A. A. 2009/2010 CORSO di LAUREA in FISICA

GEOMETRIA I Compito dell'11/1/2010

Esercizio 1 [C1]. Si consideri il sottospazio $H = \{(x, y, z) \in \mathbb{R}^3 \mid x + y = 0\}$ di \mathbb{R}^3 e, al variare del parametro $\beta \in \mathbb{R}$, sia

$$A_{\beta} = \begin{pmatrix} 2 & \beta - 2 & -1 \\ 0 & 2 & \beta - 1 \\ \beta - 4 & -5 & 0 \end{pmatrix}.$$

- (a) Determinare i valori di β tali che H è un sottospazio invariante per l'endomorfismo di \mathbb{R}^3 definito da A_{β} .
- (b) Scelta una base S di H, per ciascuno dei valori di β determinati in (a) scrivere la matrice associata rispetto alla base S all'endomorfismo di H indotto per restrizione da A_{β} .
- (c) Per ciascuno dei valori di β determinati in (a), dire se esiste un sottospazio W di dimensione 2 diverso da H e invariante per l'endomorfismo di \mathbb{R}^3 definito da A_{β} .

Esercizio 2 [C1]. Siano U e W sottospazi vettoriali di \mathbb{R}^4 tali che dim W=3 e $\mathbb{R}^4=U\oplus W$. Sia

$$E = \{ f \in \operatorname{End}(\mathbb{R}^4) \mid f(W) \subseteq U, \ f(U) \subseteq W \}.$$

- (a) Verificare che E è un sottospazio vettoriale di $\operatorname{End}(\mathbb{R}^4)$ e calcolarne la dimensione.
- (b) Provare che per ogni $f \in E$ si ha $rk(f) \le 2$.
- (c) Provare che, se $f \in E$ e rk(f) = 2, allora f(W) = U.
- (d) Provare che, se $f \in E$ e rk(f) = 1, allora $f(W) = \{0\}$ oppure $f(U) = \{0\}$.

Esercizio 3 [C2]. Sia \mathbb{K} un campo. Data $A \in M(n, \mathbb{K})$ e $p(t) = a_0 + a_1 t + \cdots + a_d t^d \in \mathbb{K}[t]$, si definisce $p(A) = a_0 I + a_1 A + \cdots + a_d A^d \in M(n, \mathbb{K})$.

Sia $d \ge n$ un intero e sia $I_A = \{p(t) \in \mathbb{K}_d[t] \mid p(A) = 0\}.$

- (a) Verificare che I_A è un sottospazio di $\mathbb{K}_d[t]$.
- (b) Verificare che se $A \in B \in M(n, \mathbb{K})$ sono simili, allora $I_A = I_B$.
- (c) Calcolare $\dim I_A$ nel caso in cui A sia diagonalizzabile e abbia k autovalori distinti.

Esercizio 4 [C2]. Sia ϕ il prodotto scalare su \mathbb{R}^4 associato, rispetto alla base canonica $\{e_1, e_2, e_3, e_4\}$ di \mathbb{R}^4 , alla matrice

$$A = \begin{pmatrix} -1 & 1 & -1 & 0 \\ 1 & 2 & 0 & 1 \\ -1 & 0 & 3 & -1 \\ 0 & 1 & -1 & 1 \end{pmatrix}.$$

- (a) Calcolare la segnatura di ϕ .
- (b) Sia H l'ortogonale (rispetto a ϕ) del sottospazio di \mathbb{R}^4 generato dal vettore v = (2, 0, 1, 1). Dire se esiste un prodotto scalare ψ su \mathbb{R}^4 che verifica le seguenti condizioni:
 - (1) la restrizione di ψ ad H è il prodotto scalare nullo
 - (2) $\psi(e_1, e_3) = -1$
 - (3) $\psi(e_1, e_2) + \psi(e_2, e_3) = 0$
 - (4) $\phi + \psi$ è definito positivo.