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Abstract

An efficient quadratically convergent algorithm has been derived
earlier by Ahn & Ramaswami for computing the busy period distribu-
tion of the canonical fluid flow model. In this paper, we derive formulae
for a variety of passage time distributions in the canonical fluid flow
model in terms of its busy period distribution and that of its reflection
about the time axis. These include several passage time distributions
with taboo not only of the fluid level 0 but also of a set [a, 00) of lev-
els. These are fundamental to the analysis of a large set of complex
applied probability models, and their use is illustrated in the context
of a general insurance risk model with Markovian arrival of claims and
phase type distributed claim sizes, a context in which we have also
introduced some new ideas that make the analysis very transparent.

Key words : Insurance Risk, Fluid-flow, Transient Results, matrix-
geometric method.

1 Introduction

In this paper, we consider the canonical Markov modulated fluid flow model
and derive a number of passage time distributions for it exploiting fully the
previously obtained results of Ramaswami [16] and Ahn & Ramaswami [2],
[3], [4]- (Our other related papers are [1], [5].) All passage time distributions
considered here are characterized explicitly in terms of a matrix ¥U(s) giving
the Laplace-Stieltjes transforms of the first return time to fluid level 0 in each
of two fluid flows that are reflections of each other, given that an upward
trajectory of the concerned flow starts at level 0 at the time origin. (A
matrix arises due to the consideration of the environmental states at the
beginning and at the end of the interval under consideration.) In [3], we



have developed a powerful algorithm for computing ¥(s) which is similar
to the Latouche-Ramaswami algorithm for QBDs [11] and has quadratic
convergence. We have demonstrated in [3] its theoretical properties as well
as computational advantages. For completeness, that algorithm is presented
in Appendix 1 of this paper.

The passage time distributions for the fluid model derived here, par-
ticularly the passage times involving taboo positive levels (see Section 2),
are fundamental quantities that can be used in a straightforward manner to
analyze many complex applied probability models that may be modeled as
fluid flows. While we exemplify this here (only) in the context of a simple
insurance risk model, other examples in which these can be used are:

(i) Enhancements of the insurance risk model to such as those involv-
ing: (a) a cap on the reserve such that when the reserve attains the cap,
all premiums have to be paid out as dividends until the reserve drops below
the cap; (b) a threshold at which the reserve is replenished by a (possibly
random) amount; (c) multiple thresholds and dividend payouts, and/or ad-
dition to reserves, based on the level of reserve quantized with respect to
these thresholds.

(ii) Fluid queues with or without a finite fluid buffer operating under
various threshold policies.

(iii) Financial risk models, where a capital amount is lent to borrowers,
grows through interest receipts and suffers randomly occurring defaults.

(iv) Various continuous state space inventory models.

(v) General state dependent fluid flow models where dependency on the
fluid level is quantized in terms of a discrete number of fluid levels. (The
reader may wish to refer to [17], [8] for a fairly exhaustive survey on fluid
flow models and their application to queues, risk models, etc.)

Note that many of the fluid models cited above involving upper bound-
aries and thresholds have hitherto resisted detailed time dependent analysis
for lack of tractable formulae characterizing passage times with a taboo not
only of fluid level 0 but also of some positive levels [a,00). We have charac-
terized such taboo passage times here, and that should make the analysis of
these models now eminently possible. In that sense, this paper does indeed
set the stage for the examination of a large variety of highly complex ap-
plied probability models using a unified approach. Given the success of the
matrix-geometric methods of M.F. Neuts [14] in the context of discrete state
space processes, this should not be surprising, given that our own starting
point [16] (see also [4]) may be viewed as an extension of matrix-geometric
type arguments for a continuous state space process.

The example we have used here is an insurance risk process subject



to a Markovian arrival process of claims and phase type claim sizes that
allows for incorporation of various types of dependencies, such as among
inter-claim intervals, among claim sizes, dependency of the claim size on the
state of the environmental process generating claims, etc. We also construct
a highly convenient fluid flow model closely associated with it. The fluid
flow formulation we adopt is novel and is demonstrated to be such that
translation of time dependent results from the fluid low model to those for
the insurance risk model is exceptionally straightforward.

1.1 Fluid Flow Models

The (unrestricted) fluid flow model under consideration
(7, 7) ={(F®), @) : t >0},

where F'(t) is the level of a fluid buffer and J(¢) the state of an environmental
process is specified by the following conditions:

(a) J = {J(t),t > 0} is a continuous time Markov chain with state
space S = 51U S92 U S5 and infinitesimal generator ) that, when partitioned
according to the sets S;, has the form

Qu Q12 Q3
Q= Qau Qxn Q3 |. (1)
Q31 Q32 Q33

Specifically, the submatrix ();; contains the elements Q(r, s) of the infinites-
imal generator with r € S; and s € S;. [Throughout, for any matrix A, we
denote its (7, s)-th element as A(r,s) or as [A],s and reserve the notation
A;j to denote the submatrix of A formed by its elements A(r, s) with r € S;
and s € S;.]

