ANNO ACCADEMICO 2009/2010 CORSO di LAUREA in FISICA GEOMETRIA II

Primo compitino 25/3/2010

Esercizio 1

Sia V uno spazio vettoriale di dimensione finita sul campo \mathbb{K} e sia φ un prodotto scalare su V (non necessariamente non degenere). Sia $F:V\to V^*$ l'applicazione lineare tale che $F(v)(w)=\varphi(v,w)$ per ogni $v,w\in V$.

- 1) Dimostrare che dati $f,g\in V^*$, esiste $0\neq\lambda\in\mathbb{K}$ tale che $g=\lambda f$ se e solo se $\operatorname{Ker} f=\operatorname{Ker} g$.
- 2) Dato il funzionale $f \in \text{Im} F$, $f \neq 0$ (f è rappresentabile tramite φ), dimostrare che esiste $v \in V$ isotropo tale che f = F(v) se e solo se dim $(\text{Rad}\varphi_{|_{\text{Ker}f}}) > \text{dim} \text{Rad} \varphi$.

Esercizio 2

Sia V uno spazio vettoriale di dimensione finita su \mathbb{C} e sia $f:V\to V$ un endomorfismo. Supponiamo che per ogni $\lambda\in \operatorname{Spettro}(f)$ esisita $k\geq 2$ tale che (*) $\dim(\operatorname{Ker}(f-\lambda id)^k)\leq 2$ e $\dim(\operatorname{Ker}(f-\lambda id)^{k+1})\geq 2$.

Dimostrare che se V ha dimensione dispari, esiste almeno un $\lambda \in \operatorname{Spettro}(f)$ tale che k=2 è l'unico intero per cui valgano le ipotesi (*).

Durata: 2 ore.

Scrivere subito sul foglio: nome, e numero di matricola.