A. A. 2007/2008 CORSO di LAUREA in FISICA GEOMETRIA II

Compitino del 27/5/2008

Esercizio 1.

Sia V uno spazio vettoriale su $\mathbb C$ di dimensione n, e sia $f:V\to V$ un endomorfismo per cui esiste $k\geq 2$ tale che $\forall\ \lambda\in\mathbb C$ si abbia dim $\mathrm{Ker}(f-\lambda id)^k=\dim\ \mathrm{Ker}(f-\lambda id)^{k+1}=k$ dim $\mathrm{Ker}(f-\lambda id)$. Dimostrare che k|n.

Esercizio 2.

Per $\alpha \in \mathbb{C}$, siano $I, A_{\alpha} \in {}_{2}\mathbb{C}_{2}$, dove $I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ e $A_{\alpha} = \begin{pmatrix} 0 & 0 \\ \alpha & 0 \end{pmatrix}$.

Calcolare al variare di $\alpha \in \mathbb{C}$ la forma canonica di Jordan della matrice $M_{\alpha} \in {}_{6}\mathbb{C}_{6}$ definita a blocchi da

$$M_{\alpha} = \begin{pmatrix} A_{\alpha} + 2I & A_0 & A_0 \\ \alpha I & {}^tA_1 & (\alpha + 1)I \\ (\alpha + 1)I & A_0 & A_{\alpha} \end{pmatrix}$$

Esercizio 3.

Sia $\mathbb A$ uno spazaio affine e $W\subset \mathbb A$ un sottoinsieme.

Dimostrare che W è un sottospazio affine se e solo se $\forall P,Q \in W$ la retta affine per P e Q è contenuta in W.

Esercizio 4.

Sia $C \subset \mathbb{R}^2$ l'insieme formato dai segmenti di vertici (2,3) e (1,1), (1,1) e (0,1), (0,1) e (-1,3), (-1,3) e (3,3), (3,3) e (3,2). Per $a,b \in \mathbb{R}$, sia $C_{a,b} \subset \mathbb{R}^2$ l'insieme formato dai segmenti di vertici (-2,-2) e (0,-2), (0,-2) e (0,0), (0,0) e (-2,4), (-2,4) e (-2,-4), (-2,-4) e (a,b). Determinare per quali $a,b \in \mathbb{R}$ esiste una affinità di \mathbb{R}^2 che mandi C in $C_{a,b}$ e, per una coppia di tali valori, costruire una tale affinità $f:\mathbb{R}^2 \to \mathbb{R}^2$ nella forma f(X) = AX + B, dove $A \in {}_2\mathbb{R}_2$ e $B \in \mathbb{R}^2$.