, ;, and N, ;
with rates A¢; respectively for ¢+ € S, and n > 1; and a discrete time Markov
chain £ = {L,, : n > 0} of phases which has transition matrix P and is
independent of all the Poisson processes My, ;, and Ny, n> 1,1 € S.

For notational convenience, we use @ for denoting superposition of pro-
cesses; thus, M,, ; ® N, ; denotes the superposition of M,, ; and A, j, and
®j_,; M, ; denotes the superposition of the processes My j,- -, M, ;. With-
out loss of generality, we shall assume that Ly =4 for some i € S.

With these as building blocks, we will construct for almost all sample
points in ©: (a) a phase process J = {J(t) : ¢ > 0} which is a CTMC
with generator () but realized through a spatial uniformization construct as
described in Section 2; (b) a process Fg = {Fjs(t) : t > 0} such that Fp(?)
increases at rate ¢; while J(t) = j € S; as long as the level of the process is
below the finite buffer size 3, decreases at rate c¢; while J(t) = j € Sp and
Fj(+) is positive, and remains constant while J(t) € S3 — i.e., (Fp(t), J(t)) is
the finite buffer fluid flow process of interest; and (c) for each n > 1, a queue
length process Q™ = {QM)(t) : ¢ > 0} with bounded queue size g, (the
size g is the upper bound on the number of customers that can be present
simultaneously) and modulated by the phase process, and its associated
work process W™ = {W™(t) : ¢ > 0}. (All processes are defined to
have right continuous sample paths.) Moreover, the queues Q™) are to be
constructed such that; all queues Q™ are modulated by a common phase



process; the amounts of work brought in by successive customers in Q™) are
independent and exp(n)) distributed. Throughout, unless otherwise stated,
for any process under consideration “state at a time point ¢’ will always
denote the state at t+.

3.2 The construction

To avoid pedantry and to save notations, we shall suppress the sample point
in the ensuing discussion which is indeed a sample point by sample point
construction. This construction is almost identical to that of [2] except
for the introduction of the finite buffers. We denote the set of epochs of
the Poisson process @' ;N;; by Anj, j € S and let A, = UjegAy j; the
arrival epochs to the queue Q™ will be a subset of A, as we shall see later.
Similarly, we denote the epochs of the Poisson process ®}_; M; ; by D, ;
and let D,, = U;csDy j; the departure epochs of 0" will form a subset of
them as we shall see later.

Construction of the Phase Process J: Note that £ = {Lp,n > 0} is
a discrete time Markov chain of phases which has the transition matrix P
and is independent of all Poisson processes Ny, j, My j,n > 1,5 € S. Let
agp = 0, and let a1 be the first epoch of Nl,Lo that occurs after time 0. In
general, set a,+1 to be the first epoch of Nj 1, to occur after the epoch
ap. Let J(t) = Ly in the interval a, <t < ap4+1. We note first of all that
{(Ln,an) : n > 0} is a SMP of the type discussed in Section 2. Also, from
Theorem 1 in [2], J = {J(t) : t > 0} is a continuous time Markov chain
with infinitesimal generator (). Indeed, the epochs {a,} form a set of spatial
uniformization epochs for the fluid process modulated by the phase process,
with respect to the parameter \; see Section 2.

Construction of the Fluid Flow Fj3: Without loss of generality, we
will assume the initial condition F'(0) = 0. We let F3(0) = 0 and define the
process {Fj(t)} such that for ¢ € [an, ant1), Fg(t) = min{s, Fg(a,)+c;(t—
ap)} if J(t) = j € S1, Fp(t) = max[0, Fg(a,) —cj(t —ay)] if J(t) =j € So,
and finally F(t) = Fg(ay,) if J(t) € S3. Defined thus, clearly Fj(-) increases
at rate c; when the phase process is in j € S1 and the level of the process is
below 3, decreases at rate c; in j € S2 while the level is positive, and remains
constant in S3. Clearly, the joint process {(Fp(t), J(t))} is stochastically
equivalent to the fluid model with finite buffer 8 starting empty and in phase
1, and is modulated by the underlying Markov process J with a generator
Q. (Other initial conditions for the fluid model are handled in an obvious
manner.)



Construction of the Queues: For each n, the queue Q™ will be defined
in terms of the successive embedded epochs tf = 0, and {t} : k¥ > 1} where
there is an arrival, departure or phase transition; we emphasize that some
phase transitions may be from a phase to itself, as necessitated for instance
in the uniformization process. It will be assumed that service is rendered by
the server only when the phase is in So; specifically, no service is rendered
when the phase is in S7 U S5. Also, for all queues, the queue size at time 0
will be defined to be 0 to match our initial condition Fg(0) = 0 (other initial
conditions can be accommodated with minor changes in the construction.)
In the following, we shall denote by Q7 and J}* the queue length (number of
customers in the system Q(™) and the phase at the epoch t;+. The specific
details of the definition of these quantities are now described below.

(a) Let t§ = 0 and Qf = O; this initializes the queue size at time 0 to
match our initial state specification F(0) = 0 for the fluid model. Note that
we have JJ = J(0) = ¢ from the construction of the phase process.

(b) Having defined ¢ and (Q7}, J}'), we first specify the next time point
t7. 1 and then the value of the queue size and phase immediately after that
epoch. The queue size in Q™ is assumed to remain constant over intervals
of the form [}, ¢1_,); that is, we shall set Q) (¢) = Q7 for all ¢ € [t2, 1} ,).
There are several cases to consider.

Case 1: If Ji? € 51, then #f | is defined to be the first epoch in An,J;cz to
come after ¢}, and the next queue length value Q7 , is set to max{g,, Qp +1}
— that is, in this case, the epoch ¢}, | is defined to be an arrival epoch to the
queue Q™) note that the arrival is lost if the system is saturated. The phase
Ji, 1 is set to J(t;,,); note that a phase change occurs at the newly defined
epoch iff that epoch ¢}, ; € Ay jn» and a different phase is entered at that
epoch in the uniformization scheme; otherwise, that epoch will constitute a
self-transition for the phase in the queue Q™).

Case 2: If Ji! € S3, then the next epoch t},, is once again defined to be
the first epoch in A, Jp to come after ¢, but the queue length value QF ,, is
set to the same value as @)} — that is, a construct is made that makes the
queue length remain constant just as the fluid level would remain constant
over the interval under consideration (note that we are assuming that no
work is being done in S3.) The phase J!, | is set to J(t,); note that
a phase transition to a different phase occurs at the newly defined epoch
iff that epoch t | € Ay, Jn and the new phase entered is indeed different;
otherwise, the epoch is to be treated as a self-transition epoch of the phase
for the queue Q™).

Case 3: If J! = j € So, then we set the next epoch 3 ; to be the



first epoch in A, j U Dy j to come after ¢. The queue length at that epoch
is set depending on whether that epoch comes from A, ; or from D, ;.
Specifically, the next queue length value Q. is set to the same value as Q}
if & | € Ay j; it is changed to maxz(0, Q) — 1) if the new epoch t} | € Dy, ;.
Thus, the next epoch is just a phase transition epoch (with no effect on
queue size) if it is in A, j, and a departure epoch (with no phase change) if
it is in Dy, ; and a departure is indeed possible; note that except when the
epoch is in A ; and the new phase entered is different, the new epoch is a
dummy phase change transition epoch (i.e., with a phase self transition).
Construction of the process Y™ = {Y((¢)}: We assume that the
queue Q™ operates under the FIFO discipline and that in it work gets
done only when the phase is in the set S;, and specifically that when the
phase is ¢ € Sy, work does get depleted at rate ¢; per unit time. Given a
path of our construction, namely the epochs tin), k > 0 and the phases J}'
at those epochs, we can construct from the amount of work done between
the n-th and (n + 1)-st departure epochs, the amount of work brought in
by the mi-st customer (similarly that of the first customer by considering
the path up to the first departure) and from these define the work process
W™ (t) associated with the queue Q™): the formal equations governing this
construction can be written down but are not germane to our analysis.