(b) The fluid level process {F(t) : t > 0} is such that: during sojourn of
J in state 7 € S1, the fluid level increases at rate c(i) > 0; during sojourn
of J in state i € Sy, the fluid level decreases at (absolute) rate c(i) > 0;
during sojourn of 7 in S3, the fluid level does not change. Note specifically
that given J(t) = i € Sy, the instantaneous rate of change of the fluid at
time ¢ is —c(z) < 0.

Denote by ¢ the vector with elements c(i), i € S; U Sy, and note that
following our convention the subvector ¢; = (c¢(j) : j € S;), i = 1,2. For
later purposes, we shall refer to the above canonical model as F(Q, ¢1, —c2).-

Reflection: Associated closely with the fluid flow F = F(Q, c1,—c2) is the
fluid flow F™ = F(Q, —c1, c2) obtained by reversing the roles of the up and



down environment states. The paths of each of these processes starting at
fluid level z at time 0 is obtained by reflecting about a line parallel to the
time axis drawn at height z of a corresponding path of the other, and that
explains the choice of our notation. As we shall see later, for computing cer-
tain first passage times of interest, it becomes convenient to consider both
these processes simultaneously.

Restricted Fluid Flow: Associated with the fluid flow model F(ci, —c2)
is also the restricted fluid flow model with boundary at fluid level 0, say
FT = F*(Q,c1,—cz) which is such that the fluid level is allowed to decrease
only when it is positive. Thus, when J(t) =i € Sy, the fluid level decreases
at (absolute) rate c(i) as long as it remains positive but otherwise remains
constant at level zero until an upward change can occur by a transition of the
environment into the set Si. The restricted fluid flow model corresponding
to F " shall be denoted in what follows by F"*.

1.2 Insurance Risk Process

The canonical insurance risk process we consider is the process of risk reserve
of an insurance company that starts with a reserve u > 0, collects premiums
at a constant rate v > 0 and pays out claims as they occur until it goes
broke. Typical quantities of interest with respect to the insurance reserve
process are the probability of ruin and the joint distribution of the various
combinations of the time to ruin, the surplus immediately prior to ruin, the
deficit immediately after ruin, and the size of the claim that causes ruin.
Their determination is important in assessing required risk reserves, replen-
ishments thereof, re-insurance levels, etc. These have been the subject of
several past studies using specialized methods; see [9] and references therein;
for a detailed set of references, the reader may also refer to Asmussen [8].
One of our goals here is to characterize all these in terms of a couple of
fundamental quantities for a closely associated fluid model for which highly
efficient algorithms exist.

To enable analysis using fluid flow models, we assume that the claims
process is a general Markovian point process with claim sizes distributed
as phase type distributions whose parameters may or may not depend on
the environmental Markov process. Specifically, it is assumed that an un-
derlying continuous time Markov chain (CTMC) on a finite state space
E = {1,--- ,m} evolves such that the instantaneous rate of transition of
the environment from state ¢ to state j # 7 in F without an accompanying
claim is given by the quantity Dg(%,7) > 0, and the instantaneous rate of



transition from ¢ to j (possibly with j = %) in E with a claim is given by
D;(i,7) > 0; the diagonal elements of Dy are assumed to be negative and
such that the row sums of the matrix Dy + D; are all zero. The pair of ma-
trices Dy and D; thus define a general Markovian claim arrival process. A
claim that occurs at an epoch of transition from state ¢ to j7 will be assumed
to have a phase type distribution [14], [12] with representation (aj;, T;;).

The general formulation above allows for unification of many special
cases of claim processes modeled as Markov additive processes with phase
type jumps. Our formulation allows for correlation among interarrival times
of jumps as well as the possibility of the jump sizes depending on the envi-
ronmental Markov chain. Some simple examples are given below for illus-
tration:

Example 1: Exponentially distributed claim sizes occurring at Poisson
epochs: Here Dy = —)\ and Di = A, where A is the rate of the Poisson
process of claim epochs and a = 1,7 = —p where p ' is the average claim
size.

Example 2: Phase type distributed claim sizes occurring at epochs of a
phase type renewal process: In this model, the interarrival times of claims
are assumed to have a continuous phase type distribution (see [14], [12]) with
parameter (3, M) where (3 is a probability vector of size m, and M is an
infinitesimal generator of a CTMC with m states. For this model, Dy = M
and D1 = —M 14, where throughout 1 represents a column vector of 1’s of
appropriate dimension. The case of independent claim sizes corresponds to
the case where o;; and Tj; do not depend on ¢, 5, while allowing these to
vary according to i gives the ability to model dependency of the claim size
on the state of the environmental CTMC just prior to each claim arrival
epoch, while allowing them to vary according to j gives the ability to model
dependence on the environmental CTMC just after the claim arrival; of
course, both dependencies are incorporated by letting these parameters vary
both over 7 and j simultaneously.

The general scenario described corresponds to the case where the claim
arrival instants occur according to a MAP (Markovian arrival process) which
is a special case of a process defined by Neuts [13] (see also [12]), and the
claim sizes may be allowed to depend on the states of the MAP prior to
and posterior to claim epochs as in Example 2 or is simply independent of
either or both of them. An example where dependencies in the sizes of suc-
cessive claims on the states of the MAP may become necessary is one where
the claim process arises as the superposition of claims arising from different
types of catastrophes, where each catastrophe has its own pattern of (possi-
bly correlated) claim interarrival times and claim sizes generated by it. It is



well-known [6] that MAPs are dense in the class of all point processes and
that phase type distributions are dense in the class of all distributions on
[0,00). Thus, our model class is indeed very general and allows for great
flexibility in modeling.

