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1. INTRODUCTION

Motion by mean curvature of a hypersurface has been the subject of several
recent papers, and it is considered an interesting example of geometric evolution.
One of its main features is that it can be interpreted as the gradient flow associated
with the perimeter functional, which therefore relates the evolution to minimal sur-
faces. From the viewpoint of applications, mean curvature flow arises in physical
phenomena which exhibit surface tension effects such as phase transitions in ma-
terial sciences. Also more general geometric evolutions, possibly depending on the
normal vector, the principal curvatures, and explicitly on space-time, may have a
geometric or a physical meaning; we recall, among others, motion by mean curva-
ture with a forcing term (representing, for instance, the action of an exterior field)
and the anisotropic mean curvature flow, which arises naturally in mathematical
models of phenomena such as dendritic growth, crystal growth, and also may be
used to describe the propagation of an electric stimulus in the cardiac tissue.

Motion by mean curvature can be described by a suitable non linear parabolic
equation, which admits a smooth local solution starting from a smooth compact hy-
persurface [8,9,46,51,56,57,59,60]. This (local) evolution can be also characterized
by means of an equation satisfied by the signed distance function from the evolving
front [13,46]. In [60], Huisken proved that a smooth strictly convex compact hy-
persurface shrinks smoothly to a point, generalizing a result of Gage-Hamilton [51]
(see also [6,7]). Ecker-Huisken [42] proved that if the initial smooth hypersurface
is an entire graph then, under suitable assumptions on the slope and the curvature
of the graph, the flow exists globally and it is smooth.

It is however well known that smooth hypersurfaces flowing by mean curvature
can develop singularities at finite time. Examples of singularities (before the ex-
tinction time) can be constructed, among others, by starting from suitable tori
or dumbbell shaped sets [3,28,29,58,81,85]. Results concerning the description of
various types of singularities have been obtained, among others, by Angenent [9],
Altschuler [2], Huisken [61], Ilmanen [63], Angenent-Ilmanen-Velasquez [12,11], and
Hamilton.

The presence of singularities justifies the necessity of introducing weak defini-
tions of motion by mean curvature and, more generally, of geometric evolutions.
Clearly, any weak evolution must coincide with the classical one as long as the latter
exists. Among the generalized methods to treat geometric evolutions past singular-
ities we recall: the approach of Brakke [22], which studies the mean curvature flow
in the context of varifolds theory; the approach of Angenent [8,9], concerning curves
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shortening on surfaces; the approach of Evans-Spruck [45,47,48], Chen-Giga-Goto
[24], Giga-Goto-Ishii-Sato [54], which consider the level set of the solutions, in the
viscosity sense, of suitable parabolic fully non linear partial differential equations,
where the notion of viscosity solution was introduced by Crandall- P.-L. Lions [26],
P.-L. Lions [76], Jensen [70] (see also Jasnow-Kawasaki-Ohta [69], Osher-Sethian
[80], Ishii [67], Soner [82,83], and Ilmanen [63]); the solutions that can be obtained
as asymptotic limits of the scaled Allen-Cahn equation [13,23,27,29,41,44,65,78]
and of a nonlocal equation [36,37,38,39,40,73,74,75]; the variational approach of
Almgren-Taylor-Wang [1] (see also Luckhaus-Sturzenhecker [77]) and its possible
generalizations by means of the minimizing movements of De Giorgi [4,30,50]; the
elliptic regularization method of Ilmanen [66]; the method of set-theoretic subso-
lutions of Ilmanen [64] (see also White [87]); the semigroup approach of Bence-
Merriman-Osher [21] and Evans [43]; the barriers approach of De Giorgi [31,34];
the penalization method on higher derivatives of De Giorgi [32]. We remark that
the relations between all these approaches (after the onset of singularities) have not
been completely clarified.

The barriers method of De Giorgi, which is the argument we are concerned with
in the present paper, provides a weak solution for a number of differential equations.
In the geometric context, it gives a natural notion of weak evolution for a large class
of flows, such as motion by mean curvature in arbitrary codimension (see [5,31]); in
this geometric framework, properties such as uniqueness of the weak evolution, the
comparison principle, and the coincidence of the minimal barrier with the classical
flow as long as it exists, are immediate consequences of the definitions. Moreover
the method is intrinsic, since it is mainly based on the distance function and on the
inclusion between sets.

Let us briefly explain the concept of geometric minimal barrier in R”, and some
of its properties. First we choose a nonempty family F of maps which take some
time interval into the set P(R"™) of all subsets of R™: for instance F can be the
family of all smooth local evolutions with respect to a given geometric law. Then
we define the class B(F) of all maps ¢ : [t, +00[— P(R™) which are barriers for F in
[, +00[ with respect to the inclusion of sets, that is, if f : [a, b] C [¢, +00[— P(R™)
belongs to F and f(a) C ¢(a), then it must hold f(b) C ¢(b) (here t € R is fixed).
Finally, we define the minimal barrier M(E, F,t)(t) with origin in E C R"™, with
respect to F, at time ¢ € [¢, +oo[, as

(1) M(B,F D) = ({ot) : ¢: [F, +oo[» PR"), ¢ € B(F), 6(7) D B}.

We stress that the minimal barrier depends on F and is unique and globally defined,
for an arbitrary initial set F; moreover, it enjoys the comparison principle and,
under minor assumptions on F, the semigroup property.

We remark that, if we choose F = FF as the family of all smooth local geometric
(super) solutions of an equation of the form

0
(1.2) o+ F(Vu, Vi) =0
then M(E, Fp,t) is defined under no assumptions on F and, if f : [a,b] C [t, +00[—
P(R™), f € Fp, then M(f(a), Fp,a)(t) 2 f(t) for any ¢ € [a,b]. It is not difficult
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to verify that the equality holds true when F' is degenerate elliptic but, in general,
it does not hold for a not degenerate elliptic function F', when it happens that the
elements of Fr are not necessarily Fp-barriers. In this respect, it turns out that, if
F is lower semicontinuous and if Fz denotes the family of all strict local geometric
supersolutions of (1.2), then

(1.3) B(F7) = B(Fzs),

where F't is the smallest degenerate elliptic function greater than or equal to F,
that is
F*(p, X) := sup {F(p,Y) (Y > X}.

Here (p, X) € (R™\ {0}) x Sym(n) =: Jy, where Sym(n) denotes the space of all
symmetric real (n X n)-matrices.

In particular, from (1.3) we deduce that M(E,Fz,t) = M(E,Fz,,t). This
shows that, in presence of a non degenerate elliptic function F', the generalized
evolution of any set by (1.2) is governed by the parabolic equation in which F is
replaced by F+. For instance, if we consider a geometric evolution of sets where
the normal velocity of the interface is a nondecreasing function ¢ of the mean cur-
vature, then the resulting evolution is defined by means of the smallest decreasing
function greater than or equal to {. In Proposition 3.2, under further assumptions
on F' (which may explicitly depend on (¢,x)) we prove the analogue of (1.3) in the
viscosity framework, namely that the family of all viscosity subsolutions of

(1.4) % + F(t,z, Vu, V?u) =

coincides with the family of all viscosity subsolutions of

(1.5) % + F*(t,2,Vu, Vu) =0

Starting from the minimal barrier, there is a natural way to construct two set-
valued maps M, (E, F,t), M*(E, F,t) which play a crucial r6le both in the general
theory and in the comparison between the barriers approach and other generalized
evolutions. More precisely, given any set £ C R™ and ¢ > 0, let

(1.6) E; :={z € R" : dist (z, R"\ E) > o},
(1.7) E} = {z € R" : dist(z, E) < o},

and define the lower and upper regularizations

M(E, F,1) = JM(E,, F.T), M (E F]I):=|M(E} F]I).

>0 >0

The map M*(E,F,t) is always an F-barrier, while M, (F,F,t) is an F-barrier
under minor assumptions on F; moreover M, (E , F, f), M* (E , F, f) are stable with
respect to topological interior part and closure respectively, and provide a lower and
an upper bound for any generalized evolution of sets which extends the smooth
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evolutions, satisfies the comparison principle and the semigroup property. Also,
these two maps allow to define the so called n-dimensional fattening phenomenon,
which is a very special singularity of geometric evolutions, i.e., whenever, for some
t € [t, +o0o[ it happens that

H (M (B, F, D)\ Mu(B, F, (1)) >0,

where H" denotes the n-dimensional Hausdorff measure.

Other interesting properties of geometric minimal barriers are the disjoint sets
property and the joint sets property with respect to (F,G), where F, G are two
arbitrary families of set-valued maps. Due to elementary counterexamples (to the
joint sets property, for instance, in case of motion by curvature in two dimensions)
we introduce the regularized versions of these two properties, which read as follows:

ElﬁEz :@ = M*(El,f,i)(t) ﬂM*(EQ,g,Z)(t) :@, i Z to,

(18) EiUE;=R" = M, (B, F,1)(t) uM*(E, G,1)(t) = R", t > to.
When F = Fr and G = Fg for two functions F,G : Jy, — R, these two properties
can be characterized in terms of F' and G. In particular, if we let F.(p, X) :=
—F(—p,—X) for any (p,X) € Jy, the following assertion holds. Assume that
F : Jy — R is continuous, F* < +oo and F* is continuous. Then the regular-
ized disjoint sets property and the regularized joint sets property with respect to
(Fr,Fr,) (resp. with respect to (Fr,Fr)) hold if and only if F is degenerate
elliptic (resp. if and only if FT is odd).

We notice that, in general, the assertions referring to the joint sets property
are more difficult to prove that the corresponding ones concerning the disjoint sets
property. We remark also that the disjoint and joint sets properties, and hence
their characterization, are related to the fattening phenomenon.

Concerning the comparison between barriers and viscosity solutions, it turns out
that the sublevel sets of a viscosity subsolution of (1.4) are barriers and, conversely,
that a function whose sublevel sets are barriers is a viscosity subsolution of (1.4).
Summarizing the comparison results whenever there exists a unique uniformly con-
tinuous viscosity solution of (1.4), one obtains the following result. Let E C R"
be a bounded set; denote by v the unique continuous viscosity solution of (1.4)
with v(¢,z) := (—1) Vdg(z) A1, where dg is the signed distance function from 0F
negative inside F. Then for any ¢ € [t,4+o00[ we have

19 M (E, Fp,t)(t) ={z € R" : v(t,z) < 0},
(1.9) M*(E, Fp,t)(t) ={z € R" : v(t,z) < 0}.
In particular

(1.10) M*(E, Fr, D)(t) \ Mu(E, Fr,B)(t) = {z € R" : v(t,z) = 0}.

Equality (1.10) connects the fattening phenomenon defined through the barriers ap-
proach with the one defined through the level set approach. In case of nonuniqueness
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of viscosity solutions, the minimal barriers selects the maximal viscosity subsolution
of (1.4).