Associated with the work in the queue Q™) let us now define the process
Y™ (t) such that for ¢ <t <", and J(t}) = j,

WO (A7) + ¢(t — t2), if j € S1 and Q7 < gn
) (22 if j € S1 and QF =
)y — ) W), if j € S and Qf = gy
YO =Y max(0, W) — et — 1), it € S, (12)
W (), if j € Ss;

note that in the intervals [t} ¢} ), the phase process remains constant and

the rate of growth of Y (™) (¢) mimics that of Fj(t). Indeed, as shown for
the infinite buffer case in [2], here also {Fj3(t) : ¢ > 0} can be shown to
be realized as the pathwise stochastic process limit of {Y (") () : t > 0}; see
Section 4. Finally, note that since ¢}, | — %} converges to zero a.s. as n — oo,
the difference between Y (™) (¢) and W (™ (t) also become negligible for large
n.

Now, coming to Figure 1 and Figure 2, they provide the simulated re-
sults for the processes Y™ (t) and the fluid process Fj5(t). The two cases
considered respectively correspond to

-1 1 —0.5 0.5
Q:(0.5 —0.5) andQ:( 1 —1)’

10
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Figure 1: Comparison of the paths of a fluid flow process and workload in
the queue Q™. for n = 1,10, 100, 5000. The traffic intensity is 0.5.

and in both cases, we assume that § =2, C; = 1, C, = 1, §1 = {1},
Sy = {2} and S35 = ¢. Note from Fig. 1 and Fig. 2 that as n — oo, the
differences between Y™ and Fj do seem to vanish.

Now, we summarize some basic properties of the constructed queue pro-
cesses as a theorem, whose proof is essentially the same as that of Theorem
2 in [2]. We draw particular attention to Part (c) which asserts that the
work brought in by successive arrivals in Q™ are iid ezp(n)).

Theorem 1

(a) Arrivals to the queue Q") can occur only at those epochs ty for which
J(tp—) € S1; that is, the epoch is a phase transition epoch in Ay, from
S1 for that queue (which may very well be a phase self transition.)
Note that arrivals that find a full waiting room are lost.
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Figure 2: Comparison of the paths of a fluid flow process and workload in
the queue Q™ for n = 1,10, 100, 5000. The traffic intensity is 2.

(b) Departures from the queue can occur at t} only if J(t}—) € Sa, Qp_; >
0 and t}} € Dy,. Also, the phase immediately after each departure epoch
is the same as that immediately prior to that epoch.

(c) The amounts of work done in Q") between successive departure epochs
are iid exponentially distributed random variables with mean 1/(n)) =

B/ (non).

Remark 1
(a) The upper bound ¢, on the queue length of Q") corresponds to an amount
of work distributed as the sum of q,(= non) i.i.d. exponentially distributed

random wvariables each with mean 1/(n)\) = (/(non). This converges in
probability to B as n — oco. Thus, we can view our approximating queues as

12



also comprising of replacing the deterministic boundary B for the fluid by a
sequence of random variables converging to B in the limit.

(b) Note that {ay,k > 0} emerging in the construction of J and Fg is the
set of epochs of the Poisson process N1 and

{ag,k >0} C {t} : k > 0} for alln > 1.
Moreover, we can see also that for alln=1,2,---,
{tn:k >0} C {tf*! : k> 0}, (13)

so that, these epochs form a set of nested sequences over m. This aspect
of the construction is crucial in making all processes to be modulated by
a common CTMC of phases and for obtaining the fluid process as an a.s.
pathwise limit as n — oo of the work-in-the-queue processes.

4 Limit Results

Note that the sequence of epochs {t,(gn) : k > 0} provide (over n) a sequence
of nested spatial uniformizations for the fluid process on the common prob-
ability space (€2, .4, P) and correspond (see Section 2) to 6, = nA. Clearly,
6,, — o0, as n — 00, and since we have shown that in the n-th queue Q™.
the amount of work brought by each customer is exponentially distributed
with mean 1/(n)), we can now view the queues as providing a sequence
of approximations to the fluid model through a set of queues whose work
process corresponds to a stochastic quantization of the fluid and that these
quanta converge to zero as n — 0o0. This discussion anticipates a limit theo-
rem, namely, that the process (W™ (t), J(t)), where W(™)(¢) is the amount
of work at ¢+ in the queue Q™ will indeed converge (we denote this by =)
as n — oo to the process (Fp(t), J(t)). Here, convergence is in the sense of

/f(W("),J) dP — / f(Fg,J)dP, asn — oo,
Q Q

for all continuous functionals f, and it can be sharpened to almost sure
pathwise convergence by assuming that the underlying probability space is a
separable, metric space (see [15], [12]). Since for large n, Y™ () = W) (¢),
similar results are anticipated for the sequence (Y (™) J). We only sketch
the proof of that result; the details are similar to those employed in [2].

Theorem 2 We have
(Y™ (), J() = (Fs(-), J(-)) as n — oo.

13



There ezist versions of the processes (defined on a separable, metric space)
such that the convergence is indeed an a.s. pathwise convergence. Finally,
this a.s. convergence is uniform over bounded time intervals [0,1t].

Sketch of Proof: Consider the sequence of unrestricted queue processes
and the unrestricted fluid process corresponding to the finite queues and
finite fluid processes. (Here the boundaries are removed and the processes
are allowed to range over (—o0, 00).) Our approximation scheme through the
nested spatial uniformization can be explained as follows: when the phase
process stays in j € Sy during an interval [ag_1,ay), where a;’s are defined
in the construction of J, the quantity c;(¢t — ax—1), which is the amount of
incoming fluid during [ax_1,t), ax_1 <t < ag, is approximated by

Nn(t_ak—l)

Z Xn,ia (14)
=1

where N, (t) is Poisson distributed with mean 6,,¢;t, and X, ;’s are iid ex-
ponentially distributed with mean 1/nA and independent of N, (t); when
the phase process stays in j € Sy during [ax_1,ax), the total depletion of
fluid during [a;_1,t) equals the total depletion of work during the same
period; when the phase process stays in j € S3 during [ay_1,ay), there is
no change either in the fluid or the work process. If we consider a pro-
cess defined by (14), then it can be shown that this process converges to
{¢j(t—ak—1),t € [ak—1,ax)} for all £ > 1. This implies that the unrestricted
work processes do converge to the unrestricted fluid flow over any finite time
interval. (The bounds obtained in [2], Section 9, also show that the con-
vergence is uniform over bounded intervals — i.e., we have local uniform
convergence. )

From the above, we can, by using the reflection map([15], [2]) prove
that the sequence of work processes of the queues with infinite buffer sizes
converges (in probability) locally uniformly to the fluid flow with an infinite
buffer, where by “locally uniform,” we mean that convergence is uniform
in any finite interval [0, ¢]; see [2] for the details on the infinite buffer case.
Similarly, if we use the two-sided reflection map ( [15], Sec. 5.2.3) for the
finite fluid flow and the associated finite queue process, it can be shown that
the sequence of work processes of the finite queues Q™) converges locally
uniformly to the finite fluid flow. The details are a bit arduous but similar
to that in [2] . |

The above provides a means to obtain transient results for the finite
buffer fluid flow model from those of the approximating queues in a manner
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similar to that developed in [2] for the infinite buffer case. In this paper, we
will, however, restrict ourselves to steady state results concerning which we
have the following theorem.

Theorem 3 For all —co <a<b< oo, and j €S,

. . n e .
lim lim P[Y ™ (t-) € (a,8], J(t) = j] = lim P[F(2) € (a,0], J(t) = j]-
Remark 2 Usually, one justifies the interchange of the limits over n and t
entailed in the above theorem by appealing to some tightness conditions; see
e.g., [7]. Such proofs are known to be quite difficult. In our case, we can
provide a simpler proof by direct computations, and we will take it up later
in Section 6.