Insurance Process modeled as a Fluid Flow

The key idea here is to pretend as though each claim of size z arrives
continuously over (an unseen) time interval whose length is =/ at rate ~y
per unit time. Thus, the effect of a claim distributed as PH (a, T) is treated
as though a downward journey is made by the risk reserve process over a
time interval of length distributed as PH(a,~yT) during which the reserve
(as long as it exists) is depleted at rate . That gives rise to a fluid model
(with S3 being empty) where upward rates are all v and downward rates
are all —y. The paths of the risk process before ruin can be obtained from
segments of the fluid process before the fluid level becomes empty, and this
is achieved by replacing downward linear paths in the fluid flow model by
downward jumps of appropriate sizes. Thus, our artifice allows us to embed
the risk process into a fluid flow model, and by incising out times spent in
the downward states of the fluid model and gluing the rest together gives
rise to the risk process. Our artifice, of course, changes clock time since we
have introduced into the risk process spurious time intervals of downward
linear descents (replacing instantaneous downward jumps), and one needs
to make appropriate translation of clock times in the two processes. As we
will see soon, the choice of a common constant y for the absolute rates of
ascent and descent makes the translation of results (with respect to clock
time) from the fluid model to the risk model almost trivial.

With respect to the general risk model, it is convenient to assume, with-
out loss of generality (see Appendix 2), that all phase type distributions
PH (cj,T;j) have the same order, say n, which is the largest among those
of the considered PH distributions. If |E| = m, this then allows for the
consideration of a fluid model with just m + m?n environmental states as
described below, with further reductions of this number in special cases.
This artifice not only reduces dimensionality of the model but also reduces
much notational clutter arising by way of having to keep track of phases in
separate phase type models.

It is now easy to verify that the artifice replacing downward jumps by
linear segments and using a common size for the phase type distributions
gives an instance of the fluid flow model, and furthermore, the various sets
and parameters defining it are as given below.



(a) Q11 = Dy and ¢; is an m-vector all whose elements are equal to 7.
Clearly, any transition without a claim is a transition between two environ-
mental states in the upward segment of the fluid with the rate of change v
per unit time (premiums are collected here at rate y without claims being
paid out.) To achieve this, we take the set S7 as a copy of the state space, E,
of the environmental Markov chain defining the claim arrival process which
is defined as a MAP on the state space E.

(b) For the general case, the set Sy is indexed by three indices (i, 7, k)
where 7 € F is the environmental state just prior to the claim epoch, j € E
is the environmental state posterior to the claim epoch, and k& € L, where
L = {1,--- ,n} is the set of transient states in the CTMC governing the
phase type interval over which claims are viewed as occurring continuously
at rate 7. This set is of size m?n and is a copy of E x E x L. The matrix
Q12 is such that its nonzero entries are all defined by the equation

Ql?(i’ (iaja k)) = Dl(zaj) aij(k)a

and this represents the rate at which a claim arrives marked by a transition
of the environment state from ¢ to j (no transition if j = ) and the initial
state in the CTMC defining the resulting claim size being k.

(c) The matrix Q22 is such that its nonzero elements are all defined by
the equation

Q22((iaj771)a (’L',j,S)) = ’YT'Z']'(Ta 8), 1 S r,s S n.

The introduction of the constant < in the rate above is to scale the time
interval over which claim occurs continuously at rate  as is necessary in
our construction.

(d) Finally, Q2 is such that all its nonzero elements are defined by the
equation

Q21((i,5,7),5) = v[=>_ Tij(r, 9)]
SEL

Note that at the end of an interval of descent in the constructed fluid model,
the state of the environment process has to be the same as at its beginning,
since the interval constructed is spurious and over that the environment
process does not change.

(e) Of course cy is a m?

n vector, all whose elements are equal to ~.

The size m2n for the set S is of course an overkill in some instances.
Specifically, if the phase type distributions of claim sizes do not depend on
the environment prior to the claim arrival epoch, then the set S5 can be



made smaller as the first component defining its states becomes redundant;
we can get away with an Sy of dimension mn only by keeping track just
of the environmental state just after the claim epoch and the phase of the
CTMC governing the PH-distribution.

In any case, the above discussion shows that even in the most general
situation, a highly parsimonious fluid flow model can be derived from the risk
reserve process, and our task is to analyze the risk reserve process through
the resulting fluid flow model. This is done in Section 3 after deriving some
required passage time distributions for the canonical fluid flow model in the
next section.