The outline of the paper is the following. In Section 2 we give some notation.
In Section 3 we recall the abstract definitions of barriers, local (in space) barriers
and inner barriers, and some of their properties, such as the relations with the
test family F (see (3.1) and Proposition 3.1), the semigroup property (see (3.3)),
and a useful consequence of the translation invariance (see (3.5)). Using this latter
property we prove that the function My, 7 : [{, +oo[xR™ — R defined in (3.21),
which is the weak evolution (as a function) of an arbitrary initial function ug, pre-
serves the Lipschitz constant (Proposition 3.3). In (3.9), (3.11), and (3.12) we list
some properties of the regularizations and their connections with the minimal bar-
rier. The section contains several examples showing the behaviour of the barriers
(choice of convex test hypersurfaces in Example 3.3, inverse mean curvature flow in
Example 3.4, backward mean curvature flow in Example 3.5, nonconvex anisotropic
curvature flow in Example 3.6) and motivating the lower and upper regularizations
(Example 3.2). Theorem 3.1 is concerned with the relations between barriers and
local barriers, whereas in Theorem 3.2 and Proposition 3.2 we deepen the rela-
tions between B(Fr) and B(Fp+). In subsection 3.2 we discuss some connections
between barriers and the reaction-diffusion approach, following closely some ideas
of Jerrard-Soner [71,72] and Soner [84]. We conclude Section 3 by proving some
results on the outer regularity of the minimal barrier (Proposition 3.4) and on the
right continuity of the distance function between minimal barriers (Lemma 3.1 and
Corollary 3.1). In Section 4 we introduce the notion of barrier solution (Defini-
tion 4.1) and we study existence and stability properties (Proposition 4.1 and 4.2);
these two properties are reminiscent of the existence and stability of viscosity solu-
tions [24]. In Theorems 4.2 and 4.3 we recall the connections between the barriers
and the level set flow; Theorem 4.4 is concerned with the characterization of the
complement of regularized barriers, and Theorem 4.5 with the connections between
barriers and inner barriers. The comparison results between barriers and level set
flow are generalized in Lemma 4.1 of subsection 4.2, where we introduce the no-
tion of comparison flow (by extending a similar definition in [18]). In Section 5 we
recall some results on the disjoint and joint sets properties; in Proposition 5.1 we
reinterpret the disjoint sets property by means of the distance function. In Section
6 we discuss some aspects of the fattening phenomenon. Fattening for geometric
evolutions in two dimensions is discussed in subsection 6.1, and fattening in dimen-
sion n > 3 is discussed in subsection 6.2. In presence of fattening, the connections
between different weak approaches have not, to our knowledge, completely clarified,
even in two dimensions (see Example 6.1 and below). In this section we include an
explicit example of three-dimensional fattening for motion by mean curvature in
codimension 2 (see Example 6.6). In the Appendix we list some assumptions used
in the paper, following the notation of [54].

Most of the results discussed in the present paper are proved in [15,16] (see also
[14,18,19,64]); we will prove in details only original statements not appearing in
[15,16].

2. SOME NOTATION

In the following we let I := [tq, +oo[, for a fixed o € R. We denote by P(R"™)
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(resp. A(R™), C(R™)) the family of all (resp. open, closed) subsets of R", n > 1,
and by H™ we mean the m-dimensional Hausdorff measure in R", for m € [0, n].

Given a set E C R"™, we denote by int(E), E and OF the interior part, the
closure and the boundary of E, respectively. We set dist(-,0)) = +o0, dp(z) :=
dist(z, F) —dist(z, R™\ E). Given a map ¢ : L — P(R"), where L C R is a convex
set, we let dy : L x R™ — R be the function defined as

(2.1) dy(t,z) == dist(z, ¢(t)) — dist (z, R™ \ $(t)) = dy) ().

If ¢1,¢2: L = P(R™), by ¢1 C ¢o (resp. ¢1 = ¢2, ¢1 N ¢2) we mean ¢1(t) C $2(1)
(resp. ¢1(t) = p2(t), #1(t) N ¢a(t)) for any t € L.

Given a function v : L x R™ — R we denote by v, (resp. v*) the lower (resp.
upper) semicontinuous envelope of v.

For x € R™ and R > 0 we set Br(z) := {y € R® : |y — x| < R}. We let
aVb:=max{a,b} and a A b := min{a, b}.

Given p € R" \ {0}, we set P, :=Id — p® p/|p|?, and

Jo := (R™\ {0}) x Sym(n), Ji:=TxR" x (R"\ {0}) x Sym(n).

Given a function F : J; — R we denote by F, (resp. F*) the lower (resp. upper)
semicontinuous envelope of F', defined on J;.

We recall that F' is geometric [53] if F(t,xz, A\p, AX + op ® p) = AF(t,z,p, X) for
any A >0, 0 € R, (t,z,p, X) € J1, and that F is degenerate elliptic if

(22)  F(t,,p,X)>F(t,0,p,Y),  (t,a,p,X)€ J1, ¥ € Sym(n),Y > X.

In the sequel we shall always assume that F' is geometric.

We say that F' is locally Lipschitz in X if for any (¢,z,p) € I x R" x (R"\ {0})
the function F(¢,z,p,-) is locally Lipschitz.

We say that F' is bounded below if, for any compact set K C .Jy, there exists a
constant cx € R such that

inf{F(t,x,p,X):tEI,xER”,(p,X) EK} > ck.
For any (¢,z,p, X) € J; we set
F.(t,z,p,X):=—F(t,z,—p,—X),
(2.3) Ft(t,z,p,X) :=sup{F(t,z,p,Y): Y > X},
F~(t,z,p,X) =inf {F(t,z,p,Y): Y < X}.

Note that F'+ and F~ are always degenerate elliptic, and F is degenerate elliptic if
and only if F is degenerate elliptic. Furthermore, (Fc)c = F and (F +)c = (Fc) B
We give definitions similar to (2.3) if the function F is defined on Jy (resp. Jo, J1)-
We say that F': Jyo — R is compatible from above (resp. from below) if there exists
an odd degenerate elliptic function F} : Jy — R such that F} > F (resp. Fy < F).
We notice that F' : Jy — R is compatible from above (resp. below) if and only if
(F+)C > F* (resp. (F‘)C < F7).

Unless otherwise specified, when we deal with the viscosity theory we mean the
one developed in [54] (see also [25] and references therein).
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3. BARRIERS, LOCAL BARRIERS AND INNER BARRIERS

Let us recall the geometric barriers and minimal barriers in the sense of De Giorgi
(with respect to a family F of set-valued maps and to the inclusion C between
subsets of R™); we refer to the original papers [31,34] for the abstract definition of
barrier and minimal barrier. We also refer to [15,16] for the proofs of the assertions
which are not detailed demonstrated here.

Definition 3.1 (F-barriers). Let F be a family of functions with the following
property: for any f € F there exist a,b € R, a < b, such that f : [a,b] = P(R"™).
A function ¢ is a barrier with respect to F if and only if ¢ maps a convex set
L C I into P(R™) and the following property holds: if f : [a,b] C L — P(R")
belongs to F and f(a) C ¢(a) then f(b) C ¢(b). Given such a map ¢, we shall
write ¢ € B(F,L). When L =1, we simply write ¢ € B (F).

Notice that if ¢; € B(F,L) for every ¢ € A, A any family of indices, then
Niea & € BF, L).

Definition 3.2 (minimal barrier). Let E C R"™ be a given set and let t € I.
The minimal barrier M(E,F,t) : [t,+oo] — P(R"™) (with origin in E at time t)
with respect to the family F at any time t >t is defined by

M(E, FD)(t):=({(t) : ¢: [ +oo[ = P(R"), ¢ € BIF, [}, +0]), ¢(F) 2 B},
Clearly
M (E,F,t) € B(F,[t, +o0).

Moreover the following properties are immediate:

e comparison principle: F; C Ey = M (El, F, f) M (Eg, F, f);

e initial datum: M (E, F,?) (¢) = E;

e relaxation of the elements of F: if f : [a,b] C [t, +00[— P(R"), f € F, then

(3.1) ft) C M(f(a),]:, a)(t), t € [a,b];

e semigroup property: assume that the family F satisfies the following assumption:
(3.2)
given f : [a,b] C [t, +oo[— P(R"), f € F, t € |a,b], then f| ., fl,,, €F

Then
(33) M (E,F,1) (t2) = M (M (E,F,1) (t1), F, t1) (t2), T <t <to.

Moreover f g g = B(F’ [Z’ +OOD 2 B(g7 [Za +OOD7 hence M(E,f,Z) g M(E, g,z)

In the sequel, unless otherwise specified, we shall assume ¢t = tg, and we often
drop it in the notation.

We say that F is translation invariant (in space) if, for any f € F and y € R",
themap f+y:t— f(t)+y:={x € R": (x —y) € f(t)} belongs to F.

If F is translation invariant one can check that

(3.4) ¢ € B(F)=int(¢) € B(F),
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which implies that the minimal barrier with origin in an open set remains open for
any time.

Another useful property of minimal barriers, which implies (under a further
assumption on F) the preservation of the Lipschitz constant for M,,,  (see Propo-
sition 3.3), is the following:

e if F is translation invariant, for any ¢ > 0 and any t € I we have

N +

(3.5) M F)(0) 2 (ME.F)W)

The following example clarifies the choice of F when dealing with geometric equa-
tions of the form (1.4).

Example 3.1. (choice of the families FF,FI?,F]%,?;) Let F:J; — R, let
a,b € R, a < b, [a,b] C I and let f : [a,b] — P(R™). We write f € Fr (and
we say that f is a smooth local geometric supersolution of (1.4)) if and only if the
following conditions hold:
(i) f(t) is closed and 9f(t) is compact for any t € [a, b];

(ii) there exists an open set A C R™ such that df € C*([a,b] x A) and 0f(t) C A

for any t € [a, b];
(iii) the following inequality holds

od
(3.6) 8—;(15,3;) + F(t, 2, Vs (t,x), V2ds(t,2)) >0,  telabl, z€df(t).
We write f € Fz (resp. f € .7:}%, f € Fg) if the strict inequality (resp. the
inequality <, the equality) holds in (3.6).

The minimal barrier with respect to Fr starting from the set £ C R™ will be
from now on our definition of weak evolution of E, concerning equations of the
form (1.4). Clearly, if F' does not depend on z, then all families in Example 3.1 are
translation invariant.

We recall that motion by mean curvature of hypersurfaces corresponds to the
choice

(37) F(ta Z,p, X) = _tr(PPXPP)’

and that motion by mean curvature of manifolds of codimension £ >1 corresponds
to the choice

n—k
(3.8) F(p,X)=— Z Xiy

where A\; < ... < \,_ are the eigenvalues of the matrix P, X P, which correspond
to eigenvectors orthogonal to p, see [5,31].

We remark that, when dealing with the evolution of oriented hypersurfaces, we
prefer to think of the evolution of the solid set E rather than of the evolution of its
boundary OF (see Remark 5.1 and below).

