Compito di Analisi Matematica 1 per Ingegneria dell'Energia Prima parte, Tema A

2 febbraio 2017

COGNOME:	NOME:	MATR.:

(1) La funzione $f: \mathbb{R} \to \mathbb{R}$ definita da $f(x) = \arctan(-x)$ A: è iniettiva B: è surgettiva su \mathbb{R} C: è periodica D: N.A. E: è illimitata

(2) L'integrale $\int_{-1}^{1} \sqrt{1-x^2} dx$ è uguale a A: 0 B: 1 C: N.A. D: π E: $\pi/2$

(3) Il numero complesso di $e^{\pi i}$ ha parte reale uguale a A: 0 B: 1 C: -1 D: π E: N.A.

(4) La derivata della funzione $f(x) = \sin(\sin(x))$ in x = 0 è uguale a A: 1 B: 2 C: N.A. D: 0 E: -1

(5) La funzione $f(x) = |e^x - 1|$ A: è concava B: N.A. C: è convessa D: è derivabile ovunque E: è discontinua in x = 0

(6) Il limite di $[\cos(x)]^{\frac{1}{x^2}}$ per $x \to 0$ è uguale a A: 1 B: N.A. C: e D: \sqrt{e} E: $1/\sqrt{e}$

(7) La serie di potenze $\sum_{n=0}^{\infty} \frac{(2x)^n}{n!}$ ha raggio di convergenza A: 0 B: 1 C: $+\infty$ D: 1/2 E: N.A.

(8) L'equazione differenziale $y'' - y = \sin(x)$, con condizione iniziale y(0) = 1, A: ha infinite soluzioni B: non ha soluzione C: ha un'unica soluzione D: ha esattamente due soluzioni E: N.A.

	1	2	3	4	5	6	7	8
RISPOSTE	A	Е	С	A	В	Е	С	A

Compito di Analisi Matematica 1 per Ingegneria dell'Energia Prima parte, Tema B

2 febbraio 2017

COGNOME:	NOME:	MATR.:

(1) La funzione $f: \mathbb{R} \to \mathbb{R}$ definita da $f(x) = \arctan(\sin(x))$ A: è iniettiva B: è surgettiva su \mathbb{R} C: è periodica D: N.A. E: è illimitata

(2) L'integrale $\int_{-1}^{1} x e^{x^2} dx$ è uguale a A: 0 B: 1 C: N.A. D: π E: $+\infty$

(3) Il numero complesso di $e^{\frac{\pi}{2}i}$ ha parte reale uguale a A: 0 B: 1 C: -1 D: 1/2 E: N.A.

(4) La derivata della funzione $f(x) = \cos(\sin(x))$ in x = 0 è uguale a A: 1 B: 2 C: N.A. D: 0 E: -1

(5) La funzione f(x) = x |x|A: è concava B: N.A. C: è convessa D: è derivabile ovunque E: è discontinua in x = 0

(6) Il limite di $[\cos(x)]^{\frac{1}{\sin(x)}}$ per $x \to 0$ è uguale a A: 1 B: N.A. C: e D: \sqrt{e} E: $1/\sqrt{e}$

(7) La serie di potenze $\sum_{n=0}^{\infty} \frac{(2x)^n}{n^n}$ ha raggio di convergenza A: 0 B: 1 C: 1/2 D: N.A. E: $+\infty$

(8) L'equazione differenziale $y'' - y = \sin(x)$, con condizioni iniziali y(0) = y'(0) = 1, A: ha infinite soluzioni B: non ha soluzione C: ha un'unica soluzione D: ha esattamente due soluzioni E: N.A.

	1	2	3	4	5	6	7	8
RISPOSTE	С	A	A	D	D	A	Е	С

Compito di Analisi Matematica 1 per Ingegneria dell'Energia Seconda parte, Tema A

2 febbraio 2017

COGNOME:	NOME:	MATR.
COGNOME.	NOME.	1/1/1/1/10

Esercizio 1. Discutere, al variare di $\alpha \in \mathbb{R}$, la convergenza della serie

$$\sum_{n=1}^{\infty} n^{\alpha} \left[1 - n \sin \left(\frac{1}{n} \right) \right].$$

Esercizio 2. Discutere, al variare di $\alpha \in \mathbb{R}$, la convergenza dell'integrale improprio

$$\int_1^\infty \frac{x^\alpha}{\sqrt{x^2+1}} \, dx \, .$$

Calcolare il valore dell'integrale per $\alpha=-1.$

Esercizio 3. Studiare la funzione

$$f(x) = \sqrt[3]{\left|\frac{4}{x^2} - 1\right|}$$

 ${\it tracciandone}\ un\ grafico\ approssimativo.$

Compito di Analisi Matematica 1 per Ingegneria dell'Energia Seconda parte, Tema B

2 febbraio 2017

COGNOME:	NOME:	MATR.
COGNOME.	NOME.	1/1/1/1/10

Esercizio 1. Discutere, al variare di $\alpha \in \mathbb{R}$, la convergenza della serie

$$\sum_{n=1}^{\infty} n^{\alpha} \left[1 - \cos \left(\frac{1}{n} \right) + \sin \left(\frac{1}{n} \right) \right].$$

Esercizio 2. Discutere, al variare di $\alpha \in \mathbb{R}$, la convergenza dell'integrale improprio

$$\int_1^\infty \frac{1}{x\sqrt{x^\alpha + 1}} \, dx \, .$$

Calcolare il valore dell'integrale per $\alpha = 2$.

Esercizio 3. Studiare la funzione

$$f(x) = \sqrt[3]{\left|\frac{16}{x^2} - 1\right|}$$

 ${\it tracciandone}\ un\ grafico\ approssimativo.$