2 Passage Times for Fluid Flows

In this section, we consider the fluid flow model F = F(Q,¢1,—c2) and
consider a number of first passage time distributions of the associated re-
stricted process FT of interest. To that end, we introduce the following
generic notations:

7(x,y) = First passage time of F from (fluid) level z to level y

ar(z,y) = First passage time of F* from level z to level y avoiding a
visit in the interim to the levels in the interval [a, o)

o7(z,y) = First passage time of F* from level z to level y avoiding a
visit in the interim to the levels in the interval [0, a]

br(zx,y) = First passage time of F*t from level z to level y avoiding a
visit in the interim to the levels in [0,a] U [b,00), a < b

Return time to level 0

We note that B = (7(0,0) is the distribution of the first return time to
level 0 in the restricted process F1, a quantity we called the busy period
of the restricted fluid flow. In [3], we have provided an extremely efficient
algorithm to compute the matrix transform ¥(s), Re(s) > 0 (throughout
this paper, for transforms the argument s will be assumed to be such that
Re(s) > 0) defined by the elements

o0
(s, j) = / e d Py (B <1, J(B) =], i €5, j €S,
0

where P(; ;)[A] denotes the conditional probability of the event A given that
F(0) = z and J(0) = i; for completeness, we have restated that algorithm
in Appendix 1, and we refer to [3] for details of its derivation. Note that the



elements of U(-) give the joint distribution of the busy period duration and
the (downward) environmental state at the end of the busy period, given
the (upward) environmental state at the start of the busy period. Note that
since the rates of fluid change away from the boundary at 0 do not depend on
the fluid level (spatial homogeneity property), the busy period distribution
given above is also the distribution of first return times to any level x > 0
avoiding lower levels for the process F+; more precisely, for any x > 0 the
distribution of ;7(z, z)x{J(z7(z,x)) = j} given (F(0),J(0)) = (z,%) is the
same as that of ¢7(0,0)x{J(o7(0,0)) = 5} given (F(0),J(0)) = (0,7).

First Passage Time (7(z,0) from z > 0 to 0

We also recall one more matrix of transforms introduced earlier in [3],
Theorem 3, namely,

H(s) = Cy '[Qo—sI+Q23(sI—Q33) ™' Qs2+{ Qa1+ Qa3(sI—Q33) ' Q31 }T(s)].

Note that for a model with S35 = ¢, the empty set, the corresponding formula
is obtained by dropping all terms in the above which involve the set S3, and
the formula simplifies in that case to

H(s) = Cy'[Qa2 — sI + Qa1 ¥(s)].

From [3], the matrix H(s) is such that for all z > 0, the matrix of trans-
forms o foo(x,0,5) = e()% which is a square matrix of order |S,|, is the
matrix of LSTs of a first passage time of F*t from level z to level 0 with
paths starting with a downward segment. Specifically, for i,7 € Ss, the
quantity [o fgg(w,(),s)]ij gives the joint distribution of a first passage time
to level 0 which hits level 0 in the environment state j, given that the pro-
cess starts in (z,1); thus, it is the distribution of ¢7(z,0)x{J(o7(z,0)) = j}
given the initial state (z,i), i,7 € S2. Note that due to the spatial ho-
mogeneity of the model, for any y > 0, ¢ fQQ(:B,O,s) also gives the first
passage times to level y from level y +z. That is, o7(z,0)x{J(07(z,0)) = j}
given the initial state (z,7), ¢ € So has the same distribution as that of
oT(y + z,9)x (J(y7(y + z,y)) = j) given the initial state (y + z,1).

First Passage Time (7(0,z) from 0 to =z > 0 avoiding level 0
The quantity we wish to determine is the first passage time LST matrix

to be denoted by ¢f11(0,z,s), z > 0, which is of size | S| x |S1| and whose
(7, 7)-th element gives the LST of the first passage time avoiding level 0 from



the state (0,7), ¢ € S1 to level z in the specific state (z,7). (With the self
explanatory notations, note that due to spatial homogeneity of the model,
0f11(0,z,5) = yfll(y,y + z,s).) This involves several steps which we take
below.

Explicitly in terms of ¥(s), recall the matrix of transforms K (s) intro-
duced in [2] such that

K(s) = C7H(Q11 — sI) + ¥(s)Cy ' Qa1 + O(5)Qa1,

where

O(s) = C; "Q13(sI — Qs3) " + U(s)Cy ' Qas(sI — Qs3) ',

and C; = diag(c;), i = 1,2 are diagonal matrices with positive elements on
the diagonal. Note also that when S3 = ¢, the formula for K (s) simplifies
to

K(s) =Cy Q1 — sI) + ¥(s)Cy ' Qan.

We demonstrated (see [2], [4]) that for fixed z > 0 and ¢, € S1, the ma-
trix Ny1(z,s) = X7 is such that its (i, j)-th element Nij(x,s;i,5) is the
Laplace-Stieltjes transform (LST) of the distribution function (over time )
of the taboo expected number of visits in [0, ¢] by the process F to the state
(z, ) avoiding level 0 in the time interval (0, t], given that the process starts
in (0, 1).

Given that the matrix Nyi(z, s) is the LST of a Markov renewal kernel,
note that for z > 0, (by the standard interpretation of a renewal density)
we may interpret the quantity Nii(z, s;,4) as the Laplace transform (with
respect to time) of the density of the fluid flow F* crossing level z in the
state (z,7) at time ¢ > 0 avoiding level 0 in the interval (0, ], given that the
process starts in (0,7) at time 0. This interpretation will be used in what
follows in several places.

