Compito di Analisi Matematica 1 per Ingegneria dell'Energia Prima parte, Tema A

9 giugno 2017

COGNOME:	NOME:	MATR.:
----------	-------	--------

1) La successione $(2n)! - n^n$

A: è oscillante; B: diverge a $-\infty$; C: diverge a $+\infty$;

D: converge ad un numero reale;

2) La serie $\sum_{n=0}^{\infty} \frac{1}{n!}$ ha somma

A: indeterminata;

B: 1;

 $C: +\infty;$

D: e;

E: N.A.

3) La funzione $f(x) = \sqrt[3]{x^3 - 1}$ ha, per $x \to +\infty$,

B: nessun asintoto; A: un asintoto orizzontale; C: un asintoto verticale;

D: un asintoto obliquo; E: N.A.

4) La funzione $f(x) = \log(\cos(x))$

A: è limitata; B: è convessa; C: ha in x = 0 un punto di massimo locale;

D: ha in x = 0 un punto di minimo locale; E: N.A.

5) Il numero complesso 1/i è uguale a

A: N.A.;

B: i;

C: 1;

D: -i;

E: -1.

6) L'equazione y'' - y = 0, con condizioni iniziali y'(0) = 0,

A: non ha soluzione;

B: ha infinite soluzioni;

D: ha un'unica soluzione;

E: ha una soluzione illimitata.

7) L'integrale generalizzato $\int_{1/2}^{1} (\log(2x))^{\alpha} dx$ converge se e solo se A: $\alpha < 0$; B: N.A.; C: $\alpha < 1$; D: $\alpha > 0$; E: $\alpha > 0$

8) L'integrale $\int_{-1}^{1} x \cos(x) dx$ è uguale a A: 1; B: N.A.; C: -1; D

D: π ;

E: 0.

	1	2	3	4	5	6	7	8
RISPOSTE	С	D	D	С	D	В	E	Е

Compito di Analisi Matematica 1 per Ingegneria dell'Energia Seconda parte, Tema A

9 giugno 2017

COGNOME:	NOME:	MATR.:

Esercizio 1. Determinare tutte le soluzioni dell'equazione differenziale

$$y''(x) - y(x) = x(e^x - 1).$$

Esercizio 2. Discutere, al variare del parametro $\alpha \in \mathbb{R}$, la convergenza della serie

$$\sum_{n=1}^{\infty} \frac{n^{\alpha}}{e^{1/n} - 1} \left(\frac{1}{n} + \frac{1}{2n^2} \right).$$

Esercizio 3. Studiare la funzione

$$f(x) = \log\left(\left|\frac{x+1}{x+2}\right|\right),$$

 $tracciandone \ un \ grafico \ qualitativo.$