The following example [19] shows that, unless that F is open, M(E, FF) is very
sensible to slight modifications of the original set F.
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Example 3.2. Let n =2, E = {x = (z1,22) € R?: |11] < 1, |xs| < 1} and let F
be as in (3.7). Then, as a consequence of the definitions and the strong maximum
principle one has

M(E, Fp)(t) = M(int(E), Fr)(t),  t>to.
Similarly, if E = {(z1,72) € R?: 22 + 22 < 1} and z* € 9E, then

M(E\ {z*}, Fr)(t) = M(int(E), Fr)(¢), t > to.

In view of Example 3.2, the minimal barrier M(FE, F) is not always “topologically
stable”; on the other hand, the regularization maps M, (F,F), M*(E,F) defined
in the Introduction, enjoy the following stability property:

e stability of the lower and upper regularizations with respect to interior part and
closure: if F is translation invariant, then for any ¢ € I we have

M (E, F)(t) = M. (int(E), F) (t) € AR"),

(3.9) —
M*(E,F)(t) = M*(E, F)(t) € C(R™).

We have already observed that M*(E,F) belongs to B(F). One can ask under

which conditions on F it holds M, (E,F) € B(F). The following result holds:

e set

(3.10) F¢:={f:[a,b] > P(R"), f € F, f(t) is compact for any t € [a, b]}.

If F is translation invariant, then M, (FE,F¢) € B(F¢) and for any t € I there
holds

(3.11) E € AR™) = M,(E, F°)(t) = M(E, F°)(t) € AR™).

If additionally F satisfies (3.2), then M, (FE, F°) satisfies the semigroup property.

We notice that, if F': J; — R is bounded below, then it turns out that B(Fp) =
B((Fr)°), and therefore in this case we can ensure that M, (E, Fr) € B(Fr).

We also note that, under mild conditions on F', and possibly regularizing the
minimal barrier, we can interchange Fr with 7 when defining the minimal barrier.
Indeed, the following property holds:

e assume that F': Jy — R is either lower semicontinuous and locally Lipschitz in

X, or is continuous and degenerate elliptic. Then, for any £ C R™ we have

(3.12) M. (E,Fp) = M.(E,Fz),  M*(E,Fr) = M*(E,F3).

The following examples show the role of the choice of F in the definition of the
minimal barriers: Example 3.3 concerns motion by curvature whenever F consists
of smooth conwver evolutions, and Example 3.4 concerns the case of inverse mean
curvature flow (see [62]).
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Example 3.3. Let n =2, F be as in (3.7) and
Cr:={f:[a,b] > P(R"), f € Fr, f(t) is convex for any ¢ € [a, b]},
Drp :={f:[a,b] > PR"), f € Fr, f(a) is convex}.
Then, for any £ C R? we have
M (E,Cr) = M.(E,DF) = Mu(E, Frno),
M*(E,Cp) = M*(E,Dr) = M*(E, Frao).

(3.13)

Example 3.4. Let us define the family G as follows. A function f : [a,b] — P(R")
belongs to G if and only if f(t) is compact for any t € [a, ], there exists an open
set A C R" such that dy € C*([a,b] x A), 0f(t) C A for any t € [a,b], and

d
Ads >0, —+-—2>0 t€la,b[,x € af(t).
f

Then M(E,G) provides a definition of weak evolution of any convex set £ C R"
by the inverse mean curvature.

Inclusion (3.1) becomes an equality whenever F = Fp for suitable functions F
(in particular for motion by mean curvature of hypersurfaces).

Proposition 3.1 (extension of classical flows). Assume that F : J; — R does
not depend on x and is degenerate elliptic. Let f : [a,b] C I — P(R"), f € Fr.
Then

(3.14) f@) = M(f(a), Fr,a)(t), t €la,b.

Proof. 1t is enough to show that f(t) 2 M(f(a), Fr,a)(t) for any t € [a,b]. Ob-
serve that the following geometric maximum principle holds: let g,h : [a,b] C I —
P(R"), g € Fr, h € F5. Then

g(a) € h(a) = g(b) € h(b).
It follows that f € B(FF,[a,b]), and (3.14) follows. [

Notice that we have defined M(E, Fp) under no assumptions on F' (such as
continuity and degenerate ellipticity); clearly, to end up with a nontrivial minimal
barrier, we have to ensure that B(Fp) is nonempty, which is true under minor
assumptions, such as boundedness below of F'. Even under these assumptions, it
may happen that the minimal barrier becomes trivial for all times ¢ € |to, +00|.
Indeed, let us consider the following example.

Example 3.5. Let F': Jy — R be the function corresponding to motion by mean
curvature with the “wrong” sign (corresponding to the backward heat equation for
the signed distance function), i.e.,

F(p,X) = tr(P, X P,),
and let A € A(R™). Then, as a consequence of (3.16) below, we have
M(A, Fr)(t) =R", t > to.
Barriers are a global concept, since they are defined through sets inclusions. In
order to derive differential properties of the evolution, one can look for locality

properties of barriers. Following [16], we introduce the local barriers and the local
minimal barrier; the localization is with respect to the space variable.
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Definition 3.3 (local barriers). Let F be as in Definition 3.1. A function ¢ is
a local barrier with respect to F if and only if there exists a convexr set L C I such
that ¢ : L — P(R™) and the following property holds: for any x € R™ there exists
R > 0 (depending on ¢ and x) so that if f : [a,b] C L — P(R™) belongs to F and
f(a) C ¢(a) N Br(x), then f(b) C ¢(b). We denote by Bioc (F) the family of all
local barriers ¢ such that L = I (that is, local barriers on the whole of I).

Definition 3.4 (local minimal barrier). Let E C R"™ be a given set and let
t € I. The local minimal barrier Mio.(E, F,t) : [t, +oo[— P(R™) (with origin in
E at time t) with respect to the family F at any time t > t is defined by

Mioo(B, F9(0):=({0(t) : ¢: [, +00l= P(R"), 6 € Buoe(F, [}, +o0]), 6(2) 2 F}.

The definitions of regularized local barriers can be given in the obvious way.
Notice also that from Definition 3.4 it does not directly follow that the local minimal
barrier is a local barrier, because of the dependence of R on ¢.

The following theorem holds [16].

Theorem 3.1 (connections between barriers and local barriers). Assume
that F' : Jo — R is lower semicontinuous. Then

Bioe(FF) = B(FF)-

In particular, for any E C R™ we have Mo (E, .7:}?) = M(E, .7-"}?)

Considering the opposite sets inclusion in Definition 3.1, we can define the inner
barriers [16].

Definition 3.5 (inner barriers). Let F be as in Definition 3.1. A function qg 18
an inner barrier with respect to F if and only iquS maps a convex set L C I into
P(R”) and the following property holds: if f : [a,b] C L — P(R"™) belongs to F
and (;S( ) C int(f(a)) then B(b) C int(f(b)). Given such a map é, we shall write
¢ € B(F,L). When L = I, we simply write ¢ € B(F).

The definition of local inner barrier can be given in the obvious way.

Definition 3.6 (maximal inner barrier and its regularizations). Let E C R"
be a given set and let t € I. The mazimal inner barrier N(E,F,t ) : [t,+oo[—
P(R™) (with origin in E at time t) with respect to the family F at any time t > ¢
s defined by

NE,FD®):=J{dt): ¢: [T +oo] - PR™), ¢ B[+, 37) C B}
Its lower and upper regularization are defined by

N(E,F () = JNE;, FDH{), N(EFH{) = NESFDHE).

>0 >0
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Note that ¢ € B(Fr) if and only if R™ \ ¢ € B (]—"Iéc). Consequently, for any
E CR" R"\ M(E,Fp) = N(R"\ E, F5,), hence

R™\ M.(E, Fr) = N*(R"\ E, F5 ),

(3.15)
R"\ M*(E, Fr) = Ni.(R"\ E, F§ ).

If the function F' is not degenerate elliptic, then the minimal barriers do not
coincide, in general, with the smooth evolutions (whenever they exist). One can
ask what the minimal barrier represents in this case. It turns out that the minimal
barrier with respect to Fr coincides with the minimal barrier with respect to Fp+,
where F'T is defined in (2.3) and is degenerate elliptic. More precisely, there holds
the following theorem [16], which is one of the main results on barriers.

Theorem 3.2 (representation of the minimal barrier for not degenerate
elliptic functions F'). Assume that F : Jy — R is lower semicontinuous. Then

B(F7) = B(Fz.)-
In particular, for any E C R™ we have
(3.16) M(E, Fz) = M(E, F3.).

This theorem clarifies inclusion (3.1) (when F = Fp). Under further assump-
tions on F', we can prove a viscosity version of Theorem 3.2.

Proposition 3.2. Let F: J; - R and u : I x R™ — R be given functions. As-
sume that F is lower (resp. upper) semicontinuous, (FT), < +oo (resp. (F~)* >
—00) on Ji, and (F*).(t,2,0,X) = (F)"(t,2,0,X) (resp. (F7)*(t,2,0,X) =
(F*)~(t,2,0,X)) foranyt € I, z € R™ and X € Sym(n). Then u is a viscosity sub-
solution (resp. supersolution) of (1.4) in |to, +oo] XR™ if and only if u is a viscosity
subsolution (resp. supersolution) of (1.5) (resp. of % + F~ (t,a:, Vu, V2u) =0)
in [to, +o0[ XR".

Proof. As (F1). = (F,)™, it is enough to show the assertion for subsolutions.
As F* > F, we only need to show that if u is a subsolution of (1.4) then u is
a subsolution of (1.5). Observe that F* is lower semicontinuous on J;, hence
(FF)e = (Fu)" on Jy. Let (£,7) € Jto, +oo[ xR™ and let ¢ be a smooth function
such that (u* — ) has a maximum at (¢,Z). Assume by contradiction that

Y

(3.17) S+ (FN. (8,7, VY, V) =2¢ >0 at (I,7).

By definition of (F'1), = (F,)" and since (FT), < 400, there exists X € Sym(n),
X > V%y(t, ), such that

(3.18) (FN). (6,7, VY, V) < F (1,7, VY, X) +¢  at (,7).

Define .
U(t,z) :=p(t,z) + 5<(a; —-7), (X - V*((,7))(z — 7)),
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where (-, -) stands for the scalar product. Then V2¥(£,7) = X and (u* — ¥) has a
maximum at (¢, Z). Therefore, using the fact that « is a subsolution of (1.4), (3.18)
and (3.17), at (¢,7) we have

0> %—\f +F, (1,7, VT, V?0) = %—Tf + . (1,7, V¢, X)
> f;f + (F).(f,7, Vb, V2) —c = ¢ > 0,

a contradiction. O

A comment is in order about the assumptions in Proposition 3.2. In general
(F*). > (F.)* on J; and the equality holds if F is degenerate elliptic. If F' is lower
semicontinuous, then (FT), = (F,)* on Ji. Also, the equality (F*),(¢,2,0,X) =
(Fy)*(t,z,0,X) holds for a geometric function F : J; — R which coincides with
F7 outside a compact set K of J;, and is bounded on K. Indeed, if X # 0, using
the fact that F'* is geometric, we have

(F"')*(t,x,O,X) = inf liminf F*(t,2,pn, Xy,)

Pn—0,X,—X

(3.19) X
= inf liminf |p,|F™ (t,:c, p—", —n) .
Pn—0,Xn—X Pl [Pn
Since ‘% (3.19) and F = F* outside the compact set K, we get

X
(F*) (t,2,0,X)=inf liminf _|p,|F (t z, P ")
(3.20) * Pn—0,Xn—X " 1pnl [Pal

= (F*)(t7$707X) S (F*)+(t,.7},0,X).