Remark 3 Later on, we will show that some key matrices needed to de-
termine the steady state distribution are identical for each of the stochastic
discretizations. That simplifies the steady state analysis drastically compared
to the transient analysis and accounts for our limiting ourselves to the steady
state analysis in the following sections.

5 Steady State Analysis of the Queues

In this section, we present the steady state analysis of (y("), J). By The-
orem 3, we can obtain the steady state results for (F3,J) from the con-
sideration of these processes. For the analysis, we need certain results on
the n-th finite queue process (Q™), J), especially, steady-state results for
its embedded sequence {(Q7, JI*) : | > 0} defined in Section 3.2.

By the construction in the previous section, Q™ has a finite QBD struc-
ture. This lends to an analysis by the matrix-geometric method for finite
queues, and the next theorem lists the relevant properties of the queues,
which will be used in the analysis.

Theorem 4

(a) All the queues Q™) are modulated by the same continuous time phase
process J which is a CTMC with infinitesimal generator Q@ on the
state space S.

(b) For each n, {(QM™(t),J(t)) : t > 0} is a continuous time, finite QBD
with state space

Qn = U;'Iil ({1} ® S),

where Q@ represents the Kronecker product of sets.
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(¢c) The embedded sequence {(Q},J¢) : k > 0} is a discrete time, finite
@BD ([8]) with the state space Sy, and has transition matriz

M§  Bpo
Bn2 Bnl BnO
: : .. : (15)
Bn2 Bnl BnO
B,y M}
where My = Bpa + Bp1, M} = Bp1 + Bpo and
0O 0 O 0 0 0
Bno = | 0 31 0 |,Buu=| $Pu1 3Puz2 3Pu2s | ,(16)
0 0 O P31 Puzz  Ppss
Py11 Puiz Puis
By = 0 0 0 , (17)
0 0 0

where the matrices Pp;; are defined by (8)-(11).

(d) The sojourn time t}} —t}_,,k > 1, depends on the phase J(t}_,); if
J(tR_,) =J € S1USs, then ty —t}_, is exponentially distributed with mean
1/(nX); if J(tf_y) = j € So, then tf — t}_, exponentially distributed with
mean 1/(2n)).

Proof: The results are easy to prove based on the the way the processes
are constructed, and we omit the details. O

Before the analysis, we will define some notations to be used later. De-
note the steady state probability vector related to the embedded sequence
{@p, JI') : 1 > 0} by xp, kK = 0,-++ ,gp, such that its j-th element is
PlQY =k, J% = j], 7 € S, and partition it in conformity with the parti-
tioning of the state space as

Xnk = (Xnkl Xnk2 xnk?)); (18)
here x,; is a vector of size |S;|, and its components are indexed by phases

in S;.

5.1 Steady state analysis of {(Q}, J")}

We shall analyze {(Q7, J]')} using matrix-geometric methods. To that end,
we need to define an associated “level reversed process” which is a Markov
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chain obtained from (15) by reversing the upward and downward movements
in “levels” and has transition matrix
M} Bpo
BnO Bnl Bn2
ER .. (19)
BnO Bnl Bn2
By My
We will call the queueing model defined by the above as “the level reversed
queue.”
Let Ro,, and Rr , denote respectively the Neuts’ R-matrices ([9], [8])
for the original QBD of (15) and the level-reversed QBD of (19). Then it is

well-known that they are respectively the minimal non-negative solutions of
the following equations:

RO,n = BnO + RO,anl + RQO,anZ (20)
RL,n = Bpa+ RL,anl + R%’anO- (21)

Hajek [6] has shown that the stationary probability vector of a finite
QBD may be expressed as a linear combination of two matrix-geometric
vectors determined by Rop, and Ry, respectively, and we summarize the
relevant results in the following theorem.

Theorem 5 Let £ denote the stationary probability vector of the Markov
process of phases defined by Q satisfying the equations

£Q=0, {1=1,

and assume that it is partitioned according to the state space as & = (£1,&2,€3).
Assume that £&1C11 # €3C51.

(a) (Hajek [6]) For k =0,--- ,qn,
Xnk = 00,0 RO n + MLaRE " (22)

where the vectors no, and nr , satisfy the following equation,

0 = (noa mLn) X (23)
M2 + RonBps — I RY (M — 1) + RS Bno
Ry (M —1)+ RY'Bna M} + RppBpo — I
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(b) If we define A = diag{I|s,|,2]|s,|,1s,/} and denote the steady state
probability vector of the infinitesimal generators C"1A™1Q by ¢, then

qn

((Bn2+ Bni+ Bno) =¢ and Y Xpp=( Vn>1, (24)
k=0
and
1
¢= mfAC (25)

Proof: The proof of (a) can be seen in [6] and [8], and (b) comes from the
structure of the transition matrix in (15). a

For later use, we consider ¢, 1o, and 71z, also to be partitioned (in
conformity with the partitioning of the state space) as

C:(Cl C? C3)a
Nom = (Nom1 Mom2 M0m3)s Mom = (MLpl MLp2 MLn3)-

Before concluding this brief section, we note that from (20) and the
structure of the matrices By and By, the matrices Rp , and Ry, have the
following partitioned form:

Ronin Ropi2 Ropis

Ron=| 0 0 0 (26)
0 0 0
and
0 0 0
Ripn=\| Rimot Rinze Rrpnz |- (27)
0 0 0

These reducible structures are known to reduce computational complexity
in evaluating these matrices numerically.

5.2 The Rate Reversed Fluid Flow

We introduce now one more intermediate object we need to complete our
analysis, namely, the rate reversed fluid flow.

Analogous to the level reversed queue in the finite state space case, we
can construct a “rate reversed fluid model” in the fluid case. This is the
fluid flow model modulated by J such that the fluid level increases at rate
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cj when the phase process is in j € So, decreases at rate c; when the phase
process is in j € S7, and remains constant when the phase process is in
j € S5. (Note that the roles of S; and S, have been reversed.) Then,
in the same way as we constructed the approximating queue process Q")
for the given fluid process, we can construct the approximating queues, say
Qﬁ") = {(QEJLI),JS) : 1 > 0}, for the level reversed fluid flow process as
well. (Note that the embedding points for these are different and hence
this process is not the same as the level reversed queue process introduced
earlier.) The n-th queue thus obtained is also a discrete time QBD whose
transition matrix has a similar structure as in (15) with B, 12, Byy1 and
B, no in place of By2, By1 and By respectively, where

I 00 P 3Puz 3Pas
Bimp = |0 00|, Bou=1[0 0 0 ,
0 00 Pn31 Ppza Ppas
0 0 0
Bino = Ppo1 Ppae Paoz | . (28)
0 0 0

If we let R, , denote the Neuts’ matrix of this queue, then it is the minimal
non-negative solution of the equation

R*,n = B*,nO + R*,nB*,nl + Rz,nB*,n% (29)

and due to the structure of the block matrices has the following partitioned
form:

0 0 0
R*,n = R*,nZl R*,n22 R*,n23 . (30)
0 0 0

We will need the matrices R, j, for defining some key quantities needed
in the analysis of the bounded fluid process. They are given by:
- 1 = 1 1A
Ko = 0,C1(Ron1 — I)CTY, 9o = §CIRO,n1202 100 = C1Ron13, (31)
and
. ~ 1 ~
K* = OnCQ(R*,nQQ - 1)02_17 lI}* = §C2R*,n2101_1; 9* = CQR*,TL23- (32)

For the original and the rate reversed fluid models, these sets of matrices
are none other than the matrices K(0+), ¥(0+) and ©(0+) introduced in
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[11] and [2]. For their probabilistic interpretations and use in the analysis
of the infinite buffer case, we refer the reader to [2]. These matrices do not
depend on n; see Theorem 6 below. This fact is what leads to the simplicity
of evaluating the steady state distribution of the finite fluid model; we need
to evaluate only one set of these matrices, and not a set for each queue
separately. (Unfortunately, the kernels I~(on(3) etc., derived from the n-th
approximations (see [2]) needed in the transient analysis do not have this
nice property.)

