CORSO di LAUREA in FISICA – GEOMETRIA I Compito del 7/6/2010, A. A. 2009/2010

Esercizio 1

Sia $M=\begin{pmatrix} 2 & 1 \\ -2 & 0 \end{pmatrix} \in M(2,\mathbb{R})$ e sia $H=\{A\in M(2,\mathbb{R}) \mid AM=MA\}.$

- (a) Verificare che H è un sottospazio vettoriale di $M(2,\mathbb{R})$ e calcolarne la dimensione.
- (b) Costruire un endomorfismo $f: M(2,\mathbb{R}) \to M(2,\mathbb{R})$ tale che:
 - $\operatorname{rk} f = 2$

 - H è un autospazio per f• $f\begin{pmatrix} 0 & 2 \\ -4 & -2 \end{pmatrix} = \begin{pmatrix} 2 & 1 \\ -6 & -2 \end{pmatrix}$ f non è diagonalizzabile.

Esercizio 2

Sia $M \in M(3,\mathbb{R})$ una matrice tale che ${}^tM = M$ e siano $\lambda_1 > \lambda_2 > \lambda_3$ gli autovalori di M. Per ogni $\lambda \in \mathbb{R}$ sia $b_{\lambda} : \mathbb{R}^3 \times \mathbb{R}^3 \to \mathbb{R}$ il prodotto scalare associato alla matrice $M - \lambda \operatorname{Id}$,.

- (a) Al variare di $\lambda \in \mathbb{R}$, determinare l'indice di nullità $i_0(b_\lambda)$ di b_λ .
- (b) Dire per quali $p \in \{0, 1, 2, 3\}$ esiste $\lambda \in \mathbb{R}$ tale che b_{λ} abbia segnatura (p, 3 p, 0).

Esercizio 3

Per ognuna delle affermazioni seguenti, dire se è vera o falsa, motivando la risposta.

- (a) Sia V uno spazio vettoriale su $\mathbb R$ e siano $b\colon V\times V\to \mathbb R$ e $c\colon V\times V\to \mathbb R$ due prodotti scalari tali che:
 - b è definito positivo
 - per ogni $v, w \in V$ si ha b(v, w) = 0 se e solo se c(v, w) = 0.

Allora c è definito positivo oppure è definito negativo.

- (b) Sia V uno spazio vettoriale su \mathbb{R} e sia $f: V \to V$ un endomorfismo tale per ogni base \mathcal{B} di V la matrice $M_{\mathcal{B}}(f)$ associata a f nella base \mathcal{B} è triangolare superiore. Allora esiste $\lambda \in \mathbb{R}$ tale che $f = \lambda \operatorname{Id}$.
- (c) Esiste una applicazione lineare $f: \mathbb{R}^5 \to \mathbb{R}^5$ tale che dim Im $f = \dim \operatorname{Ker} f$.