Let X = 0 and let (p,, X,) — (0,0) be the minimizing sequence for (F+) (t,2,0,0),
e., (F+)*(t, z,0,0) = lirf F*(t,x,pn, X,). Possibly passing to a subsequence,
n——+0o0

one of the following two cases occurs:
(i) (¢, =z, |p £ |p |) € K for any n;
(i) (¢, =, |p D T |) ¢ K for any n.

Using the fact that F'T is bounded on K, if (i) holds we get (F'T),(¢,z,0,0) = 0,
whereas, in case (ii), one can check that (F1),(t,z,0,0) < 0. Therefore, we can
assume that the minimizing sequence satisfies (ii). Reasoning in a similar way, we
can also assume that the same holds for the minimizing sequence for F (¢, z,0,0).

Since F* = F outside K, we deduce that (¢,z,p,, X,) is a minimizing sequence
for both (F1),(t,z,0,0) and Fy(t,,0,0), which implies (3.20) with X = 0.

Example 3.6. Let n = 2 and consider the anisotropic motion by mean curvature
given by
F(p, X) = —tr(P,X Bp)y(9) (v(0) + 9" (6)),

where 1 : S — ]0, +-00] is a smooth function and p = (py, p2) = (cos0,sinf) (see
[20]). Then, if ¢ + " > 0 on S! (i.e., convex anisotropy), we have F+ = F. If
the anisotropy is not convex, then there exists § € St such that 9 (6) + 4" () < 0,
which implies F*(p, X) = +oo for any X € Sym(2), where p = (cos0,sin6).
Indeed, F(p,-), being linear with the “wrong sign”, behaves as the backward mean
curvature flow, compare Example 3.5.
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3.1. The function M, r. In this subsection, starting from the weak evolution
defined on sets as in the previous sections, we recall the definition of the weak
solution as a function, and we study some of its properties. The procedure we
follow is the one in [15], and is the opposite with respect to the one used to define
the level set flow. This kind of procedure has also been used by Evans in [43] when
considering the semigroup approach to motion by mean curvature.

We have seen that the minimal barrier starting from an arbitrary set £ is unique
and globally defined. Therefore, given any initial function ug : R® — R, there is a
natural way to construct a unique global evolution function M, #(¢,z) (assuming
up as initial datum): it is indeed defined as that function which, for any A € R,
has M({ug < A}, F)(t) as A-sublevel set at time ¢ € I.

Definition 3.7. Let up : R" — R be a given function. The function My, 7 :
I xR"™ — RU{+oo} is defined by
(3.21) My, 7, z) :==inf{A € R: M({ug < A}, F)(t) > z}.

If B(F) = B(F€) (see (3.10)), if M(A, F)(t) € A(R") for any A € A(R"), and
if ug : R™ — R is upper semicontinuous, then for any A € R™ U {400} there holds

My, 7(t, ) = inf{A € R: M.({uo < A}, F)(t) 2 =},
and
(3.22) {z € R" : My, 7(t,x) < A} = M({uo < A}, F)(2), tel.

Hence, under these assumptions, M, #(t,) is upper semicontinuous.

Proposition 3.3 (preservation of the Lipschitz constant). Assume that F is
translation invariant and B(F) = B(F¢). Let ug : R™ — R be a Lipschitz function,
and let k > 0 be its Lipschitz constant. Then

|Mu0,.7:(t7$)_Muo,.7:(t7y)| Sk|$—y|, ac,yER”, tEIa
where we assume that the left hand side is zero if My, 7(t,x) and My, #(t,y) are
both equal to +00 or —oo.
Proof. Let \,p € R U {£oo} be such that g > A, and set E) := {ug < A},
E, := {uo < p}. Then we have

(3.23) E, 2 (Ex)fs.

k

Indeed, the inclusion is obvious if || or || is equal to +o0o; otherwise, if z € (Ex)T_,
=

then z =z + “—;)‘q for some x € E) and some ¢ € R™ with |g| < 1. Hence, as ug is
k-Lipschitz,

- A - A
U()(Z) = U (.T + MTQ> < ’U,()(.’L') + /LTk < W,
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so that z € E,. Then, by (3.22), (3.23) and (3.5) we find

(@ Muoz(t,2) < 1} = M(E, F)(E) 2 M((Ba) . F) 0
(3.24) + +
s = ({7 Mugrt2) <0}) -

k k

> (M(Br 7))

Let y,w € R™ and set A := My, #(t,y), p := My, #(t,w); let us prove that
(3.25) = Al < kly —wl.

If A = p there is nothing to prove. Without loss of generality, we can assume A < p.
Let € > 0 be such that A+ e < p. As w € {M,, #(t,-) > p}, by (3.24) we have

w ¢ ({Myg,7(t, ) <A+ 6})1__1?_6' As y € {My, #(t,) < A+ €}, we then obtain

ly — w| > “_TH Letting € | 0 we get (3.25). In particular, it follows that either
My 7(t,-) = +00, or My, #(t,) = —o0, or My, #(t,-) : R® — R is a Lipschitz
function with Lipschitz constant less than or equal to k. [

If vg is smooth, bounded, constant outside a bounded subset of R™, and if F' is
as in (3.7), Evans-Spruck [47] showed that

(3.26) sup/ VMo 7| do S/ V| dz,
n Rn

tel

where we have used the fact that M, 7, coincides with the (Lipschitz continuous)
viscosity solution v assuming vg as initial datum, see Theorem 4.2 below. As we
have seen, we can define M,,, 7 under no restriction on vy; we do not know wether
inequality (3.26) still holds for an initial datum vy : R®™ — R which is upper
semicontinuous and with bounded variation on R™ (interpreting the integrals as
total variations).

We also do not know wether the two maps

t— P(M.(E,Fp)t)), t—PM*(E, Fr)))

are nonincreasing, where P denotes the perimeter in R™. In this respect, we recall
that Evans-Spruck [47] proved that if £ has compact (n — 1)-dimensional rectifiable
boundary, and H" 1 (0E) < +oo, then

(3.27) H" 1 (0{v(t,-) = 0}) < CH" ' (OE), tel,

where C' > 0 depends only on the dimension. Notice that, thanks to the results of
[19], (3.27) can be rewritten in terms of barriers as

-1 (8(M*(E,.7-'F)(t) \ M*(E,}'F)(t))) <CH"'(OE), tel
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3.2. Some connections with the reaction-diffusion equation. In this sub-
section we recall some ideas connecting the reaction-diffusion equations and the
barriers, which have been pointed out by Jerrard-Soner [71,72] and Soner [84] (see
also Ilmanen [65] and Souganidis [86]). Let E be a smooth bounded open set and
F be as in (3.7); let u be the solution of the reaction-diffusion equation

Oue 3
5 = Au, — e_2(u€ — Ue),

assuming an “admissible” initial datum 4, which is a function which approximates
the characteristic function of £ as ¢ — 0, and has equibounded energy, i.e.,

(3.28) sup pg(R™) < 400,

where

1 1
du;(z) := eE(t, z) dz, E. = E\VUC\Z + < (uZ —1)%
€

Then, it turns out that there exists a subsequence {€,,} such that {u;™} converges
to a Radon measure p;, in the weak* topology, for all t € I. Set

(3.29) () := spt(p)-

Then there holds

(3.30) L'(t) C M*(0E,Fr)(t), tel
To check (3.30), let us show that

(3.31) R"\I'(t) € B(FF).

Let f :[a,b] C I — P(R"), f € Fp, f(a) C R"\T'(a). We have to prove that
f(b) CR™\T'(b). We recall [71,72,84] that there is a constant C' > 0 so that

(3.32) / n(t,z)E(t,x) de < ec(t_a)/ n(a,z)E(a, ) dz, t € la,b],
for € sufficiently small, where 7 : [a,b] x R® — R is any smooth nonnegative
function.

Following Soner [84], we can choose 0 < ¢ < dist(f(a),'(a))/2 sufficiently small
and a smooth nonnegative function 77 with the following properties: ||7j||cz < +oo0,
7(t,x) = 1 if dist(z, f(t)) > 6, and n(t,z) = 0 if dist(z, f(¢)) > 20. Recalling that
pe™ — g, from (3.32) and the choice of 77 we get

lim (b, x)E°™ (b, x) dz :/ 7(b, z)dpp(z)

m——+0o0 R» n

n

S eC’(b—a.) ]jm ﬁ(a’ ./,C)Eem (a7 x) dx — / ﬁ(a, .’Ij)d,u,a(x) - 0-

m——+oo Rn

Therefore spt(7(b, -)) N spt(us) = 0, so that f(b) C R™\ I'(b), and (3.31) is proved.
Using (3.31), the fact that I'(0) = 0F, and [19] (see also (4.6)) we deduce

R"\T(t) 2 M. (R"\ OFE, Fr)(t) = R" \ M*(OFE, Fr)(t), tel,
which proves (3.30).
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3.3. Outer regularity of the minimal barrier and right continuity of the
distance function between minimal barriers. In this subsection we show how
a suitable notion of outer regularity of F reflects on the outer regularity of the
minimal barrier, and we study some continuity properties of the distance function
between barriers.

Definition 3.8. We say that F is outer regular if for any f : [a,b] C I — P(R"),
f € F, we have f(t) = int(f(t)) for any t € [a,b].

Given £ C R", we set
E" := ENint(E).

If E = E", we say that the set FE is outer regular.

Proposition 3.4 (outer regularity of the minimal barrier). Assume that F
is outer reqular. Let ¢ : I — P(R™), ¢ € B(F), and let ¢" : I — P(R"™) be the
map defined by ¢ (t) := ¢(t)" for anyt € I. Then ¢" € B(F). Moreover, for any
E CR"™, we have

(3.33) M(E,F)(t) = M(E, F)(t)" = M(E", F)(t),  t>to.

In particular M(E, F)(t) C M( int(E), F)(t) for any t > to, and if E is closed
then

(3.34) M(E,F)(t) = M( int(E), F)(t), t > to.

Proof. Let f :[a,b] C I — PR"), fe€F, f(a) C ¢"(a) C ¢(a). As ¢ € B(F) we
have f(b) C ¢(b), and then int(f(b)) = f(b) C int(¢(b)). Hence f(b) C ¢ (b).

The inclusion M(E,F) O M(E,F)" is immediate. To prove the opposite in-
equality, it is enough to show that the map ¢ : I — P(R"™) defined by

noo [E if £ = to,
o(t) = { M(E, F)(t)" if t > to

belongs to B(F). Let f : [a,b] C I — P(R"), f € F, f(a) C ¢(a). If a > to then
f(b) C ¢(b) by the previous assertion. If a = to, then f(a) = int(f(a)) C int(E),
hence f(a) C E" = M(E,F)(to)", so that f(b) C ¢(b).