Theorem 6 The matrices (Ko, U0,00) defined in (31) and the matrices
(K, ¥y, 0,) defined in (32) are independent of n.

Proof:
For a | S| x |S| dimensional matrix A, we use the notation {A};;, 4,5 =1,2,3
to denote the (7, 7)-th submatrix when A is partitioned in conformity with
the partitioning of the state space S.

Using (20) and (26), we see that for all n > 1, the matrices Roni1,
Ro n12 and Ro 13 satisfy the following equations:

1
Ropu = 1 + —C; Q1+ o /\Ro 01205 ' Q21 + /\Ro n13@31,
Ropi2 = ECI Q12 + §Roin12 + o) )\RO niQC 1Qa2
+ _ARO n13Q32 + —Ro n11Ron12, (33)
1
Ronis = —Cr'Qus -l- Ro n12C5 Qa3 + Ron13 + Ro n13@33,
n n n
and it follows
1 1
~Ronpi2 = Cr ' Qro + ——R0on12C5 ' Qa2 + Ro n13Q32
2 nA )\ ) nA
+ —Ro n11Ron12 (34)
0 = —C 'Q13 + )\Ro n1205 ' Qa3 + )\Ro n13Q@33-
Now, let
I+ %(RO,HI —1I) Roa2 Ro,13
H= 0 0 0o . (35)

0 0 0

Since I+%(Ro,111 -I)= "T_1I+ %Ro,nl is nonnegative, H is a non-negative
matrix.
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From equations (33) and (34), we can now easily verify the following
equations:

{H}11 = {Bno+ HBn1+ H’Bpa},,,
{H}1s = {Bno+ HBn1+ H’Bpa},,,
{H}15 = {Bno+ HBp+H’Bps},,-
which shows that H is a non-negative matrix solution of the equation (20)
and since Ro ;, is the non-negative minimal solution of the equation (20), it
follows that
1
I+ E(Ro’m —I)> Ronn1 & MRoj —1I) 2nMRopn — 1),  (36)

Ro112 > Roni2 and Rop 113 > Ropis.
To show inequalities in the reverse direction, we fix an n > 2 and define

i I+n(Ronii—1I) Ropni2 Ronis
= 0 0 0 (37)
0 0 0

Using the equations (33) and (34), we can then verify that the following
equations hold:

{H};, = {Blo+ﬁB11+ﬁ2312}na
{H}p = {Blo-i-ﬁBn-FﬁQBu}lza

{H}13 = {B1o+ﬁB11+ﬁ2312}13-

Moreover, since A = max;es{—[C~'Q];;}, the matrix

1 1 _
I+n(Ropnn—1I)=1I+ XC& 'Qu + ﬁRO,'leCZ 'Qo1 +

1

/\RO,n13Q31,

is a non-negative matrix. Thus, it follows that Hisa non-negative matrix
solution of the equation (20) with n = 1. Since R; is the non-negative
minimal solution of the equation (20) with n = 1, we then have that

I+n(Ronin—I) > Roin € nA(Ronn —I) > AMRoan—I), (38)
Ron12 2 Roj112 and Ro 13 > Ro,113-
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From the equations (36) and (38), we can see that for all n > 1,
nA(Roni1 —I) = MRo,111 —I), Roni2 = Ro,i12 and Ro 13 = Ro,113-

This shows that the matrices KO, \IIO and 90 do not depend on n. A similar

proof holds for the matrices K s \I/ and @ O
For later use, we summarize, in the following two theorems, some prop-

erties related to the various R-matrices and others derived from them.

Theorem 7

(a) Under the condition £&C11 — &,C21 < 0, which is the stability condi-
tion for the infinite buffer fluid model corresponding to the given finite
buffer model,

Sp(RO,n) <1l= Sp(RL,n) = sp(R*,n),

where sp(A) denotes the spectral radius of a matriz A. On the con-
trary, if £&4C11 — & Co1 > 0,

sp(Ron) =1, sp(Rrn) <1, sp(Rip) <1
(b) The matriz Ry, p2o is invertible and sp(Rr n22) = sp(Rin)-

Proof: Part (a) follows from the well-known properties of the R-matrices
for stable and unstable QBDs; see [8]. The invertibility of R, ;22 is a con-
sequence of the invertibility of Bo = %I , since from (20), we have

Ren = Ba(I = Bpt — Rp,nBuo) ™,
and the second assertion of (b) follows easily from (27). O

Theorem 8

(a) Under the condition 51011 — 051 < 0, the matriz Ko is invertible,
and the eigenvalues of Ko have negative real parts. Furthermore, K, is
then a singular matriz whose eigenvalues have non-positive real parts.

(b) Under the condition & C11 — §C1 > 0, K, is invertible, and the
eigenvalues of K, have negative real parts. But, Ko is then a singular
matriz whose eigenvalues have non-positive real parts.
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(¢) The matrices Ko, $o and ©¢ do not depend on the uniformization
parameter 8, and satisfy the following equations:

Ko = [Qu+%0Qaxn +60Qu]C",
0 Q12+ YoQ22 + O0Qs2 + KoVoCs (39)
0 = Qi3+ YoQ2s +OoQss.

Furthermore, the matrices Ko and ©¢ are determined by Uy. Fi-
nally, among the solutions of (39), the set we have defined has the
property that its Uo is the minimal nonnegative matriz for which (39)
are satisfied.

(d) The matrices R'*, \Tl* and (:)* do not depend on the uniformization
parameter 8, and satisfy the following equations,

K, = [Q2 +§’*Q12 +~(:)*Q32]Cil 3
0 Qo1 + V.Q11 + 0.Q31 + K. V.Cy (40)

0 = Qa3+ 7,Q13+0,Qss.
Furthermore, the matrices f(* and (:)* are determined by \T/*. Finally,
among the solutions of (40), the set we have defined has the prop-

erty that its U, is the minimal nonnegative matriz for which (40) are
satisfied.

(e) For all 0,,

« = 0.Co(T —Rp.,50)C5 0,
+ = 23R 21C; ", (41)
x = 2CQRZ,17LQQRL,7L23'

[O=T Nz

Proof: The asserted results in Parts (a) and (b) follow from Theorem 10 and
(28) of [2] by noting that the appropriate K-matrices here are indeed K (04)
of that paper and are related to the expected total time spent in a phase
during a busy period of the unrestricted fluid flow model. The equations in
Parts (c) and (d) were also derived in [2], Theorem 11, and the minimality of
the U matrices follows from the minimality of the corresponding R-matrices
defining them. We thus need to prove only (e). From the equation of Ry,
in (20) and Theorem 6(b), we can show as in Theorem 12 in [2] that

O (I — RZ}an) = C5'Qo2 +2Rp n021C7 ' Qup + 2R2,17L22R23Q32’
0 = Cy'Qa1+2Rpn21Cy Qo1 + QRZ}nQQRL,’nQEiQ?)].
+ 20, (I — R ,99) Rina1,
0 = Cy'Qos+ QRE}ZQQRL,TLQ:;Q% + 2R, 521 CT  Qus.
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If we pre-multiply all these equations by the matrix Cy and post-multiply by
Cy Lin the first equation, then we get the equations in (40) for the matrices
defined by the right hand sides in (41). Now, the minimality of Rf 21 in
both implies that these matrices are indeed K, ¥, and O,. O

5.3 Steady State Analysis of Y ()

By Theorem 3, we can obtain the steady state distribution of the finite fluid
flow from the steady state distributions of the process Y™ (). We first
characterize the latter steady state distributions. The key tool is Markov
renewal theory and the Key Renewal Theorem [4].

To this end, for any Borel measurable set G, let V,,(G) be a vector such
that its j-th element is

Va(G)); = lim PY™(t-) € G, J(t) =], j € 5.

Its limit as n — oo yields, by Theorem 3, the joint steady state distribution
of the fluid level and phase for the fluid process (Fjg, J); for this reason, we
shall denote that limit by Vg(:).

