ANNO ACCADEMICO 2009/2010 CORSO di LAUREA in FISICA GEOMETRIA I

Secondo compitino 17/12/2009

Esercizio 1

Sia $V = \mathbb{R}_3[x]$ lo spazio vettoriale dei polinomi in x di grado ≤ 3 a coefficienti reali e, per ogni $a \in \mathbb{R}$, si consideri l'applicazione lineare $f_a \colon V \to V$ definita da $f_a(p(x)) = p(1 - ax)$ per ogni $p(x) \in V$. Determinare i valori di $a \in \mathbb{R}$ per cui f_a è diagonalizzabile.

Esercizio 2

Costruire, se esiste, un prodotto scalare b su \mathbb{R}^3 che verifichi le seguenti condizioni:

- (1) b ha segnatura $(i_+, i_-, i_0) = (2, 1, 0)$
- (2) la restrizione di b al sottospazio $W=\{(x,y,z)\in\mathbb{R}^3\mid x+y+z=0\}$ ha segnatura (1,1,0)
- (3) il vettore e_1 è isotropo
- (4) $b(e_1, e_2) = 1$.

Esercizio 3

Per ognuna delle affermazioni seguenti, dire se è vera o falsa, motivando la risposta.

- (a) Siano r, s due sottospazi vettoriali distinti di \mathbb{R}^2 di dimensione 1 e sia $f : \mathbb{R}^2 \to \mathbb{R}^2$ una applicazione lineare tale che $f(r \cup s) = r \cup s$. Allora f è diagonalizzabile.
- (b) Sia V uno spazio vettoriale e sia ϕ un prodotto scalare su V. Sia W un sottospazio vettoriale di V tale che $V = W + W^{\perp}$. Allora $W \cap W^{\perp}$ è contenuto in V^{\perp} .
- (c) Siano $A, B \in M(4, \mathbb{R})$ matrici simmetriche tali che $A^4 = B^4 = I$ e tr(A) = tr(B) = 2. Allora A e B sono simili.

Durata: 2 ore.

Scrivere subito sul foglio: nome e cognome, corso di appartenenza e numero di matricola.