We first establish the following lemma.

Lemma 1 Letz > 0 and i,j € S1. Given that the fluid flow starts in (z,1),
the LST (with respect to time and transform wvariable s) of the expected
number of visits to (z,j) avoiding level O in the time interval (0,t] is the
(,7)-th element of the matriz

E(.T,S) = \IJ(S)/[ : eH(S)Z/[CQ—IQm + 02—1Q23(SI o Q33)—1Q31]6K(s)y dy.
0,z

10



Proof: Assume that the fluid process starts in (z,%), z > 0, 7 € S;. Consider
the Laplace transform of the elementary probability that the fluid process
makes an upcrossing at time ¢ > 0 of level z in the state (z,7), j € Si,
avoiding level 0 in its path up to that point. During this interval, there is
a unique fluid level 0 < z — y < z which is the lowest level visited by the
process, and we can, by conditioning on the value of y, write

Bz, )y = /[ DIPYLIC

k€S2 T€SH
x [e# V{05 Qo1 + Cy ' Qua(sI — Qa3) ™ Qa1 Vi[5 9Y],; dy.

(Remark: The above equation conditions also on the environmental state
(k) at the first return to = and also the environmental state (r) immediately
after the lowest point = — y in the path; note that we need to account for
the fact that after hittling the lowest level x — y, the process could spend
some time there inthe set S3 before starting another upward journey; the
premultiplier C5 1 before the terms Q2 and Qa3 appears due to the fact
that Q21 Qo3 are rates with respect to infinitesimal time intervals and what
is considered in the integrand is an infinitesimal interval over the fluid level;
see [4], Remark 5.) Hence the lemma.

The following result is helpful in evaluating the matrix Z(z,s). In this,
given a matrix A, we denote by vec(A) a column vector obtained by writing
the successive columns of A one below the other. A useful result we wish to
recall [10] is that for conformable matrices,

vec(AXB) = (B' ® A)vec(X),
where Bt is the transpose of B, ® denotes the Kronecker product of matrices.
Lemma 2 Let
U(z,s) = /[0 | Oy Qa1 + C3 ' Qus(s] — Qa3) 7' Qi }e P dy.
@
For all Re(s) > 0, we have
vee (U(z, s)) = [(K'(s) ®I) + (I ® H(s))] " Lvec (eH<8>wD(s)eK<8>w - D(s)) ,
where

D(s) = Cy ' Qa1 + Cy ' Qaz(sI — Q33) Q1.

11



Proof: By multiplying the integral to be evaluated on the right by K(s)
and integrating by parts gives

Uz, s)K(s) + H(s)U(z, s) = )2 D(s)eX )7 — D(s),
which is the same as the set of linear equations
[(K'(s) @ I) + (I ® H(s))]vec(U(z,s)) = vec (eH(s)wD(s)eK(s)z - D(s)) .

The proof would be complete if we show that the coefficient matrix in the
above set of equations is nonsingular for all Re(s) > 0 which we set out to
do now.

We have shown in [2], Lemma 1, that for all Re(s) > 0, the matrix K (s)
is invertible (and therefore each of its eigenvalues has strictly negative real
part; see the proof of Lemma 1 in [2].) Therefore, for Re(s) > 0, we can
rewrite the coefficient matrix of the above linear system as

(K'(s)®1) [T D)+ ({K' ()} @ H(s))] -

Noting that each eigenvalue of a Kronecker product is obtained as the
product of a pair of eigenvalues of the two matrices constituting the Kro-
necker product ([10]), clearly, the inverse fails to exist at s only if there exist
eigenvalues A(s) of K(s) and u(s) of H(s) such that p(s)/A(s) = —1. But
then u(s) = —A(s) would have positive real part implying that the matrix
H(s) has an eigenvalue with positive real part. That would contradict the
fact that for all z > 0 all eigenvalues of e”(*)% (which is the matrix of first
passage time LSTs to level 0 from level z) are within the unit disk. This
contradiction shows that the coefficient matrix of the linear system is indeed
invertible, and the proof is complete.

Theorem 1 Forz > 0, the LST [of11(0, z, s)li; of the first passage avoiding
level O from state (0,1) into level x through entry into the specific state (z,j),
x>0, 1,7 €851 is determined by the equation

[0/11(0, z, 8)] = [eKO2[I + [E(z, s)] L.

Proof: Let the fluid flow process start in (0,4), with ¢ € S;. Also, let j € S;.
By noting that an upcrossing of z at the specific state (z,j) avoiding level
zero occurs either at the first such upcrossing or as a subsequent return to
level x avoiding level zero, we have

[5O) = 0 fir(0,2,9)]i5 + D [0/11(0, 2, 8)]ak [E(=, 8)]ks ;
kEeS:

12



hence the result.
Distribution of busy period {7(0,0) avoiding level z > 0

We can now write a simple formula for a busy period distribution of the
flow that also avoids the levels in the interval [z, 00), z > 0.

Theorem 2 For x > 0, the matriz
CU\I;(S) = :Ef"12 (Oa 07 3) = kIJ(S) - O.fll(oa €z, S)W(S)GH(S)‘T

is the Laplace-Stieltjes transform matriz of a busy period of the flow F* that
does not touch the level x.