In the following, we shall denote by V,(s) the Laplace Stieltjes trans-
form (LST) of the matrix of distribution functions V,,((—oo,z]). We shall
demonstrate that these distributions have a limit Vg((—oc,z]) as n — oo.
(Our notation anticipates a later identification of the limit as the station-
ary distribution of the fluid model.) The distribution function Vi (-) will be
shown to have a mass at 0 and 5 and a density in the open interval (0, 3);
the resulting joint density function in (0, 8) will be denoted in the following
by vr(z), and its elements are indexed by states in S. Also, we consider a
partitioning of all key quantities according to the partitioning of the state
space. Thus, for example,

Vn() = (Vn,l(') Vn,2(')a Vn,3('))
Vr() = (Vri(:) Vra() Vra(-)), and
vr() = (vri() vr2() ves()

Similar partitionings hold for the LSTs also.
We also define the vectors

aon = (aO,nl Qa0 n2 aO,nS):(en'ﬂO,nl 70,n2 770,n3) (42)

arn = (aLm anne arn3) = (M Onone Mon3), (43)
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and
¢ =¢ACT. (44)

The following result characterizes the joint steady state distribution as
t — oo of (Y(™(¢), J(t)).

Theorem 9 Let Re(s) > 0 be sufficiently large so that (sI + K,)™! exists.

Then, the LST Vy(s) is given by its partitioned components defined below.
(a) For Si,

A~

Vi,1(s) (45)
= c*ao,nlel(sI — Ko)_lCl .
0 - n
X [I — (s +"0 (I + 0;101—11(001)) ] ol
n
+ (c*/2)aL,n202_1(sI + K*)71C2

X [1— ( bn (I—onlcz,—lf{*cQ))qn}

s+ 0,
~ —qn+1 ~
x (I - 9;102—1&02) "oy,

9” ~ dn
+ 0 aon (S—(I+9;10;1K001)) oot

+ 6,
+ c'a O " ct
L,nl 3+0n 1 -
(b) For So,
Vina(s) ) (46)
= c*()fo,nlcfl(sf — Ko)flcl .
O 115 i I
x |1 (s+0n (I+9n o K001)> ] T o
0 .
+ C*aL’HQH—nCQ_I(SI + K*)_ng
. 20,
0n -1 15 Qn+1
x| I— <S+9n (1-6:"c; K*Cz))
x (1-6,'05'R.0o) " ¢
c* _
+ EQO,HQCQ 1.
(c) For Ss,
Vin3(s) (47)

= c*ao,nlel(sI — Ro)_lCl
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~ qn ~
X <8+ (I+9;10;1K001)) ]C{lé)o

+ —aL,nQC YsI+ K,)7'Cy

x ( bn - (1-070R 02)>qn+1]

—qn+1

(I 0-'Cy Kc) c,'é,

+ ca0n3+caLn3( >

Proof: Consider the SMP {(Q,(cn), J,En), t7) : k > 0}. The fundamental mean
(see [4]) of this SMP can be computed from the stationary distribution of the
embedded Markov chain and the mean sojourn times. A direct calculation
would show that fundamental mean to be given by ¢*6,,, where ¢* was defined
by (44) and 6, = n). For the following, let us define p{p) .\ - (du) to be

the element in the Markov renewal kernel (see [4]) associated with this SMP
that can be interpreted as the elementary probability of a transition by the
SMP into the state (k,j) at u, given that it starts in (0,%) at time 0.

Conditioning on the last epoch of jump of the SMP u before time t, we
evaluate joint transform

Eple™* " O1(J(t) = 5), (48)

for j € S; as being given by

gn—1 ) k )
n —sci(t— —Opci(t—
Z / p(O,z, (3+0n> e scj(t—u) e cj(t—u)

+ / Py (1) LI )
0 (0,4);(gn,5) s+ 0n

Now, taking the limit as ¢ — oo in the above using the Key Renewal Theorem
(see [4]), we get the limit of that transform as

&6, rf[xnk]j (52) 16+ e+ s (22)” <cjen)1].

k=0

We can write the above in vector form as

R qn—1 k 1
Vai(s) = cOy anm( ) S+0n01_1
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+c o0 \"™ crt
C X _— .
ngnpl s+0, 1

Equation (45) is now obtained by simplifying the above using Theorem 5
and the following relations which are easy to derive using the definitions of
Ko and K,:

qn k
S Rbn (—22) = (5 + 6,07 (5T — Ro) Gy
— ) s+ 0,
9n qnt1 A1 gn+1
() riay].

qn k
0, _ L
Ry (—) = (54 6,)C5 H(sI + K,) 'Oy
— s+ 6,

9n qnt1 A =17 qn+1
x [I— (S+9n) (1-6.'c'R.co)" |

Coming to the set So, we get for j € Sy,

sy .
Eo,i) [eq YOIt = 5)] ,
n ot
= ) (du e‘ancj(t—U)( On )
kZ_O /0 PL0,0y (k) (4) S+ 0,
qn 0
— 0 Xnk)j n
s (g,

This, after some minor simplifications, gives us equation (46).
Finally, for j € S3, we have

k
) (2¢j0,)"" as t — oo,

t—00 s+ 0,

dn k
. —s n . * 9n —
i Biogle~* O10) = 3)] = 00 Y beutly (1) 0™
k=0

and this yields equation (47) after some minor simplifications. O.

Remark 4 Ezcept possibly for a finite number of singularities (which should
also be removable since the LST is analytic), the above formulae determine
the LST Vn() in the entire right half plane. These singularities occur at
eigenvalues of the matriz —K, and are the ones one would encounter if one
were to take a spectral approach to the analysis.
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6 Steady State Fluid Flow

The final steps in our analysis consist of taking the limit as n — oo in the
expressions given in Theorem 9 and demonstrating that the limits indeed
yield the stationary distribution of the finite buffer fluid flow. We need
several preliminary results.

We will see later that in the expressions for the steady state distribution
of the given finite fluid flow, we have the appearance of a certain inverse.
Its existence is established in the following lemma.

Lemma 1 Assume that £&C11 # &C51 so that at least one of the two
infinite buffer fluid models corresponding to the given finite flow model or
its rate reversal is stable. Then the matriz eX08 T o XA, which is a square
matriz of order |Si| has spectral radius less than unity. Furthermore, the
matric 5 ~

[T — efoPg, el g, ] 1
erists and is nonnegative.

Proof: Let A; = diag(m&) and Ay = d’iag(m&) be diagonal

matrices of orders | S| and | S| respectively. The matrices
U= AT (Kp)' Ay and Wy = AN (Tp) Ay,

where ' denotes transpose, are precisely the U-matrix and W-matrix intro-
duced in [11] through a time reversal argument on the infinite buffer fluid
flow model associated with the given fluid model. From the interpretations
there, U; is the generator of a Markov chain and [¢V1];; gives the probabil-
ity that a busy period of that time reversed version ends in phase j given
that it starts in state ((,4), and in addition we have shown that W is row
sub-stochastic. Furthermore, e”'# is strictly substochastic if the fluid model
is stable (since that makes the reversed version unstable), and stochastic
otherwise. Now, similar comments hold for the matrices

U2 = Az_l(f{*)’Az and W2 = Al_l(i/*),Ag

which relate to the rate reversed fluid flow. Now, if the infinite buffer fluid
flow corresponding to the given model is stable, then its rate reversed version
is unstable and vice versa. Thus, one of the matrices e”'? or eV?# is strictly
substochastic. These entail that the matrix

W26U2ﬁW16U1ﬂW1 — Al_l[ef(Oﬁ@O ef(*ﬂ@*]/Al

is strictly substochastic. Hence the proof is complete. O
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Remark 5 From now on, we will assume the technical condition

§1C11 # £051; (49)

see Remark 6.