In addition M(E",F) C M(E, F), and the opposite inclusion follows by observ-
ing that the map ¢ : I — P(R"™) defined by

E if t = to,
M(ET, F)(t) ift >t

OB

belongs to B (F). O

Equality (3.33) does not hold in general for M*(E, F); take for instance n = 2,
E :={(z1,72) € R?: 25, =0} and F as in (3.7). Then M*(E, Fr)(t) = E for any
t > tg, while M*(E, Fr)(t)" = 0 for any ¢ > t.

Notice that, if F is outer regular and E has empty interior, then from (3.34) we
deduce that M(E, F)(t) = 0 for any ¢ > to.

The following lemma will be useful to prove a continuity property of the distance
between minimal barriers.
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Lemma 3.1. Let F1,Fy : Jy — R be bounded below and let ¢ € B(Fp,), ¢ €
B(fp2) Set

(3.35) n(t) :== dist(R™ \ ¢(t), R™ \ 9(t)), tel.
Then

(3.36)  7n(to) < lirritinfn(s), limsupn(o) < n(t) < limiitnf n(s), t > to.
Sito O'Tt S

Assume in addition that R™ \ ¢ € B(Fr,) and R™ \ ¢ € B(Fg,) for two suitable
functions F3, Fy : Jy — R bounded below. If R"\ ¢ = (R™\ ¢)" and R™ \ ¢ =
(R™\ )", then

(3.37) n(te) =limn(s),  limsupn(o) < n(t) =limn(s), > to.
slto ot st

Proof. Given any F : Jy — R bounded below, there exists (see [15]) a strictly
increasing function g : [0, +oo[— [0, +o0[, or € C([0, +00])NC>(]0, +00), or(0) =
0, such that if we take any to < a < b, € > 0 and x € R™, we have that the map
t € [a,b] = By (e+b—to—t)(2) belongs to Fz.

It follows that, if x € B(Fr) and t € I, then

(3.38) {z € R" : dist(z,R™ \ x(t)) > or(s —t)} C int(x(s)), s> t.

Indeed, let s >t and z € x(t) be such that dist(z, R™ \ x(t)) >0 > or(s —t). Let

us evolve the ball Bz(x) as explained above on [¢, s|, and denote this evolution by
o € [t,s] = B(o); since it belongs to Fr, we have € B(s) C int(x(s)) and (3.38)
is proved.

Consequently, for any s >t we have

R™ \ int(¢p(s)) C {x € R™ : dist(z, R" \ ¢(t)) < or, (s — 1)}

(3.39) R" \ int(¢)(s)) C {z € R™ : dist(z, R" \ 9(t)) < or, (s — t)}.

For any € > 0let y € R™\int(¢(s)), z € R™\int(¢)(s)) be such that |y—z| < n(s)+e.
By (3.39) we have

dist(y, R"\ ¢(t)) < or (s —1),  dist(z, R" \ ¢(1)) < or, (s — 1)
Using the triangular property of the distance and setting g := g, + 0r,, we have
n(t) < n(s) + e+ dist(y, R™ \ ¢(2)) + dist(z, R" \ ¢ (t)) <n(s) + o(s — ) + €.

Letting € — 0% we get n(s) > n(t) — o(s — t), which implies (3.36).

Let us now prove (3.37). Let t € I, € > 0, z. € R™\int(é(¢)), ye € R™\ int(¢ (1))
be such that |z, — y.| < n(t) + €. We can assume that z. € (R™ \ ¢(t)) and
ye € AR\ (1) Tn particular, as R" \ ¢ = (R"\ ¢)7, R" \ § = (R"\ 9)’,
we have z. € int(R" \ ¢(t)), ye € int(R™\ ¢(t)). Hence, for any p > 0 the set
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By(ze) Nint(R™ \ ¢(t)) (resp. the set By(ye) Nint(R™ \ 9(t))) contains a closed
ball D; (resp. Ds). As R"\ ¢ € B(Fr,) and R" \ ¢ € B(Fr,), we can find
s = s(€,xe,ye) > t so that a suitable evolution D;(c) (resp. Ds(o)) of Dy (resp.
of D,) belongs to Fp, (resp. to Fp,) and it is contained in R™ \ ¢(o) (resp. in
R™\ ¢(0)) for any o € [t, s].

Let z, € Dy(0) and w, € Do(0). By the triangular property of n we have, for any
o € [t,s],

n(0) < |zo —wo| < 2o — @ +n(t) + € + [y — wo| < n(t) + €+ 20.
Letting p,e — 0, we have

(3.40) n(t) > limsupn(s) tel,
st

and (3.37) follows. O

Corollary 3.1 (right continuity of the distance function between minimal
barriers). Assume that F : Jo — R is lower semicontinuous and F* : Jy — R is
upper semicontinuous. Given A,B C R", let d : I — R U {400} be the function
defined as

d(t) == dist(M(A, Fr)(t), M(B, Fr)(t)), tel.

Then d is right continuous on |tg, +00|.

Proof. By Theorem 5.1 below (applied with G = (F'*).) we have
R" \ M(E, Fr) € B(F(r+),)

for any E C R™ (see (5.6)).

Moreover, by Lemma 3.4 the minimal barrier is outer regular for ¢ > t5. We now
apply Lemma 3.1 with ¢ = R*"\ M (A, Fr), v = R"\M(B, Fr), F1 = F» = (FT),,
F3 = F, = F, and we get the thesis. [

4. BARRIERS SOLUTIONS, LEVEL SET FLOW AND COMPARISON FLOWS

In this section we study some properties of barriers, related to other generalized
flows; in particular we state the comparison results between the minimal barrier and
the level set flow proved in [15], and we show comparison results between minimal
barriers and comparison flows.

Definition 4.1 (barrier solutions). Given a function F : J, — R, we define the
family S(F) of all barrier solutions of equation (1.4) as

(4.1) S(F) := B(Fr) N B(F5).

By Proposition 3.1, if F' does not depend on x and is degenerate elliptic, then
the barrier solutions coincide with the smooth evolutions, whenever the latter exist.

The next proposition shows that, under some monotonicity assumptions on F',
there always exists a barrier solution of (1.4); this result is reminiscent of the
proposition asserting the existence of viscosity solutions. Note that we do not still
have an uniqueness result (see Theorem 4.5 below).
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Proposition 4.1 (existence of barriers solutions). Let F': Jo — R be degen-
erate elliptic and let ¢,¢ : I — P(R™), ¢ € B(Fr), ¢ € B(Fs) and ¢ C ¢. Then
there exists ¢ € S(F') such that ¢ C ¢ C ¢.

Proof. Let
b= ﬂ{x I — PR, x € B(Fr), ¢ C x}

Since 1) € B(Fr), we need only to show that 1 € B (.7-" ). Assume by contradiction

that there exists f : [a,b] C I — P(R™), f € Fx, such that ¢(a) C int(f(a)) and
¥ (b) is not contained in int(f(b)). Define

b(b), teI\[ab],

¢1(t) = { ?,b(t) N 1nt(f(t)), t e [a; b]

As F is degenerate elliptic and independent of z, one can check that int(f) €
B(Fp,|a,b]). Hence ¢; € B(Fr), so that ¢; DO 1. However ;(b) is strictly
contained in 9(b), a contradiction. [

The following Proposition is reminiscent of the stability of viscosity subsolutions.

Proposition 4.2 (stability of barriers). Let F : Jy — R be bounded below. Let
F,, : Jo = R be such that lim inf mf (F — F) >0, for any compact set K C Jy.

m—+oo K
For any m € N, let ¢,, € B(}"}?m) and set ¢ = U int( ﬂ q§m>. Then ¢ €
hEN m>h
B(Fz).
Proof. Let f : [a,b] C I — PR"™), f € Fz, f(a) C ¢(a); we have to prove
f(b) C ¢(b). As we have already observed, we can assume that f(¢) is compact for
any ¢ € [a,b]. As f € Fz, there exists a constant 0 < ¢ < +oc such that

ady

p (t,z) + F(Vds(t,z), V?ds(t, 7)) > 2c, z € 0f(t), t € la,b| .

Set Ky := {(Vdy(t,z),V3ds(t,z)) : x € Of(t),t € [a,b]}, and let m € N be such
that i}{lf (Fm — F) > —c for any m > m. Then for any x € 0f(t), t € |]a,b[, m > ™,
f

we have

8;1‘ (t, %) + Fp (Vg (t, ), V2ds (t, 7))

> %(t z) + F(Vdg(t,z), Vds(t,z)) —c > c,
which implies f € .7-"> for any m > m. Given h € N, we set ¢y, := ( ﬂ qu)
As f(a Uz/)h ) and f(a) is compact, there exists h such that f(a) m;:pﬁ(a),

which 1mphes f(@) C [¢m(a )]; for some ¢ > 0 and for any m > h. Taking
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N >mV h, we have f € F7 and f(a) C [qu(a)]; for any m > N, therefore, as
Fr. is translation invariant f(b) C [¢m (b)};, which implies

F&C N Bn®], <[ N om®)], Swnd) < o).

m>N m>N

(VIS

This concludes the proof. [

4.1. Barriers and viscosity subsolutions. The following theorem is proved in
[54, Theorem 4.9] (see the Appendix for the notation).

Theorem 4.1. Assume that F : J; — R satisfies either (F1)-(F4), (F8), or (F1),
(F3), (F4), (F9), (F10). Let vy : R™ — R be a continuous function which is
constant outside a bounded subset of R™. Then there exists a unique continuous
viscosity solution (constant outside a bounded subset of R™) of (1.4) with v(to, z) =
vo(z).

Given a bounded open set E C R™ we define the viscosity evolutions V(E)(t),
['(t) of int(FE), OF respectively (the so-called level set flow) as

(4.2)  V(E)@®#)={zeR":v(t,z) < 0}, [(t):={x € R" :v(t,z) =0},

where v is as in Theorem 4.1 with vo(z) := (—1) Vdg(x) A L.

The following results, proved in [15], show the connection between the minimal
barriers and the viscosity solutions (notice that it applies, in particular, to the case
of motion by mean curvature in arbitrary codimension).

Theorem 4.2 (comparison between barriers and level set flow). Assume
that F : J, — R satisfies (F1), (F3), (F4), (F6’), (F7), (F9), (F10). Let E C R"
be a bounded set. Then for anyt € I we have

(4.3) M.(E, F5)(t) = Mu(E, Fp)(t) = V(E)(1),
M (E,Fz)(t) = M*(E, Fr)(t) = V(E)(¢) UT(t).

In particular My, 7, = v.

The difficult part of the proof of Theorem 4.2 relies in showing that, given a
bounded open set A C R™, there holds M (A, Fz) 2 V(A). To prove this, the idea
is to show that the function y, defined by

x(t,z) := —XM(A,}—;)(t)(.T), (t,z) e I x R",

(where xc(z) :=1if x € C and xc(z) = 0 if x ¢ C) is a viscosity subsolution of
(1.4) in Jtg, +oo[xR™. The use of characteristic functions is needed because of the
explicit dependence on z of the function F'; when F' does not depend on z, one can
equivalently reason by using the distance function.