Proof: The term subtracted in the formula of the theorem characterizes the
busy period that touches level z; in such busy periods, the flow must make
a first passage into z, return to x again, and then proceed down to 0.

At this time, we note that we can introduce quantities similar to those
introduced above for the restricted fluid flow F"* associated with the re-
flection as well. Such quantities for that flow will be denoted by attaching
a post-superscript r to the appropriate symbol. Thus, for instance K" (s) is
the K (s) matrix for the restricted flow associated with the reflected flow,
U"(s) its busy period, 7"(z,y) the first passage time in it from level z to
level y, etc.

The most important point to note is that all the passage times intro-
duced for a flow thus far, are determined explicitly in terms of its busy
period transform. Except for E(z, s), the computation of all other quanti-
ties is trivial once the busy period transform has been determined.

First Passage §7(z,0) from z > 0 to 0 without a return to z

Assume that the fluid model F* starts in z > 0 with a downward seg-
ment, i.e., in a state (z,7) with s € Sy. Denote by  fo3(z, 0, s) the matrix of
LSTs of first passage times to level 0 avoiding a return to level x.

Theorem 3 We have,

waQ(.’IJ, Oa 3) = 0.f~52(0’$7 3)’

where by the choice of notations, the right side of the above equation gives
the first passage time from level 0 to level x avoiding 0 for the reflected flow
model.

13



Proof: Consider a path of F that goes from x to 0 without visiting z in
between. Reflecting this about a line parallel to the time axis drawn at
fluid level z gives a path for the reflected flow that starts with an upward
segment and goes to 2z without returning to . Due to spatial homogeneity,
the distribution of the time to go from z to 2z without touching x is the
same as that of going from 0 to z without touching zero.

Return times to level z avoiding level 0

Let z > 0. If the fluid process F starts at level x with an upward
segment, then the distribution of its return to fluid level x is governed by
U(s) and such returns end in states of Ss; such returns avoid level 0, of
course. The following result provides the formula for a return to z avoiding
level 0 when the starting segment is a downward segment.

Theorem 4 Assume that the fluid flow starts in level x > 0 with environ-
mental phase in the set So (i.e., a downward segment). The distribution of
the return time to level x avoiding level 0 is given by the transform matriz

0fo1(m,7,5) = "W () = U (5) — 0f5,(0,2,8) " (s)e™ ).

Proof: The result is trivial by considering a reflection of a path returning
to = avoiding level 0 about a line drawn parallel to the time axis at height
z. The reflection is clearly a return time to z in the reflection avoiding level
2z and, due to spatial homogeneity, is distributed the same as the return
time to 0 avoiding z. Thus, the result follows by applying Theorem 2 to the
reflected flow.

3 Back to the Risk Process

We now return to the insurance risk process and determine a bunch of
interesting quantities related to it. We assume as before that the initial risk
reserve is u and the premium rate is .

The following observations are all trivial and follow from the fact that
for the fluid flow associated with the risk process, upward and downward
rates are all equal in absolute value to a common constant:
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Observations:

(a) Let T denote the time to ruin in the insurance risk process and 7
denote the first passage time to hit level 0 in the associated fluid flow model.
T is the sum of the lengths of the intervals in [0, 7] during which the fluid
level is increasing.

(b) For any interval of time during which the fluid flow returns to a level
u > 0 without touching 0 in between, the length of time of that interval is
twice the time the fluid low moves upward within that interval.

(c) Let 0 < v < u. Consider an interval of first passage of the fluid flow
F from u to v. Denote by ¢ the total length of that interval and by 7 the
length of time the fluid moves upward during that interval. Then clearly,
T = (t— (u—v)/v)/2; this is so, once again due to the fact that upward and
downward rates are both equal to v in absolute value.

(d) Consider a first passage interval for the fluid flow from a level u > 0
to v > u without visiting 0 in between. Denote by ¢ the total length of that
interval and by 7 the length of time the fluid moves upward during that
interval. Then clearly,

v—u+1(t v—Uu
T = —(t —
¥ 2

) =1/2+ (v —u)/(27);

this again is a consequence of of the fact that all rates for the fluid flow are
equal in absolute value. Note that it follows that the total total length of
time during which the fluid flow is going downward in the considered first
passage time is t/2 — (v — u)/(2y).

These considerations immediately allow us to write down a variety of
results for the insurance risk model from the fluid flow model in terms of
quantities established in the previous section. We start with the simplest,
the distribution of the time to ruin.

Theorem 5 Assume that the insurance risk process starts in the state (u,1i),
u >0, 1 € S1. Denote the LST of the distribution of the time to ruin by
[R(u, 8)]i- The vector R(u,s) with elements [R(u, s)]i, © € S1 is given by

R(u,s) = U(s/2) [e> eHE/Du11, 4 > 0.

Proof: In the case u = 0, by our Observations (a),(b) given above, the
time to ruin of the insurance risk process is exactly one half the busy pe-
riod duration of the associated fluid flow model, and that gives the formula
R(0,s) = ¥(s/2)1. For u > 0, since the initial segment is upward, first the
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flow has to return to w in a downward state, and then make a first passage
to 0. The result now follows by using Observation (b) on the return time to
u and Observation (c) on the first passage time to 0 that follows.

