A. A. 2007/2008

CORSO di LAUREA in FISICA

GEOMETRIA I

Compito dell'8/7/2008

Esercizio 1

Siano V, W due K-spazi vettoriali di dimensione finita e siano W_1, W_2 sottospazi vettoriali di W tali che $W = W_1 \oplus W_2$. Siano $f \colon V \to W_1$ e $g \colon V \to W_2$ applicazioni lineari e si consideri l'applicazione $L \colon V \to W$ definita da L(v) = f(v) + g(v) per ogni $v \in V$.

- a) Verificare che L è lineare.
- b) Verificare che $\operatorname{Ker} L = \operatorname{Ker} f \cap \operatorname{Ker} g$.
- c) Verificare che $\operatorname{Im} L = \operatorname{Im} f \oplus \operatorname{Im} g$ se e solo se $\operatorname{Ker} f + \operatorname{Ker} g = V$.

Esercizio 2

Costruire una applicazione lineare $f: \mathbb{R}^4 \to \mathbb{R}^4$ tale che dim Ker f=2 e avente $p(t)=t^3(t-2)$ come polinomio caratteristico.

Calcolare in oltre dim Ker f^2 e dim Ker $(f-2id)^2$.

Esercizio 3

Sia b il prodotto scalare su \mathbb{R}^2 associato alla matrice $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ rispetto alla base canonica. Fissati i vettori $v_1 = (1,1)$ e $v_2 = (2,\lambda)$ di \mathbb{R}^2 , al variare di λ in \mathbb{R} si consideri l'applicazione $\phi \colon \operatorname{Hom}(\mathbb{R}^2,\mathbb{R}^2) \times \operatorname{Hom}(\mathbb{R}^2,\mathbb{R}^2) \to \mathbb{R}$ definita da

$$\phi(f,g) = b(f(v_1), g(v_1)) + b(f(v_2), g(v_2)) \quad \forall f, g \in \text{Hom}(\mathbb{R}^2, \mathbb{R}^2).$$

- a) Verificare che ϕ è un prodotto scalare.
- b) Calcolare il rango di ϕ al variare di λ in \mathbb{R} .
- c) Per i valori di λ per cui ϕ è non degenere, verificare che ϕ non è definito positivo né definito negativo e calcolarne la segnatura.

Esercizio 4

Si considerino le matrici reali

$$A = \left(\begin{array}{cccc} 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{array}\right) \qquad B = \left(\begin{array}{cccc} 1 & 0 & 2 & 1 \\ 0 & 1 & 0 & 1 \\ 2 & 0 & 0 & 0 \\ 1 & 1 & 0 & 1 \end{array}\right).$$

Dire se le matrici A e B sono equivalenti destra-sinistra, se sono simili e se sono congruenti.

A. A. 2007/2008

CORSO di LAUREA in FISICA GEOMETRIA II

Compito dell'8/7/2008

Esercizio 5

Sia φ il prodotto scalare su \mathbb{R}^4 associato alla matrice $\begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & -1 & 0 & 1 \\ 0 & 0 & 1 & 2 \\ 1 & 1 & 2 & 1 \end{pmatrix}$ rispetto alla base canonica. Si considerino i sottospazi $W_1 = \{(x,y,z,t) \in \mathbb{R}^4 \mid t=x-y+2z=0\}$ e, per $\alpha \in \mathbb{R}$,

 $W_{\alpha} = \operatorname{Span}((1, 3, 0, 1), (0, 1 + 2\alpha, 1 - \alpha, \alpha)).$

- 1) Esibire un sottospazio di dimensione massima tra i sottospazi di \mathbb{R}^4 per cui la restrizione di φ è nulla.
- 2) Per quali valori di $\alpha \in \mathbb{R}$, W_{α} è φ -isometrico a W_1 ?
- 3) Per uno dei valori individuati al punto 2, costruire f, una isometria di \mathbb{R}^4 per φ tale che $f(W_{\alpha}) = W_1.$

Esercizio 6

Sia V uno spazio vettoriale su \mathbb{C} di dimensione n.

Per h, k > 0 poniamo $M_{h,k} = \{ f \in \text{End}(V) \mid \forall \lambda \in \text{Spettro}(f) \ ma(\lambda) = h, mg(\lambda) = k \}, \text{ dove } ma$ e mq indicano rispettivamente la molteplicià algebrica e geometrica di un autovalore.

- 1) Determinare i valori di h e k per cui $M_{h,k}$ è non vuoto.
- 2) Determinare i valori di h e k per cui, per ogni $f, g \in M_{h,k}, f$ e g hanno lo stesso spettro se e solo se sono simili.

Esercizio 7

Siano $p_0,p_\infty\in\mathbb{R}[x,y]$ due polinomi di grado 2 tali che le coniche $C_0,C_\infty\subset\mathbb{R}^2$ di equazioni $p_0=0$ e $p_\infty=0$ rispettivamente, siano non vuote e disgiunte. Per $\beta\in\mathbb{R}$, poniamo $C_\beta\subset\mathbb{R}^2$ la conica di equazione $p_0 + \beta p_{\infty} = 0$.

- 1) Dimostrare che $\bigcup_{\beta\in\mathbb{R}} C_{\beta} \cup C_{\infty} = \mathbb{R}^2$ e che, per ogni $a,b\in\mathbb{R}\cup\{\infty\}, a\neq b,\ C_a\cap C_b=\emptyset$.
- 2) Dimostrare che, se esiste $b \in \mathbb{R}$ per cui C_b è una coppia di rette incidenti, allora, se esiste $a \in \mathbb{R}$, $a \neq b$, tale che C_a è degenere e non vuota, allora C_a è un punto.
- 3) Costruire un esempio in cui esistono $a,b \in \mathbb{R}$ tali che C_a è un punto e C_b è una coppia di rette incidenti.