Theorem 4.2 in the case of driven motion by mean curvature of hypersurfaces has
been proved in [19], where the minimal barriers are compared with any generalized
evolution of sets satisfying the semigroup property, the comparison principle, and
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the extension of smooth evolutions (see Corollary 4.1 below). Notice that, as a
consequence of Theorem 4.2, it follows (under the same assumptions on F') that
M (E, Fr) and M*(E, Fr) verify the semigroup property.

The proof of Theorem 4.2 is based on the facts that the sublevel sets of a viscosity
subsolution of (1.4) are barriers and, conversely, that a function whose sublevel sets
are barriers is a viscosity subsolution of (1.4). Using these observations, one can
show that the minimal barrier selects the maximal viscosity subsolution [15].

Theorem 4.3 (barriers and viscosity subsolutions). Assume that F': J; - R
satisfies (F1), (F3), (F4), (F6’), (F7), (F9), (F10). Let up : R™ — R be a given
upper semicontinuous function. Define

Suo :={v: v is a viscosity subsolution of (1.4) in Jtg, +oo[xR"™ v*(to, ) = up(z)}.
Then
(4.5) Mg, 7 = Myy 7> =sup{v : v € Sy, }.

Remark 4.1. A similar assertion of Corollary 4.3 can be given for supersolutions,
see [15].

The following results characterizes the complement of regularized barriers, and
does not cover the case where E is unbounded and R™ \ FE is unbounded.

Theorem 4.4 (complement set characterization). Assume that F : J; - R
satisfies (F1), (F3), (F4), (F6’), (F7), (F9), (F10). Then, for any bounded set
E CR"™ we have

M. (E,Fp)=R"\ M*(R"\ E, Fr,),
M*(E,Fr) =R"\ M.(R"\ E, Fr.).
Moreover, if F = F, then

(4.7) M*(E,Fr)\ M. (E,FFr) € B(FF).

Concerning the connections between the minimal barriers and the viscosity evo-
lutions without growth conditions on F' (see [68]) and for unbounded sets E with
unbounded complement, there holds the following result. Assume that F': Jo — R
is continuous and degenerate elliptic. Given any £ C R™, let v : I x R - R
be the unique continuous viscosity solution of (1.4), in the sense of [68], with
v(to, ) = dg(x). Then, for any ¢t € I, (4.3), (4.4), (4.6) and (4.7) hold. In particular
M*(E, Fr)(t) \ M (E, Fr)(t) = {x € R" : v(t,z) = 0} and Mg, 7, = v.

The next theorem shows the connection between the minimal barrier and the
maximal inner barrier. This property is reminiscent of the uniqueness theorem for
viscosity solutions.

Theorem 4.5. Assume that F : J;, — R satisfies (F1), (F3), (F4), (F6’), (F7),
(F9), (F10). Then, for any bounded set E C R™ we have

(4.8) Ni(E, Fr) = M, (E, Fr), N*(E, Fr) = M*(E, FF).

Moreover, if F : Jo — R is continuous and degenerate elliptic, then (4.8) holds for
any E CR™.

(4.6)

We remark that, to prove Theorem 4.5 in [16], we need to pass through the
viscosity theory, so we miss a self-contained proof based only on barriers.
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4.2. Comparison flows. In this subsection we generalize the comparison results
discussed above; indeed, we compare the minimal barrier with an abstract compar-
ison flow, which is defined as follows.

Definition 4.2. Let F : J;, — R be a given function. Let Q be a family of
sets containing the open and the close subsets of R™. We say that a map R is a
comparison flow for (1.4) if and only if, for any E € Q andt € I, R = R(E,1)
maps [t, +oo] into Q, R(F,t)(t) = E, and the following properties hold:
(i) (semigroup property) for any E € Q we have

R(E, t1)(t) = R(R(E, t1)(t2), t2) (t), t1 <ty <t

(i) (relazation of the elements of Fr and Fg) for any f : [a,b] € I — P(R™),
fe€Fr,g:lc,d CI—=PR"), g€ .735, we have
(&) S R(f(a),a)(t),  te€lab],
int(g(t)) 2 R(int(g(c)),c)(t), t € e, d;
(111) (comparison principle) for any A,B € Q, AC B, and any t € I we have
R(A,1)(t) C R(B,1)(t), t>1.

If t =ty we simply write R(E) instead of R(F,tg); moreover, we define the lower
and upper regularizations of R as

Et) = | R(E, 1), = [ R(E],1);
>0 >0
and we note that they are defined on the whole of P(R").
Lemma 4.1. Let R be a comparison flow and let E € Q. Then R(E) € S(F) (see
(4.1)), which implies
(4.9) M(E, Fr) C R(E) C N (E, F7).
Proof. Let f : [a,b] C I — P(R"), f € Fr, f(a) C R(E)(a). By property (ii)
of Definition 4.2, we have f(t) C R(f(a),a)(t) for any ¢ € [a,b]. Therefore, using
properties (iii) and (i) we get
f() € R(f(a),a)(b) C R(R(E)(a),a)(b) = R(E)(D).
Hence R(E) € B(FF). Reasoning in a similar way, one can check that R(E) €
B (.7-' Ié), and the thesis follows. [

We are now in a position to prove that regularized minimal barriers are essentially
the only regularized comparison flows for (1.4).

Corollary 4.1. Assume that the function F : J; — R satisfies (F1), (F3), (F4),
(F6’), (F7), (F9), (F10). Then, for any bounded set E C R"™, we have

(4.10) ML(E, Fp) = Ro(E),  M*(E,Fr) = R*(E).

Moreover, if F : Jy — R is continuous and degenerate elliptic, then (4.10) holds
for any E C R™.

Proof. The assertions follow from (4.9) and Theorem 4.5. O

Problem. Implement the barrier method for geometric evolutions on an open set
(), with suitable boundary conditions.
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5. THE DISJOINT AND THE JOINT SETS PROPERTIES

In this section we recall the notions of disjoint sets property and joint sets prop-
erty. These properties have been introduced in [16], and we refer to that paper for
all proofs omitted here.

We remark that these properties are close to uniqueness of barrier solutions and
are related to the fattening phenomenon.

Definition 5.1. We say that the disjoint sets property (resp. the reqularized dis-
joint sets property) with respect to (F,G) holds if for any E1,Es CR™ andt € 1
(5.1) EiNEy=0 = M(E,,F,t)n M(E2,G,t) =10

(5.2) (resp. ExNE; =0 = M, (E, F,T)NM*(E2, G, 1) =0).

We say that the joint sets property (resp. the regularized joint sets property) with
respect to (F,G) holds if for any E1,E3 CR™ andt € I

(53) FiUE,=R" = M(El,}",f)UM(EQ,g,f):R”,

(54) (7"68]7. El U E2 =R" = M*(El, F, f) U M*(Ez, g,f) = Rn)

Example 5.1. As proved in [19] (see also [15]), motion by mean curvature enjoys
both the regularized disjoint sets property and the regularized joint sets property
with respect to (Fg, Fr). Notice that in this case F = FT is odd.

Example 5.2. Let
(5.5) F(t,2,p, X) = —tx(P,XP,) + g(t, 2)lp|

(i.e., motion by mean curvature with a forcing term g). Then, in general the disjoint
sets property and the regularized disjoint sets property with respect to (Fr, Fr)
fail, compare Example 6.1. Notice that, in this case, F' = F'T and F'* is not odd.

Example 5.3. Let n =2, E = {z = (z1,22) € R? : |z1] < 1,|z2| < 1} and let F
be as in (3.7). Then, recalling Example 3.2, (3.11) and (3.9) we have, for ¢ > ¢,

M(E, Fp,t)(t) = M(int(E), Fr, t)(t) € AR"),
MR"\ E, Fp,t)(t) € AR"),

and the joint sets property with respect to (Fr, Fr) does not hold (“we instantly
loose OE”).

Notice that if (5.2) holds then M*(Ey, F,t) N M, (E2,G,t) = (), and conversely.
Similarly, if (5.4) holds then M*(F1, F,t) U M, (E3,G,t) = R™, and conversely.

Notice also that, if F satisfies the (3.2), then the disjoint sets property with
respect to (F,G) is equivalent to the assertion

(5.6) for any E C R"™ there holds R" \ M(E, F,t) € B(G, [t, +0[);

also the disjoint (resp. joint) sets property with respect to (F,G) implies the
regularized disjoint (resp. joint) sets property with respect to (F,G).

The following theorems characterize the disjoint and joint sets property in terms
of the functions F', G describing the evolution.



SOUME AdrrCULS VUF D GIORGLE S bARRIERD...

Theorem 5.1 (characterization of the disjoint sets property). Assume that
F,G: Jy — R are lower semicontinuous. Then the disjoint sets property (equiva-
lently, the reqularized disjoint sets property) with respect to (Fr, Fg) holds if and
only if (F*). > G*. In particular
(i) if F. = G, then the disjoint sets property with respect to (fp,fpc) holds if and
only if F' is degenerate elliptic;
(i) if F = G then the disjoint sets property with respect to (fp,]-"p) holds if and
only if F' is compatible from above.

The disjoint sets property, under suitable assumptions on an abstract family F,
can be restated by means of the distance function.

Proposition 5.1. Assume that F is translation invariant and satisfies (3.2). Let
E CR"™ and ¢ € B(F). Then the function n: I — [0, +0o0| defined by

n(t) = dist(M(E, F)(t), R™\ ¢(t))

1S nondecreasing.
Moreover, assume that F' : Jy — R is lower semicontinuous and compatible from
above. Let A, B C R™. Then the function

(5.7) t € I — dist(M(A, Fp)(t), M(B, Fr)(t))

18 nondecreasing.

Proof. Let to > t1 > to; we have to prove that n(t2) > n(t1). We can assume that
n(t1) = 6 > 0. Notice that for any B C R"

(5.8) B C ¢(t1) = M(B, F,t1)(t2) C d(t2).

By (3.3), (3.5) and (5.8) we have

(M(E, F)(12))} = (M(M(E, F)(t2), F.12) (22))
C M((M(E, F)(tr)) ), F 1) (t2) C $(t2),

which proves the monotonicity of 7.
Let us prove (5.7). Setting ¢ := R\ M(B, Fr), we have ¢ € B (Fr) by Theorem
(5.1), hence (5.7) follows from the previous assertion. [

Theorem 5.2 (characterization of the regularized joint sets property).
Assume that F,G : Jo — R are continuous, FT < +o00, Gt < 400 and Ft,G*
are continuous. Then the reqularized joint sets property with respect to (.7: F, fg)
holds if and only if (FT). < G*. In particular
(i) if F. = G, then the regularized joint sets property with respect to (F 7, F. Fc) holds
for any function F satisfying the hypotheses;
(i) if F = G then the reqularized joint sets property with respect to (fp,fp) holds
if and only if FT is compatible from below.