The next result we need concerns the quantities defined below:

ao = (@01 ao2 ap3) = lim (@om aone @oms3)
ar, = (a1 arn aLs)ani_g}O(aL,m Qann2 QLn3)-

Concerning these, we prove the following:

Lemma 2 Assume &C11 # &3C21. Then,
(a) the limit vectors ap and «ay exist,
(b) and the vectors ap and ay are given by

ao1 = TG (I - 61%0[@061?*6@*)71 (—Ko)C1

aps = 20*_15202 — 20*_161 (I — ekogkiloef(*ﬂ\i’*)_l
X (\T/O - ekOﬂ@oek"ﬁ) Co

o3 = c*_1£3 — c*_lfl (I — ekogkioek*ﬁki/*)_l (50)
x (60 — eKoPToek-76,)

ap] = c*flél (I — ek"ﬂ\iloef(*ﬁ‘i'*)il ekOﬂ(I — \ilo‘i'*)Cl

aro = 20*_161 (I — ek(’ﬁ\iloek*ﬁ‘if*) - ekOﬂi’O(_R*)CQ

ars = c*_lfl (I - ek"ﬂ\i/oef(*ﬂ";"*)_l ek"ﬂ((:)o — ‘i’o(:)*)

Proof: The involved proof of this result is given in Section 8. |

Armed with these preliminaries, we are now ready to evaluate the limit
as n — oo of the steady state distributions of (Y("),J). Immediately after
that, we will prove Theorem 3 and identify the resulting limit as the sta-
tionary distribution of the finite buffer fluid flow of interest. Although the
path to these formulae has been pretty long and grim, the final results are
quite appealing in that we only need the K, ¥, © matrices (for exactly one
uniformized version), and these in turn are obtained from the R-matrices
through which they were defined and for which we have in the literature
extremely efficient algorithms.
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Theorem 10 Assume £&1C11 # £2Co1. Then
(a) For S1 and 0 < xz < 3, the joint density

- ~ . N—1 ~ -
vri(z) = & (I— GKOﬂlPoeK*ﬂ‘P*) (—Ko)efor (51)
N oz ~
& (I - eKoﬁ\IfoeK*ﬂ\p*> eKoBo(~K,)ek (60§, .
Furthermore, the masses at 0 and B for the set S1 are respectively given by

Vea({0) = 0, (52)
Va8 = & (I-FoPlocRrh.) Rl — o). (53)

(b) For the set Sy and 0 < z < 3, we have,
vrale) = & (1-eRKoPlipeR0,) " (~Ko)eFori (54)
+ &1 (I — ekOﬁ‘iloek*ﬂ@*>_l eko'g\flo(—ﬁ'*)ei(*(ﬂ_w).
Furthermore,
Via({0}) = &—-& (I — GKOﬂ\ifoef{*ﬂ\i!*)_l
x (To — Kol Foek-9), (55)
Vea({8}) = 0. (56)
(c) For S3 and 0 < z < (3,
vis(z) = & (I — ekogﬁloek*ﬂﬁloil (—f(o)ei(m”(:)o (57)
+& (1-R0PTpeR0T,)  eRodlp(—K. )R -P8,,
and
Viesl(0) = & & (I-FoPioe™P0,) " (B0 - eXolipet6.,),
Vis((B)) = & (1-eK0PToeR0,) " Fol(@ — 106.).  (59)

Proof: (a). Taking the limit as n — oo in the equation (45) and using
Lemma 3 in Section 8, we get

V() = Jim Vin,1(s)

= ao1Cy (T — Ko)T'Cy [T — e7PefC Foth| gt
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* ~ —_ fad ~
+ %QLQCQ_I(SI + K*)_102 [I . e—ﬁse—ﬂcz 1K*Cg:| eﬂC2 IK*0202_1\I}*
+ c*e‘ﬂsaLlel.

If we denote a cdf concentrated at y by dy(-), then we can see that Vp,l is
the Laplace-Stieltjes function of

min(z,/3) - c* . -
C*aLlCl_lég(:c) +/O [c*amC’l_leKoy + EaLQCgleK*(ﬁ_y)‘I'*] dy.
The result (a) now follows by using the expressions in Part (b) of Lemma

For Sy and S3, we can also derive the following equations by taking the
limits as n — oo in the expressions in Theorem 9:

Via(s) = Jim Vina(s)

- %aO?CZ_l + C*a0101_1(3I - KO)_ICH [I — e_ﬂseﬁcl_lf(ocl] 01—1\110

*

+ %OéLQC{l(SI + R*)—lcz [I . e_ﬂse_ﬁcz_lk*c2] eﬂcz_lf(*CQCgl.
and

Vrs(s) = lim Vi (s)
n—0o0
= c'aps +ctarze ™

+ c*amel(sI — f(o)*lCl [I — e*ﬁseﬂcflf{ocl] Cfl(z)o
+

%am(};l(sI + f(*)_ng [I - e_ﬁse_ﬂcglk*cz] eﬁcglf(*CQCQ_l(:)*.

The above are respectively the Laplace-Stieltjes transforms of

c* 1 min(z,8) . L1 _Roys c* R (1)
50(0202 do(z) + cfap1Cy e %Yo + EQLQCQ et dy,
0

and
c*apsdo(x) + C*aL355(l‘)
min(z,8) . B * . N
/ [c*amClleKoy@o + %aLQC21€K*(ﬂ_y)®*:| dy.
0
From these, (b) and (c) of the theorem follow. O
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Remark 6 The case £1C11 = £2Co1, which is not covered by the above can
be handled through the consideration of a generalized inverse of the matriz
I — eKoBY KB, ; we omit the details.

We can now prove the following result which is essentially a restatement
of Theorem 3.

Theorem 11 The expressions obtained in Theorem 10 yield the joint steady
state distribution of the process (F(t), J(t)) as t — oc.

Proof: The distribution functions corresponding to the density in The-
orem 10 are given by

o o N—=1 =~
Vii(z) = &-& (I—eKoﬂxIJoeK*ﬂxp*) Koz (59)

~ - ~ - -1 ~ - ~ -
& (I - eKoﬁ\I;OeK*ﬁ\I/*) KoB k- (B-0)
~ ~ ~ ~ -1 ~ -
Vig(z) = &-—6& (I _ eKoﬂxpoeK*ﬂ\If*) Koz, (60)

o . N =1 o~ .
& (I - eKOﬁ\IJOeK*ﬁ\IJ*) KB ks (B=2),

s I
Ves(z) = &—& (I — eKOﬁ\IIOeK*ﬂ\II*) eforg, (61)
L N=1 o~ L . N
+& (I - eKoﬂfooeK*ﬁxp*) KB ok (8-0)f,
Let D = diag(C1,—C4,0), and let

Vi (2)Q = (Ui(z) Us(z) Us(x))

Ui(z) = VEi(z)Qi1 + Vra(2)Q21 VE3(z)Qs1
= &1Q11 +&Q01 +&3Q31

B T . -
—& (I — eKOﬂ\I/oeK*ﬂ\I/*) X0 (Q11 + ToQa1 + O0Qs1)

o N=-1 & - - ~
+& (I — eKOﬂ\IJOeK*ﬂ\IJ*) X002 (5,Q11 + Qa1 + 6.Q3).
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Since £Q = 0, it follows from Theorem 8(a, b) and Theorem 10 that
S . = oN-1 =
Ui(z) = & (I . eKoﬂ\poeK*ﬂ\Ix*) Ko g0
~ - ~ - -1 ~ - ~ -
Iy (I - eKoﬂxpoeK*ﬂxIJ*) eKoB ok (6-2) (LK, 5,01)
= vF,l(w)Cl.
Similarly,

Us(z) = Vpi(2)Qi2 + Via(2)Q22Vrs(z)Qa2
= §1Q12 +&Q20 +&30Q32

L N —1 - - ~
—&1 (I — eKOﬂ\IloeK*ﬂ\I/*) 6KO$(Q12 + ¥0Q22 + 00Q32)

o N=1 =~ o - -
+& (I - eKOﬂ\IloeK*ﬁ\I!*) 0BG e 0= (F,Q15 + Q22 + 6,Q32)