Corollary 1 For the risk model starting with risk reserve u, the vector of
ruin probabilities is given by R(u,0) = \IJ(O)eH(O)ul.

Joint Distribution of time to ruin, surplus X; before, and deficit
X4 after ruin.

In each case considered below, we consider different starting states 1 € Sy
and compute the vector of joint distributions whose i-th component gives
the required joint distribution given the starting state ¢ € Sj.

Case 1: v =10

When the initial risk reserve is 0, we can write the following formula
immediately for the vector of joint distributions for the ruin time, surplus
before ruin and deficit immediately after ruin (LST with respect to ruin
time and probability differential for X; and X5):

6—sm1/(27)6K(s/2)m1[,Y—lQ12]6Q22(m1+m2)/’¥[,y—1Q21]1 dzy dzo;

of these, due to Observation (d), the term e 5%1/(2V)eK(s/2)21 characterizes
the total length of upward intervals up to reaching the surplus z; prior to
ruin (without getting ruined earlier); at such a point a change of environ-
ment in the fluid model occurs into a downward state and lasts precisely
for a length (z1 + z2)/7v wiping out the reserve z; and leaving a deficit zo;
the final multiplication by 1 is so that we don’t care for the environmental
state immediately after ruin in the insurance risk process; the appearance of
71 before the terms Q1o and Qo1 is since we are considering a differential
over level as opposed to over time and 7! gives the required Jacobian (see
Remark 1 in [4].)

Case 2: u > 0 and the reserve just before ruin is X1 =u+z1 > u
By considering that several returns to u avoiding level 0 may occur before

ruin, we can write the required vector containing the LST of ruin time and
pdf of X7 and X, as:

[+ E(u, 5/2)][e7 >/ BV RNy 71 Qplenlttorted) 1y~ gy 1.
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Here the term [I 4+ E(u, s/2)] takes care of all the returns to u avoiding 0,
and the term immediately after that takes care of the interval of final ascent
from u to u + z1 avoiding u; we have used both Observations (b) and (d) in
the above.

Case 3: u > 0 and the reserve just before ruin is X; = u — z1 < u.

It is easy to write the final formula for the required vector and then
explain what goes on:

T (s/2)[e51/(27) gH(s/2)a1)
x (TG (5/2) [T + E(u — 71, 5/2)]
X [y~ Qo]e@22 (Tt a2) /vy =10y 1.

The sketch of the derivation of the above formula goes as follows: The
initial segment at level u being upward, the flow should first return to u (this
gives the first term ¥(s/2) due to Observation (b)). Then it needs to make
a first passage into u — z1; that gives the second term [e%1/(27) ¢H(s/2)z1]
by Observation (c). Then the flow has to make an upcrossing of u — z;
without visiting level 0 (no ruin); and this term after a reflection about
the line parallel to the time axis at u — z; (draw a picture!) gives the
term (“~#1)W"(s/2) since the reflected path is a busy period with a taboo
upper level for the reflected flow; we have of course used Observation (b) in
this. Then the flow may make many more returns to 4 — z; in a state of
S1 avoiding level 0 (which are all returns before ruin time for the insurance
process) and then change environment into So; this is what gives us the term
[I +Z(u— z1,5/2)]y"1Q19; the factor s/2 is again due to the fact that in
each of these return intervals, exactly half the time is spent by the fluid flow
going upward. Finally, the final claim size should be, of course, u—x1+x2 or
correspondingly the fluid flow should spend precisely (u—z1+z2)/~ amount
of time in S9 which gives the remaining terms.

Theorem 6 Assume that the risk process starts in state (u,i), u > 0, i €
S1. Then the marginal distribution of the deficit at ruin is a phase type
random variable with distribution PH (e;T(0)efO% ~~1Qyy), where ¢; is a
unit coordinate vector with 1 for its i-th component.

Proof: Note that

/ eK(O)wl[fylelg]eTlQ”’“ dzy = U(0).
0
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Given that the process starts in level 0, the left side is an expression for the
matrix of return probabilities to zero by conditioning on the value z; just
prior to the last linear downward segment to level 0. Thus, setting s = 0
and integrating over z; in the joint density given for Case 1 results in the
expression

T(0)e? @22 =y Qa1

since Q211 = —(Q221. Premultiplying the above by e; shows this to be the
density of the asserted PH distribution. Thus, the result is proved in the
case u = 0.

The proof for the case u > 0 is similar and follows by noting that the
distribution of the phase at the entrance to level 0 for the fluid model is
given by e; T (0)e (O

4 Concluding Remarks

A key result we obtained is the first passage time (Theorem 1) from level
0 to level z avoiding level 0 for the fluid flow FT, and this we did by a
careful use of Markov renewal arguments (Lemma 1). This simple result
gave a sufficient breakthrough to obtain several passage time distributions
with taboo not only of 0 but also of certain levels [a,00). Note that the
probabilistic interpretation of the kernel K(s) obtained by us earlier in [2]
has been a key to all these.