We remark that, to prove Theorem 5.2 in [16], we need to pass through the
viscosity theory, so we miss a self-contained proof based only on barriers.
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Remark 5.1. Assume that F : Jy — R is continuous, odd and degenerate elliptic.
Then for any E C R™ we have

(5.9) M*(OE, Fr) = M*(E, Fr) \ M (E, Fr).

In [64] Ilmanen introduced a notion of weak evolution, for motion by mean cur-
vature of hypersurfaces, called set-theoretic subsolution, which essentially coincides
with R" \ M, (R"™\ OF, FF), F as in (3.7); hence, thanks to (4.6) of Theorem 4.2
and the fact that F' is odd, the set-theoretic subsolution of Ilmanen is M*(OFE, Fr)
(or, more generally, M*(E, Fr), F any given closed set which is not necessarily a
boundary). In his paper Ilmanen proved that the set-theoretic subsolution coin-
cides with the level set flow, which is consistent with (5.9), (4.3) and (4.4), for F'
as in (3.7). Also, a comparison result between barriers and the level set flow for
sets F with compact boundary when F' is as in (5.5) has been proved in [19]; notice
that in this case F' is no more odd. The results of [19,64] are based on Ilmanen’s
interposition lemma and on Huisken’s estimates [60] of the existence time for the
evolution of a smooth compact hypersurface in dependence on the L norm of its
second fundamental form, without requiring bounds on further derivatives of the
curvatures. The above results of Ilmanen and Huisken apply basically to the case
of motion by mean curvature; it seems difficult to recover the time estimates of [60]
for a general evolution law of the form (1.4). This is the main reason for which the
proof of Theorem 4.2 follows a completely different approach.

Solving the next problem (which asks, basically, which conditions we need to
impose on a smooth elliptic function F, in order to let evolve C''!' compact hy-
persurfaces) would allow, following the arguments of Ilmanen in [64], to give an
alternative proof (with respect to [15]) of the comparison results between barri-
ers and level set flows, for a class of evolutions including driven motion by mean
curvature.

Problem. Assume that F' does not depend on z, it is smooth and uniformly elliptic.
Let {E.} be a sequence of sets so that there exists an open bounded set A C R"

such that 0E, C A and dg, € C®(A) for any €, and sup sup |V3dg, (z)| < +oo.
€ z€0E.

Let E.(t) be the unique smooth evolution [52] of the set E. under (1.4) for small
times t € [tg, to + 7¢[ , that is
(9dEE (t)
ot

Which further conditions on F' are needed in such a way that 7. can be chosen
independently of €7

+F(t, VdEé(t),V2dE€(t)) =0 on BEE(t), t e [to,to +7’6[ .

6. THE FATTENING PHENOMENON

In this section we discuss some aspects and examples concerning the fattening
phenomenon, which is considered an interesting kind of singularity in geometric
evolutions.

Definition 6.1. Let E C R". We say that the set E develops m-dimensional
fattening with respect to F at timet € I if

(6.1) H™ (M (B, F)() \ Mu(B, F)(2)) >0,
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where m € 0, n].

Concerning motion by mean curvature of manifolds of arbitrary codimension, F'
has the expression in (3.8), and M, (E, FF) is usually empty; Definition 6.1 then
reduces to

(6.2) H™ (M*(E, Fr)(t)) > 0.

Unless otherwise specified, throughout this section we will consider n-dimensional
fattening, i.e., m = n.

Fattening was defined [13,45] by means of the viscosity solution as follows. Let
v be the unique viscosity solution of (1.4) with v(tg,z) = (—1) V dg(x) A 1, see
Theorem 4.1, then the fattening occurs if {x : v(¢,z) = 0} has nonempty interior
part.

Equalities (4.3) and (4.4) shows that definition (6.1) is consistent with the defi-
nition of fattening given by means of the (unique) viscosity solution, see [45], [19].
®[ANotice that, adopting (6.2), fattening can be defined also in case of nonunique-
ness of viscosity solutions. We use the Hausdorff measure to be slightly more
general, even if we do not know meaningfull examples of fattening of intermediate
dimension. In this respect, we point out the following problem.

Problem. If the initial set F is not contained in a hyperplane of R"™, can we say
that, if fattening occurs, then it is n-dimensional?

Given a function F', the main issue could be to characterize those subsets F
of R™ which fatten under (1.4); the complete characterization is clearly a difficult
problem, which is still open even for motion by mean curvature.

6.1. Fattening in two dimensions. Examples of fattening in two dimensions
for pure curvature flow can be given in the following two cases:

(i) if the initial set E is not required to be smooth (Evans and Spruck [45] provided
the example of the inside of the figure eight curve; similar arguments hold when
the boundary of the original set is the union of two crossing straight lines in R?);

(ii) if the boundary OF is not required to be compact, see Example 6.3, which is due
to Ilmanen.

On the other hand, if E C R? has compact smooth boundary, fattening does not
take place under motion by curvature, as a consequence of a theorem of Grayson
[56]. However, if one modifies the evolution law, for instance by adding a forcing
term, the situation is completely different. Barles-Soner-Souganidis [13] have given
an example in two dimensions of fattening for motion by curvature with a time-
dependent forcing term (see [79] for numerical evidence). Even more, one can

choose the forcing term to be constant, as the following example proposed in [17]

shows.

Example 6.1. Assume that we can exhibit a smooth bounded Lipschitz function
g:I xR™ — R and an initial smooth compact set £ C R?, with

E:=LUR, LNR=1,

where L and R are homeomorphic to a ball, with the following properties: if we

denote by L(t) (resp. R(t)) the evolution of L = L(tg) (resp. of R = R(tp)) under
the law (1.4) with the choice of F as in (5.5), then there exists t* > to such that:
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(i) L(t) and R(t) are smooth for t € [to,t* + J], for some § > 0;
L(t) N R(t) = 0 for any t € [to, t*[;

L(t*) N OR(t) = {a"};

L(t*) and OR(t*) meet at z* with zero relative velocity;

and R(t) would smoothly “bounce back” after the collision.
Then, under the previous assumptions, fattening takes place. Notice that F' is not
odd and that L and R violate the disjoint sets property with respect to (Fr, Fr).
We remark that one can rearrange things in such a way that g and E can be chosen
as follows:

(6.3) g=1, L:= B, (z), R:=B,,(w),

for suitable 71,79 > 0 and z,w € R2, with r; + 73 < |z — wl.

Consider the example in the case (6.3). The heuristic idea is the following.
Given a small ¢ > 0, the set E, consists of two disjoint balls which, by comparison
arguments, flow smoothly remaining disjoint in [tg,¢*]. Moreover, the construction
is such that they flow smoothly remaining distant, independently of p, after some
time bigger than t*.

On the other hand, given any small o > 0, the evolving set starting from E;F
becomes connected and has the shape of a “bean”. The main point is to prove the
following assertion: there exist a time interval [«, 8] C ]t*, +00[ and an open set A,
independent of o > 0, such that

ACM(E}F, Fp)(t)  for all g sufficiently small and all ¢ € [, A].

Notice that « is strictly larger than ¢*, since the fat region increases “continuously”
in time after ¢*. Notice also that, being the curvature very high near the collision
point, we can, heuristically, drop out the forcing term (which is bounded) in the
evolution. The crucial tool to prove the above assertions are the comparison princi-
ple and a Sturmian theorem of Angenent (see [9, Theorem 3.2]) which estimates the
number of intersections of two curves flowing independently by curvature (without
forcing term), which reads as follows.

Theorem 6.1 (theorem on intersection points). Let be given two families of
smooth curves which evolve (independently) by their curvature for t € [to,to + T
of which at least one is compact. Then for any t € l|to,to + T| the number of
intersections of the two curves at time t is finite, and this number does not increase
with time; moreover, it decreases whenever the two curves are not tranverse.

Problem. Is it true that fattening is “generic”, for instance with respect to E (or
with respect to ¢) in Example 6.17

Problem. Let us consider F' as in (5.5), choose g and E as in (6.3), and let A(t)
be the Almgren-Taylor-Wang [1] evolution starting from FE, constructed iteratively
by minimizing the energy functional

(6.4) P(B)+ 1

/ dist(z,0F) dx — |B],
T J(E\B)U(B\E)
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where 7 > 0 is the time step, B C R?, and P(B) and |B| are the perimeter and
the Lebesgue measure of B, respectively. Is it true that, after the time collision
t*, there holds A(t) = OM*(E,Fr)(t)? Moreover, replace in (6.4) the quantity
|B| with (1 — €(7))|B]; is it possible to choose €(7) decreasing to zero as 7 — 0 in
such a way that the corresponding evolution in the sense of Almgren-Taylor-Wang
coincides, just after the collision time, with OM, (E, Fr)(t)?

Problems of this type, in a different context, have been considered by Gobbino
in [55].
Problem. Let u. be the solution of the reaction-diffusion equation 661? = Au, —

e%mg — u¢) + 1, assuming an admissible initial datum which depends on € and
approximates, as € — 0, the characteristic function of the set £ := L U R (L and
R as in (6.3)). How the resulting evolution (see (3.29)) obtained as the limit of wu,
as € — 0, or as the limit of some of its subsequences, depends on the choice of the
initial datum u?? Same questions if we replace the reaction-diffusion equation with

the nonlocal reaction-diffusion equation studied in [36].

The following example shows that fattening can occur in two dimensions if the
function F'(t,z,p,-) is not Lipschitz (the dependence on (t,x) is irrelevant here).

Example 6.2. Let n =2, ( : R — R be defined as

0 if s € [0,1],
C(s):=4¢ V1—s"1 ifs>1,
—((-s) ifs<0,

let F(p, X) := —((tr(P,XP,)), and E := {(z1,22) € R? : 27 4+ 23 < 1}. For any
0 € ]0,1] the set E stands still, while E, shrinks to a point at finite time T, < 2;
hence F develops fattening.

The following example is a particular case of an example due to Ilmanen [63],
and concerns the case of motion by curvature of an initial smooth non compact set
with non compact complement.

Example 6.3. Let n =2, F be as in (3.7), and

vo(z1, 2) := x3(1 + 22)%

For any A > 0 the set E) := {vg < A} is smooth, non compact, has non compact
boundary, and has finite Lebesgue measure. It turns out that E develops fattening
instantly. Intuitively, since in two dimensions the shrinking time of a connected
closed smooth bounded curve flowing by curvature depends on the enclosed area
and since Fy has finite Lebesgue measure, the set M, (FEy, Fr)(t) becomes bounded
for times arbitrarily close to ¢y (note that, for any ¢ > 0, (E)), is bounded). On
the other hand, for any p > 0, the boundary of each set (EA);)|r is composed by two
entire graphs, that smoothly evolve by curvature remaining graphs for all times
[42].