~ - ~ - -1 - ~ o~
— g (I—eKoﬂxpoeK*ﬂxp*) Ko K0T 00y
=1 = N
+& (I - eKoﬂxIJOeK*ﬂxI/*) Kob Gy K60, 0,

= —VF’2 (37) CQ

Us(z) = Vpi(2)Qi3 + Vra(2)Q23Vr3(z)Qas
= &§1Q12 +&Q923 + 3032

Bt - N
—& (I — eKOﬂ\IJOeK*ﬂ\I/*) eX0%(Q13 + Qa3 + O0Q33)

_ N1 o~ _ - .
+&1 (I — eKOﬂ\IJOeK*ﬂ\I/*) eKOﬁ\I/oeK*(ﬁ_z)(\I’*Qw + Q23 + 0.Q33)

= 0.
Therefore, we have

vi(z)D = %Vp(m)D — Vi(@)Q, forz e (0,5). (62)
By considering the state probabilities at times ¢ and ¢t + At and letting
At — 0, we can get a partial differential equation for the state probabilities
of the fluid model, from which after letting ¢ — oo, a set of linear dif-
ferential equations for the stationary probabilities can be obtained. These
routine calculations will reveal that the equations given in (62) are indeed
the differential equations governing the stationary distribution of the fluid
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a). Traffic intensity(rho) = 0.8. From below, buffer size = 1, 3, 5, infinite.
T T T T T

o o o o
n w £ [
T T
| | |

P( Fluid > x )

o
T
I

0 I I L !
0 1 2 3 4 5 6

(b). Traffic intensity(rho) = 1.25. From left, buffer size = 5, 20, 100.
1 T T T T T T T T T

o o o
S [} [e ]
T T T
| | |

P( Fluid > x )

o
n
T
1

0 10 20 30 40 50 60 70 80 90 100 110

Figure 3: Complementary steady state probabilities of finite fluid flows for
m =>5 and p=0.8, 1.25.

flow model under consideration. In the course of the proof Lemma 2, we
have shown that the boundary conditions at 0 and at (8 are also satisfied
by the solution given in Theorem 10. Since by the general results on linear
differential equations [5], the solution satisfying the boundary condition(s)
is also unique, the proof of Theorem 11 is complete. O

7 Numerical Examples

We consider a fluid flow system with m statistically independent and iden-
tical on-off input sources, a channel with constant output rate J, and finite
buffer of size of 8. For each source, we assume that the on periods and the
off periods form an alternating renewal process, and that their durations
are exponentially distributed with mean p~! and v~ !, respectively. When
a source is in the on-state, it is assumed to generate fluid at rate 9. In
addition, we shall assume that whenever all sources become idle, the system
stops serving until at least one source becomes busy at which point of time
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it resumes with the accumulated work, if any, intact. Note that if the server
stops, then there is no change of fluid levels until the time a source comes

on again.
T 8=25 B=10 B8=20 B =00
0 || 0.4450797021 | 0.4452689649 | 0.4452693145 | 0.4452693145
0.50 || 0.1986696531 | 0.1989429573 | 0.1989434621 | 0.1989434621
1.00 || 0.1035983645 | 0.1039040940 | 0.1039046588 | 0.1039046588
1.50 || 0.0549253342 | 0.0552476646 | 0.0552482600 | 0.0552482600
2.00 || 0.0290996771 | 0.0294308169 | 0.0294314286 | 0.0294314286
2.50 || 0.0153450321 | 0.0156808702 | 0.0156814905 | 0.0156814905
3.00 [ 0.0080164868 | 0.0083548645 | 0.0083554895 | 0.0083554895
3.50 || 0.0041114574 | 0.0044513949 | 0.0044520223 | 0.0044520223
4.00 || 0.0020295850 | 0.0023715251 | 0.0023721539 | 0.0023721539
4.50 || 0.0009136638 | 0.0012633162 | 0.0012639456 | 0.0012639456
5.00 0.0006728335 | 0.0006734633 | 0.0006734633
| P[Fs =p] || 0.0001958552 | 0.0000003611 | 0.0000000000 | N/A
Table 1: Tables of P[Fjz > x] for m =5 and p = 0.8.

z B=5 B=20 B =100

0 || 0.9997778325 | 1.0000000000 | 1.0000000000

1 || 0.9981418688 | 1.0000000000 | 1.0000000000

2 || 0.9918008864 | 1.0000000000 | 1.0000000000

3 || 0.9663936583 | 1.0000000000 | 1.0000000000

4 | 0.8645337214 | 0.9999999999 | 1.0000000000

5 0.9999999995 | 1.0000000000

10 0.9999994930 | 1.0000000000

18 0.9661584781 | 1.0000000000

19 0.8643234002 | 1.0000000000

20 1.0000000000

90 0.9999994930

98 0.9661584781

99 0.8643234002

P[Fs = ] || 0.3432839851 | 0.3432004768 | 0.3432004768

Table 2: Tables of P[F3 > z] for m =5 and p = 1.25.
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Let J(t) be the number of sources in the state on at time ¢. Then, the
phase process J = {J(t),t > 0} becomes a Markov process with the state
space S = {0,--- ,m} and the infinitesimal generator @} given by

Qliiy1 = (m—9y, for0<i<m-—1,
[Q]’i,’i*l = Zﬂ‘a for 1 << m,
with the diagonal elements defined such that row sums of @) are zero.
If we think of a fluid process Fg = {Fp(t),t > 0} modulated by J, then
the net rate of change in the fluid level in phase ¢ > 1 is 4} — §, and for

i > 1, ¢; = |9 — d|. The net rate is zero when 7 = 0. We can also see that
the traffic intensity p of the system can be represented by

miv

5(p+v) [1— (1+5)_m].

p= (63)

For the numerical examples, we fixed the parameters as m =5, 9 = y =
v = 1 and consider several values of the buffer size 8. Each figure in Figure
3 shows the complementary steady state probabilities of the finite flow, i.e.
P[Fg > z|, for 0 < z < 8, for p = 0.8 and 1.25 respectively. Also, we
provide tables of some selected probability values.

8 Proof of Lemma 2

We begin with some quick lemmas.

Lemma 3
. gn dn _ﬂs
nli)nolo (3+9n> =e 7 (64)
Tim RY,., = CteRofCr, and lim Rp%, = Cyle K80, (65)

Proof: Note that 6, = ¢,/8 and ¢, — o0 as n — oo. Thus, the proofs
can be directly obtain~ed by the relations Rpn11 = I+ 0,;101‘11{0(]1 and
R} 00 =1—0,'C5 ' K.Co. m

Lemma 4 Let H be a |Si| % |Se| matriz such that fori € S1 and j € So, its
(1,7)-th element H(i,j) denotes the probability that a busy period of the finite
buffer fluid flow model ends in phase j given that it starts in phase i. Then
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under the assumption that the phase process defined by @ is irreducible, H
s a strictly positive matriz, and furthermore the matrizc

M= Py + PyrH Pos
P3y + P31H  P3

18 irreducible.