For the insurance model itself, we introduced two simplifying facts: (a)
We used a common size for all phase type distributions for a clean represen-
tation of the model; (b) we used a fluid flow construction related to it with all
absolute rates of fluid changes being equal to a constant which substantially
simplified translating fluid results to insurance risk model results.

The basic quantities we have to compute in analyzing the insurance risk
model thus turn out to be simply the two busy period matrix transforms
U(s) and ¥"(s) for which we have powerful algorithms in [3]. Of course, in
addition to these we need to compute the transforms =(z, s) and =" (z, s) of
Lemma 1.

As for the transform *¥(s), note that it is the LST of a nonnegative
kernel over time ¢ and thus very well behaved. Also once ¥(s) is computed
there is no recursive computations here. Thus, despite the subtraction in the
formula of Theorem 2, there is no reason to expect any numerical difficulties
in its use in the formulae.

As noted earlier, this paper provides not only a clean, systematic ap-
proach to the insurance risk problem, but the passage times derived here
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provide a means to analyze the transient behavior of many complex applied
probability models of which the risk model is but a very simple example.

Appendix 1: Algorithm for U(-)

In this appendix, we briefly recall the algorithm developed in [3] for
the computation of the matrix ¥U(s) associated with the fluid flow F =
F(Q,c1,—c2). The computation of ¥ (s) is achieved by applying the same
algorithm to the flow F".

We assume the conventions for the partitioning of the state space and
various matrices as given in this paper. We also define the matrix C =
diag(C1,Cs, I), where the identity matrix used is of order |Ss|.

For A > 0, let

1
Py = XC—lQ +1.

Choose (fixed) positive numbers X and ¢ such that
A > maxies{—[C™'Qla}
Re(s) 4
max;cg C <éd<1, and

A %
max;cs |:P)\ - Re—(s)c_l] > 0.
A i
Define the matrices

0 0 0
Ao(s, )= | 0 ACo(sI+ 2/\02)_1 01,

0 0 0
0 0 0

Al(S, A) = AC(SI + AC)_l %Pgl %PQQ %ng ,
P31 Py Ps

P —3Ct Py P
Ao(s,A) = 0 0 0 )
0 0 0

where A = diag(AI,2M\I, AI) and P = P;.
Consider now the following algorithm.

Algorithm

Fix € > 0 and set diff = 100;
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H*(1,5,)) = (I — A1(s,))) L Ao(s,\);
L**(1,5,\) = (I — A1(s,\)) "t Aa(s, \);
G*™(1,s,A) = L™(1,s,));
T(1) = H*(1,s,\);
Do while ( diff > € )
k=k+1;
U*(k,s,\) = H*(k— 1,8, \)L**(k — 1, 8, \)
+ L™k — 1,8, )V H*(k — 1,8, )\);
M = (H*(k —1,s,)))?;
H*(k,s,\) = (I —U*(k,s,\)) ' M;
M = (L**(k — 1,s,)))?%;
L**(kaSaA) = (I - U**(kas,A))ilM;
G*(k,s,\) = G**(k —1,8,\) + T'(k — 1) L**(k, 5, \);
T(k) =T(k— 1) H™(k,s,A);
diffz man,keg | [G** (k}, S, A)]j,k: — [G**(k — 1, S, A)]j,k |;
end

U(s) = Gi3(k, 5, N [G35(k, s, \)] .

We have established in [3] that at its termination, the above algorithm
yields the matrix ¥(s) with error at most € in its entries, and furthermore
that the error in the k-th iterate is O[{n(s)}2"] for a constant 0 < n(s) < 1
so much so that the iterates converge quadratically to the required limit.
For details, refer to [3].

Appendix 2: Phase Type Distributions

In this appendix, we briefly review PH distributions and show how one
may use a common order for the phase type distributions arising in the
general risk model.

The distribution PH(«,T) is the distribution of the absorption time in
the CTMC (whose states are called phases) with initial probability vector
(a,1 — 1) and infinitesimal generator

T -T1
0 0 '
We assume that 7! exists which is equivalent to assuming that starting in

any of the phases absorption into the last phase does indeed occur a.s. The
order of the matrix T, which is the number of transient phases, is also called
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the order of the PH-distribution. Also, in most applications, a1l = 1 so that
the distribution has no atom at zero.

Phase type distributions include as special cases the exponential dis-
tributions and mixtures and convolutions of finitely many of them. Such
distributions are known to be dense in the set of all distributions on [0, c0).

For details concerning PH distributions, we refer the reader to [14] and
[12] restricting ourselves here to showing how given two PH-distributions,
we may, without loss of generality assume that they both have the same
order. To this end, it is enough to show that given a PH-distribution of
order m, there is a representation of that also as a PH-distribution of order
m + n.

To this end, suppose we are given PH(«,T) of order m. Take any
PH(3,S) of order n, and consider the PH-distribution PH (6, U) of order
m + n defined by

§ = (,0p),

where 0, is an n-vector of zeros, and U is the infinitesimal generator given

by
_ T Omn
U= ( 518§ )
Clearly, PH(6,U) = PH(«,T), since the states m +1,--- ,m + n are never

visited by the CTMC governing the former. (Note: This is not the unique
way to convert a PH distribution to one of a higher order.)
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