A. A. 2007/2008 CORSO di LAUREA in FISICA GEOMETRIA I Compito del 16/1/2008

Esercizio 1 [C1]

Per ogni $a, b \in \mathbb{R}$, si considerino in \mathbb{R}^2 le seguenti rette

$$r_1 = \{(x,y) \in \mathbb{R}^2 \mid y = 0\} \quad r_2 = \{(x,y) \in \mathbb{R}^2 \mid x = 0\}$$

$$r_3 = \operatorname{Span}\{(1,b)\} \quad r_4 = \{(x,y) \in \mathbb{R}^2 \mid ax - y = 0\}$$

$$s_1 = \{(x,y) \in \mathbb{R}^2 \mid y = x\} \quad s_2 = \{(x,y) \in \mathbb{R}^2 \mid y = 2x\}$$

$$s_3 = \{(x,y) \in \mathbb{R}^2 \mid y = 3x\} \quad s_4 = \{(x,y) \in \mathbb{R}^2 \mid y = 4x\}.$$

- (1) Provare che per ogni $b \in \mathbb{R}$, $b \neq 0$, esiste una applicazione lineare $f : \mathbb{R}^2 \to \mathbb{R}^2$ tale che $f(r_i) = s_i$ per i = 1, 2, 3.
- (2) Determinare i valori di $a, b \in \mathbb{R}$, $a, b \neq 0$, per cui esiste una applicazione lineare $g : \mathbb{R}^2 \to \mathbb{R}^2$ tale che $g(r_i) = s_i$ per i = 1, 2, 3, 4.

Esercizio 2 [C1]

Per ogni coppia di matrici $A, B \in {}_{n}\mathbb{R}_{n}$ si consideri il sottoinsieme

$$E = \{ X \in {}_n \mathbb{R}_n) \mid AX = B \}.$$

- (1) Provare che E è non vuoto se e solo se $\text{Im}A\supseteq \text{Im}B$.
- (2) Determinare le coppie (A, B) per cui l'insieme E è un sottospazio vettoriale di ${}_{n}\mathbb{R}_{n}$ e, in tal caso, calcolarne la dimensione.

Esercizio 3 [C2]

Per ogni numero naturale k, si consideri la matrice di $2k\mathbb{R}_{2k}$

$$J = \left(\begin{array}{ccccc} 0 & \cdots & 0 & 0 & 1 \\ 0 & \cdots & 0 & 1 & 0 \\ \vdots & & \ddots & & \vdots \\ 0 & 1 & 0 & \cdots & 0 \\ 1 & 0 & 0 & \cdots & 0 \end{array}\right)$$

e sia I la matrice identità di ordine 2k.

- (1) Provare, per induzione su k, che $\det(aI+bJ)=(a^2-b^2)^k$ per ogni $a,b\in\mathbb{R}$
- (2) Provare che J è diagonalizzabile e determinare una base di \mathbb{R}^{2k} di autovettori per J.

Esercizio 4 [C2]

Al variare del parametro reale a, si consideri su \mathbb{R}^4 il prodotto scalare ϕ associato, rispetto alla base canonica, alla matrice

$$A = \left(\begin{array}{cccc} a & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & a & 0 \\ 0 & 1 & 0 & 3 \end{array}\right)$$

- (1) Dire per quali $a \in \mathbb{R}$ il prodotto scalare ϕ è degenere.
- (2) Al variare di $a \in \mathbb{R}$, determinare il radicale di ϕ .
- (3) Al variare di $a \in \mathbb{R}$ determinare la segnatura di ϕ .

A. A. 2007/2008 CORSO di LAUREA in FISICA GEOMETRIA II Compito del 16/1/2008

Esercizio 5

Si consideri il prodotto scalare su $V = \mathbb{R}_4[x]$ dato da $\varphi(p,q) = \int_0^1 p'(t)q'(t)dt - p(1)q(1)$, per ogni $p,q \in V$.

- (1) Calcolare una decomposizione di Witt per φ .
- (2) Rappresentare tramite φ il funzionale $F:V\to\mathbb{R}$ definito da F(p)=p(0), per ogni $p\in V$.
- (3) Dire quali tra i seguenti sottospazi sono φ -isometrici: Span (x^i, x^{i+1}) con i=0,1,2,3.

Esercizio 6

Sia V uno spazio vettoriale su \mathbb{C} di dimensione finita e sia $f \in \text{End}(V)$.

- (1) Dimostrare che se f è invertibile e f^2 è diagonalizzabile allora f è diagonalizzabile.
- (2) È vero il viceversa?
- (3) Resta vero il punto (1) senza l'ipotesi che f sia invertibile?

Esercizio 7

(1) Sia C una conica in \mathbb{R}^2 non vuota e diversa da un punto. Siano $A, B \in {}_{3}\mathbb{R}_{3}$ tali che ${}^{t}XAX = 0$ e ${}^{t}XBX = 0$ siano due equazioni per C, dove ${}^{t}X = (x, y, 1)$.

Dimostrare che esiste $\lambda \in \mathbb{R}$, $\lambda \neq 0$, tale che $B = \lambda A$.

(2) Siano $M, N \in {}_{3}\mathbb{R}_{3}$ due matrici simmetriche di segnatura (2, 1, 0) e siano C_{M} e C_{N} i coni dei vettori isotropi dei prodotti scalari su \mathbb{R}^{3} definiti nella base canonica da M e N rispettivamente. Dimostrare che $C_{M} = C_{N}$ se e solo se esiste $\lambda \in \mathbb{R}$, $\lambda > 0$, tale che $M = \lambda N$.

Durata: 3 ore.

Scrivere su tutti i fogli nome e numero di marticola.