Clearly vg is not uniformly continuous and Ilmanen proved nonuniqueness of
continuous viscosity solutions of (1.4) with v(tg,2) = wvo(x); we point out that
Ilmanen selected a special viscosity solution for this problem, see [63, Definition
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7.1]. Notice that M,, 7. is, by Corollary 4.3, the maximal viscosity (sub) so-
lution. Ome can check, following [63], that there exist ¢ € I and € R™ such
that My, 7. (t,2) > —M_,, 7. (t,z), where —M_,, 7. represents the minimal
viscosity (super) solution. We conclude the discussion of this example with two
further observations. Assume that we are interested in the evolution of a special
Ex: then, if we choose v(to, z) := (—1) Vdg_(z) A1 as (Lipschitz continuous) initial
datum, equation (1.4) has a unique viscosity solution; nevertheless, Ex develops
fattening. Finally, we remark that in this case M*(E\, Fr) does not coincide with
(UM(A, Fr): Aec A(R"),AD E\}.

To conclude this subsection, we recall that, as a consequence of a theorem of
Angenent (see [9, Theorem 8.1] for a precise statement) it results that if V- = V (7, k)
is an odd function (7 the unit tangent vector, x the curvature) of class C*! such
that A7 < % < A\ V(1 0)] < p, ‘KZH%‘ < v(1 + x?%) for two positive constants

A, v, then, setting F(p, X) := —|p|V<%, %), any smooth compact set E

evolving by (1.2) does not develop fattening.

6.2. The n-dimensional case. In n > 3 dimensions the situation is much more
complicated than in two dimensions. First of all, as a consequence of a result
of Huisken [60], a smooth bounded strictly convex set E C R"™ flowing by mean
curvature does not develop fattening, and the same holds if the set is bounded and
convex [46].

A few years ago De Giorgi [29], [28, Conjecture 11] conjectured that a torus of
the form

n—1

(6.5) (a:1,...,a:n)€R”:((Zx?>1/2_1)2+$i<)\

=1

flowing by mean curvature should develop fattening at finite time, for a suitable
choice of the parameter A\. The conjecture was disproved by Soner-Souganidis
in [85], who showed in particular the result below (confirmed by the numerical
simulations of Paolini-Verdi in [81]). We refer also to the paper [3] of Altschuler-
Angenent-Giga, where singularities of a smooth, compact, rotationally symmetric
hypersurface flowing by mean curvature are studied.

Theorem 6.2. Let n > 3. Then the torus defined in (6.5) does not fatten under
motion by mean curvature. Moreover, up to a parabolic scaling, at the singularity
the torus converges to a cylinder.

Later on, Evans-Spruck [45] conjectured that a smooth open set can not fatten
under motion by mean curvature. The negative answer to this conjecture was given
by Angenent-Ilmanen-Velasquez in [12,11] (see the discussion below).

As already remarked, the complete characterization of those sets which fatten
is still open. In this respect, Barles-Soner-Souganidis [13, Theorem 4.3] gave the
following sufficient condition for an initial set E of class C? to not develop fattening.

Theorem 6.3. Suppose that F : Jo — R satisfies the assumptions of Theorem 4.1,
and moreover

F(pQ'p, 1*’Q'XQ) = p°F(p, X),
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for all p >0, p e R"\ {0}, X € Sym(n), and any orthogonal (n x n)-matriz Q.
Assume that there exist nonnegative constants ci,ce,c3, a skewsymmetric matriz
M and xg € R™ such that

c1(z — x0) - Vdg + coaM (z — x0) - Vdg — csF (Vdg, Vidg) # 0 on OF.

Then E does not develop fattening.

A particular case of such a geometric condition corresponds to surfaces of pos-
itive mean curvature everywhere. However, this condition does not cover general
rotationally symmetric hypersurfaces even in three dimensions.

To our knowledge, in three dimensions there are no examples of smooth compact
sets which develop fattening at finite time under mean curvature flow. Also, there
is no rigorous proof of the existence of a smooth set with non compact boundary
developping fattening at finite time; in this direction, Angenent-Chopp-Ilmanen
[10] have exhibited an example which we briefly recall (the construction given in
[10] is not completely rigorous; it is however supported by numerical evidence).

Example 6.4. Let n =3 and F be as in (3.7). In [10] it is numerically computed
a complete, smooth, non compact surface OEy of genus three (invariant under
certain symmetries) asymptotic to a suitable double cone at infinity, which shrinks
self-similarly and, at a certain time, becomes a (not rotationally symmetric) double
cone with a unique singularity at the origin, and aperture of approximately 72.3°.
Using the evolutions of rotationally symmetric cones barriers (see Theorem 6.4), it
is then rigorously proved that the evolving set develops fattening.

Still in the three-dimensional case, we recall the following example, which is
studied by White in [88] and answers to some questions raised by De Giorgi (see
[33] for further conjectures related to this example and to the fattening phenomenon
in dimension n > 3).

Example 6.5. Let n =3, F be as in (3.7),
vo(z1, T2, x3) :=sinx; + sinzg + sin x3,

and for any \ € [—3,0] set Ey) := {(x1,%2,23) € R® : vo(x1,72,23) < A}. Notice
that E_3 consists of isolated points, E_; is not smooth, and for any A € | —
3,—1[ U ] —1,0], the set E) is smooth. Notice also that Fo N {(z1,zs,73) € R?:
sinzy = sinzg = 1} = (. It turns out that, if A\ € | — 3,0[ , then there exists a
time T(A) € Jto, +oo[ such that M(Ex, Fr)(t) = 0 for any t > T(\). Moreover
sup/\e[_g,O[T()\) = 4o00. Finally, Ey evolves smoothly by mean curvature for any
t > to and converges smoothly as ¢ — +o0o to a triply periodic minimal surface (in
particular Fy does not fatten).

The following result is proved in [10, Theorem 4] and generalizes the behaviour
of the two-dimensional cross under motion by curvature.

Theorem 6.4. Let n > 3, F be as in (3.7), and let E, be the double rotationally
symmetric cone of aperture o € 10,7/2[. Then there exists a(n) € |0,7/2] such
that Eo develops fattening if and only if a € [a(n), 7/2].
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In [49] Fierro-Paolini showed numerical evidence of fattening for mean curvature
flow of the smooth initial torus in R*

1/2 2
{($1,$2,.T3,.’E4)€R4: ((3:%"‘37%) —1> —}—m%—l—mig)\}

It seems that in this case there are two critical choices A\, < A, of the parameter
A, corresponding to different singularities. If A = A,,, the singularity is similar to
that of the dumbbell, and fattening is not expected. On the other hand, the shape
of the singularity corresponding to A, seems to be the one of a cone with the proper
aperture, in such a way that fattening is expected.

The following is the first explicit example, to our knowledge, of three-dimensional
fattening for motion by mean curvature in codimension 2.

Example 6.6. Let n =3 and F be as in (3.8). Then the set
B = {(31,m2,75) € R : (a3 + 2)(a} + 03) (s + 23) = 0}

develops 3-dimensional fattening for any t arbitrarily close to tp.

Proof. As M, (E,Fr) =0, the thesis reduces to check that
(6.6) H? (M*(E, Fr)(t)) > 0.

In particular, it is enough to prove that for any R > 0 there exists T'(R) > to, with
T(R) | to as R | 0, such that M*(E, Fr)(T) 2 Bg(0).

Fix R > 0. We recall that there exists T3 > to such that the generalized evolution
by curvature of the two-dimensional cross {(:v, y) e R? 12y = 0} contains the ball
Bgr(0) at time T;. This result implies that M*(E, Fg)(T}1) contains the boundary
of any triangle with sides lying on the coordinate planes and which is contained
in Br(0). We recall now that, if an initial curve is contained in a plane, then its
evolution coincides with the usual evolution by curvature in that plane. Hence, the
evolution of the boundary of the above triangles can be regarded, after the initial
time, as a classical curvature flow [46] of codimension one in the plane containing
the triangle, and this evolution exists for a time controlled by R2/2. Following [5,
Remark 6.2], it follows that, for any ¢ > 0 we have that M (E;F, F F) is a barrier for
such flows, and the same is true for M*(E, Fr). Considering now the evolutions
of the boundaries of equilateral triangles, one gets the following estimate:

2

R
(O)a t>T1+_a

ME (B, Fr)(6) 2 B ‘

S

which implies (6.6). O

If the following question has a positive answer, if fattening occurs, it occurs at
the same time everywhere in the connected component.
Problem. Let £ C R™ and F be as in (3.7). Assume that M*(E, Fr) is connected
with nonempty interior in [tg,t9 + 7|, for some 7 > 0. Then M*(E, Fr) is outer
regular in |tg, o + 7.
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Problem. In [31,35] De Giorgi suggested to consider the evolution of the two
knotted circles in R3

FE .= {(331,332,333) cx3 = 0,22 422 = 1}U{(x1,x2,m3) cx1 =0, (22— 1) 423 = 1},

with F' as in (3.8), and to study the behaviour of the minimal barrier after the
collision time. It would be interesting, in particular, to check wether E develops
two-dimensional (or even three-dimensional) fattening .

7. APPENDIX

We list here some assumptions used in this paper. We follow the notation of [54,
pp. 462-463]; we omit those properties in [54] which are not useful in our context.
(F1) F:J; — R is continuous;
(F2) F is degenerate elliptic;
(F3) —oc0 < Fi(t,2,0,0) = F*(t,2,0,0) < 400 for all t € I, x € R™;
(F4) for every R > 0, sup{|F(t,z,p, X)|: |p|,|X| < R, (t,z,p,X) € J1} < +00;
(F6’) for every R > p > 0 there is a constant ¢ = cg , such that

\F(t,x,p,X) _F(ta$7Q7X)| < c|p—q|

forany t € I, w € R™, 0 < [p|,lq| < R, |X| < B:
(F7) there are gp > 0 and a modulus o7 such that

F*(t,I,p,X) _F*(t7$70’0) < 0-1(|p‘ + |XD7
F*(t,.l',p,X) - F*(t,a:,O, 0) > _0-1(|p‘ + |XD’

provided t € I, z € R™, |pl, | X| < 0o.

The following example shows that, if F(¢,-,p, X) is not Lipschitz (the depen-
dence on X is irrelevant here), then the viscosity solution of (1.4) is not necessarily
continuous, and motivates assumption (F8).

Example 7.1. Let n =2, F(x,p) := —g(z)|p|, where

0 if |z| <1,
g(z) :=

Vie| =1 if |z > 1.

Then g is uniformly continous and is not Lipschitz. Let vo(x) := min(1, |z| — 1)
and E) := {vg < A} for A € R. Then for any A € | — 1,0] the set E) stands still,
while, if A € ]0,1[, Ey shrinks to Ey at time Ty = 2v/A. The function v having as
sublevels the evolution of all sets E) (corresponding to a viscosity solution of (1.4)
with v(tg, ) = vo(x)) is therefore not continuous.

(F8) There is a modulus o9 such that

for y € R™, (t,z,p, X) € Ji;
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m
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there is a modulus o9 such that Fy(t,z,0,0) — F*(t,y,0,0) > —o2(|z — y|) for
any t € I, x,y € R"™;

suppose that —u (I(;l 1?1) < ()g }0,) <v (_I;ld _Ifld> with p, v > 0. Let

R >2vV p and let o > 0; then

for (t,z) € I x R", p < |p| < R, with some modulus @ = Gg , independent of
t,xay,X,Y:MaV'
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