Proof: Fix j € S, and assume that the busy period starts in phase i for
some ¢ € S1. Since the CTMC of phases is irreducible, there is a time ¢
at which the phase makes a first entrance into S5, and that epoch of first
entrance is in the busy period. Consider the case where the phase at this
first entrance epoch is some k € Sy, but k # j. Assume further that the fluid
level at that epoch is > 0. Since the phase process is irreducible, there is
a positive probability of entering j within a time interval z/d (note e?* > 0
for all ¢ > 0), where d = maz,¢s, ¢r, and the definition of d entails that an
entrance into j is made during the busy period. Thus, j is visited in the busy
period with positive probability. Now, there is a positive probability that
the phase remains at j continuously to the end of the busy period. Thus,
there is a positive probability that the busy period will end in j. That is,
H(i,j) > 0 for alli € Sy, j € So. That proves the first statement.
Since H >> 0, there exists an € > 0 such that

H > ¢e(I — P1y) Py = €N,

where N = (I — P;1) ! Pio; the inverse here exists due to the irreducibility
of P which is a consequence of the irreducibility of Q). Now, we have

Pyy +e€PyyN Py
M .
> ( Py +ePs1N Py

The nonnegative matrix on the right of this inequality is irreducible since

the matrix
Py + PoyN Po3
Py + P3N P33 )’

being the embedded Markov chain on S; U S3 in the uniformized phase
process, is irreducible. That completes the proof of the lemma. O

Corollary 1 The CTMC with generator

A < Q22 + Qoa1H Qo3 )
Q32 +Q31H Q33

18 irreducible.
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Proof The result follows from the fact that uniformization by A of this
CTMC yields a discrete time Markov chain with transition matrix M. O

Proof of Lemma 2

(a): Consider the CTMCs of phases on the set Sy U S3 obtained by restrict-
ing (Y(™(t),J(t)) and (F(t), J(t)) on the set where their first coordinates
are zero. (These processes are obtained by excising out from the respec-
tive processes the intervals of time during which their first coordinates are
non-zero and “gluing” the remaining pieces together to get a right contin-
uous process.) Let the infinitesimal generators of these processes be given
respectively by A, and A. By Theorem 2, we have

lzmn—)wP[Y(n) (t) =0, J(t) = .7] = P[F(t) =0, J(t) = .7]’ for all t € [0,00)

This entails that e’ — e4t as n — oo for all t. Therefore, we must have
A, - A as n — oo. Now, A is the matrix in Corollary 1 and since A is
irreducible by that Corollary, we can assert the convergence of the stationary
distributions of these Markov chains, and claim that for 5 € S5 U Ss,

LT —so00 Jim PIY™(4) = 0,J(t) = j] = Jlim PF(t) = 0,J(t) = j]-

We also note that the above equality holds also for j € S; since (as can
be easily verified by direct computations) all the limits there as t — oo are
zero. Now,

PIY ™ (00) =0, J(c0) = j] = lim [Vi(s)];.

§—00
Evaluating the right side of the above from the expressions in Theorem 9,
we get
N c* 1
slggo[Vn,g(s)] = an’nng and

Jim [V 5(5)] = "0,

Therefore, the vectors aps and a3 exist, and

[(¢"/2)a02C5]; = P[F(o0) =0,J(c0) = j], j€S
[c'aos]; = P[F(o0) =0,J(c0) =], j€Ss. (66)

Now, we will show that the vectors ap; and a9 exist. If we define
To = O 000y, 00 = O 100, ¥, = C;10,C,0, = C; 10,  (67)

then, these sets of matrices are none other than the matrices ¥(0+) and
©(0+) introduced in [11] and [2]. Moreover, under the assumption &,C11 #
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¢2C51, one of the matrices Yo and ¥, becomes substochastic and the other
becomes a stochastic matrix and this yields that the matrices I|s, — ¥, Vo
and I|5,| — ¥o U, are both invertible. Now if we multiply 6;, on the equation
(23), then we can get

1 _
aonl = an,ng 'Qo1 + @0,n3Q31 (68)
qn—1 1 1 -1 1
+aL,n2RL n22 -0, + —RL,n22CQ Q21 + —RL,n22®*Q31
’ 2 20, 0,
and
1 _
_EQO,nZCQ HQuTo + Qo) — @0m3(Q31¥0 + Q32) (69)
w11 1 »
= arm2R 9 5~ 5‘1’*‘1’0 + ﬁRL,nng (Q21%0 + Q22)
n
1
+ H—RL,n229*(Q31\I’O +Q32)] -
n

If we let n — oo, then we can obtain from Lemma 3 and the equations (31),
(32) and Theorem 6 that

1, . 1K
5 (lim ap,0)Cy e P CHlT — 0, Wo]

1
= —— 0205 Q210 + Qa2) — @03(Q31¥0 + Q32).

2
In the above, the existence of the inverse matrix (I — ¥, ¥o) ! implies the
existence of azy which is the limit of oy, ;2. Now, the existence of ap; can
be directly derived from the equation (68).

The proof of the existence of «y; and «r3 is similar and is obtained
by considering the CTMC of phases obtained by restricting the queueing
process to the set Q™ (t) = ¢, which converge to the CTMC of phases
obtained by restricting to F'(t) = 3, and we omit the details. In addition, it
can be seen that

[C*Oémcl_l]j = P[F(o0) = B, J(00) = j]
[C*O[L3]j = P[F(OO) = ,3, J(OO) = ]], ] € 53. (70)

(b): If we multiply by 6,, both sides of the equation (23) and take limits
with respect to n, then we can get

0 = —ao1+20eCy Qa1 + a03Q31 — 27 aCy ek A0, 0y
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= @010 002 + 27 020y ' Qoo + a03Q32 + 2 L2 Cy e 0y
= 2 'apeCy ' Qo3 + a03Q33 (71)
060101_161(0?01 + o107 Q1 4+ 27 o C U, C + ar3Qs:
—a010; 1P T o0y + ap1Cr Qo — 27 ars + ar3Qse

= an1Cy Qs + ar3Qss.

co o oo
|

Besides, from the equation ¢ = Y {" ;X in Theorem 5 and (22), we can
also get

gn—1
m—i—1
1 = 7Moml Z Ro n1l T NLn2 Z RqL nQZQ R no1 + 1Lm1
k=0 k=0
gn—1
C? = T7o,n1 Z RO nllRO ni2 + T0,n2 + TIL,n2 Z RL n22
k=0 k=0
qn—1
G = 7omi Z R 11 Rom13 + N0m3 + MLm2 Z R%nngg "Rz + Ln3-
k=0 k=0

At this time, assume that &C11 < £C51 so that — ~61 exists. Now, if
we define Lg = lim, o 6, 1 q" RLI;QQ and take the limit of the above
equation w.r.t n, then we can get

G = a01Cf1(—ko)_l(I — ei(Oﬂ)Cl + 2_1aL2LﬂC;1€k*ﬁ\il*C1 + a1

(o = apz+ 201_1(—K0)71(I — eKOﬁ)\T/ng + aLQLﬁCQ_IQK*ﬂCQ (72)
(3 = aopz+ amel(—R'o)_l(I — ekOﬁ)(:)o + 2_1aL2Lﬂ02_16k*ﬁé* + args,
and Lg satisfies T — C{lk*Cng = C{le_f(*ﬂCg.

Piecing together the equations (71), (72), (39), (40) and the fact that ¢
is the stationary probability vector of C~'A~1Q (see (b) in Theorem 5), the
following equations can be derived by some laborious elimination techniques.

N
aor = GO (1-eRoPUoeRP0,)  (—Ko)Cy
ap2 = (2— 2C101_1 (I — ekOﬂ\floef{*ﬁ\f/*)_
X (ﬁlo — 6I~(Oﬂ\iloef(*ﬂ) Cy
a0y = G =GO (T—eFolToeR-Pa, )
X ((:)0 — ef(Oﬂ\iloek*ﬂC:)*)
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S B S

anl = Clcl_l (I — eKOﬂ\I’OCK*’H\I’*) eKOﬁ(I - \IJO\IJ*)CI (73)
N1 A .

are = 2607! (I—eKoﬁ\poeK*ﬂxy*) KoB i, (—K,)Cs
N . ~

oy = Clel (I — eKOﬂ\IJOeK*ﬂ\II*) eKOﬁ(@o —Up0,)

The equations in (50) can be easily derived using ( = (AC/(EACT) =
c¢*71EAC. (See Theorem 5.)

In a similar fashion, in the case £1C11 > £ C51, we exploit the fact that
K, is invertible, define the matrix Lg = lim,_, 0;1 Zzlo RI&”H, and pro-
ceed exactly in an analogous manner to get the equations in (64), and the
rest of the arguments follow. |
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