A. A. 2007/2008

CORSO di LAUREA in FISICA GEOMETRIA I

Compito del 6/2/2008

Esercizio 1

Si consideri la matrice di ₄R₄

$$A = \left(\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & -h-1 & h+1 & 0 \\ -1 & -h-1 & h+1 & 1 \\ 1-h & 0 & 0 & h \end{array}\right)$$

- (1) Si determinino i valori del parametro reale h per cui A è diagonalizzabile.
- (2) Per h = 0 si determini, se esiste, una base di \mathbb{R}^4 di autovettori per A o almeno, se esiste, una base di \mathbb{R}^4 con bandiera A-invariante.

Esercizio 2

Sia $f:V\to V$ un endomorfismo di uno spazio vettoriale V di dimensione finita. Siano W_1,W_2 sottospazi vettoriali di V invarianti per f.

- a) Provare che se $f|_{W_1}$ e $f|_{W_2}$ sono diagonalizzabili e $W_1+W_2=V,$ allora f è diagonalizzabile.
- b) È vero che se f è diagonalizzabile, allora $f|_{W_1}$ e $f|_{W_2}$ sono diagonalizzabili e $W_1+W_2=V$?
- c) È vero che se $f|_{W_1}$ e $f|_{W_2}$ sono diagonalizzabili, allora f è diagonalizzabile?

Esercizio 3

- a) Sia $D \in {}_{n}\mathbb{R}_{n}$ una matrice diagonale definita positiva. Provare che esiste una matrice diagonale $F \in {}_{n}\mathbb{R}_{n}$ tale che $F^{2} = D$.
- b) Sia $A \in {}_{n}\mathbb{R}_{n}$ una matrice simmetrica definita positiva. Provare che esiste una matrice simmetrica definita positiva $S \in {}_{n}\mathbb{R}_{n}$ tale che $S^{2} = A$.
- c) Sia $M \in {}_{n}\mathbb{R}_{n}$ una matrice invertibile. Provare che ${}^{t}MM$ è simmetrica e definita positiva.
- d) Sia $M \in {}_{n}\mathbb{R}_{n}$ una matrice invertibile. Provare che esistono una matrice ortogonale $P \in O(n)$ e una matrice simmetrica definita positiva S tali che M = PS.

A. A. 2007/2008 CORSO di LAUREA in FISICA GEOMETRIA II Compito del 6/2/2008

Esercizio 1

Sia V uno spazio vettoriale di dimensione finita sia e φ un prodotto scalare non degenere su V. Data $f \in \text{End}(V)$ sia $f^* \in \text{End}(V)$ l'aggiunta di f rispetto a φ .

- a) Dimostrare che f è nilpotente se e solo se f^* è nilpotente.
- b) Dimostrare che $f^2 = 0$ se e solo se $(f^*)^2 = 0$.
- c) Dimostrare che $\operatorname{Im} f \subset \operatorname{Ker} f$ se e solo se $\operatorname{Im} f^* \subset \operatorname{Ker} f^*$.
- d) Dimostrare che $\operatorname{Im} f \supset \operatorname{Ker} f$ se e solo se $\operatorname{Im} f^* \supset \operatorname{Ker} f^*$.

Esercizio 2

Sia V uno spazio vettoriale su \mathbb{C} e sia $f \in \text{End}(V)$.

Un sottospazio $W \subset V$ f-invariante si dice semplice per f se W non può essere decomposto in somma diretta di sottospazi f-invarianti, cioè se $W = W_1 \oplus W_2$, con W_1, W_2 f-invarianti, allora $W_1 = W$ o $W_2 = W$.

- a) Dimostrare che se W è semplice per f allora lo spettro di $f_{|_W}$ ha un solo elemento e che il polinomio minimo e caratteristico di $f_{|_W}$ coincidono a meno del segno.
- b) Dimostrare che V si può decomporre in somma diretta di sottospazi semplici per f.

Esercizio 3

Sia $C \subset \mathbb{R}^2$ il sottoinsieme composto dai segmenti ottenuti collegando in ordine i seguenti punti (0,6), (0,0), (2,0), (2,2), (3,3) e (0,3). Al variare di $A,B \in \mathbb{R}, 0 \leq A \leq 2$, si consideri $C_{A,B} \subset \mathbb{R}^2$ il sottoinsieme composto dai segmenti ottenuti collegando in ordine i seguenti punti (5,4), (1,0), (3,0), (A+3,A), (B,2) e (3,2).

- a) Per quali valori di A e B, $C_{A,B}$ è affinemente equivalente a C?
- b) Sia $f: \mathbb{R}^2 \to \mathbb{R}^2$ un'affinità tale che la distanza tra i punti f((0,6)) e f((0,0)) sia 6 e che la distanza tra i punti f((0,3)) e f((3,3)) sia 3. È vero che f(C) è isometrico a C?

Durata: 3 ore