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Abstract

We prove a conjecture formulated by De Giorgi concerning the connections between
motion by mean curvature of a k-dimensional submanifold without boundary in
R™ and the evolution of its tubular neighbourhoods by the sum of the k£ smallest
curvatures. The result holds also after the onset of singularities.

1 Introduction

In this paper we prove a conjecture formulated by De Giorgi in [7] concerning weak
motion by mean curvature of a k-dimensional submanifold I' without boundary in R".
The conjecture, partially proved by Ambrosio and Soner in [2], implies that the weak
evolution of I' can be equivalently constructed either by using smooth hypersurfaces
evolving by the sum of the k smallest principal curvatures, or smooth k-dimensional
submanifolds evolving by mean curvature.

The framework in which the conjecture has been formulated is the theory of barriers,
introduced by De Giorgi in [6], [7], which, suitably adapted to geometric problems,
provides a unique global weak evolution called minimal barrier. The minimal barrier has
an intrinsic definition, verifies the comparison principle and a semigroup property and
agrees with the classical evolution until the latter exists.

Let us briefly describe the content of the conjecture. Let F denote a family of maps
taking some time interval (depending on f € F) into the class P(R") of all subsets of
R"™. Roughly speaking, the family F can be considered as the class of all tests evolving
manifolds, through which one constructs a barrier with respect to sets inclusion; the



choice of F is crucial and must be adapted to the problem at hand. A map ¢ : [0, +oo[—
P(R™) is said to be a barrier with respect to F, and we write ¢ € B(F), if for any
f :]a,b] C[0,+o00[— P(R™), f € F, such that f(a) C ¢(a), it holds f(b) C ¢(b). Given
any set £ C R", the minimal barrier M(E,F) starting at F, with respect to F, is
defined as

M(E, F)(t) :==({s(t): 6 € B(F),6(0) D E},  t€[0,+00]. (1.1)

General properties of barriers have been studied in [4]; connections with other notions
of generalized evolutions have been considered in [2], [3] (see also the papers of Ilmanen
[9] and White [12], which study the properties of Ilmanen’s set-theoretic subsolutions for
motion by mean curvature of hypersurfaces). Other related results, also in connection
with mean curvature evolution in arbitrary codimension, can be found in the papers of
Jerrard and Soner [10], [11].

The original definition [7] of weak evolution by mean curvature in arbitrary codimension
is obtained first by an upper regularization of (1.1) through a new barrier, denoted by
M*(E, F), and then by particularizing the choice of F. Indeed, set

EF = {z : dist(z, E) < p}, M*(E,F) := ﬂ M(ET, F),

p>0

and then choose F as the family G, of all smooth local evolutions of k-dimensional
submanifolds without boundary by mean curvature. The set valued map ¢ € [0, +oo[—
M*(E,Gy)(t) is then the required weak evolution.

As observed in [7] and deepened in details in [2], if ¢ € [a,b] — [(¢) is an element of G,
then the following system must hold on the moving manifold:

oV
ot

= AV on I'(t), t € [a,b], (1.2)

where np(t, ) := (dist(z, F(t)))2 /2. The squared distance function 7. from the flowing
manifold not only describes in a simple way the evolution of I' € G, but also plays a
fundamental role in the proof of the main result (Theorem 4.1).

As pointed out in [7], there is another way of defining the weak evolution of a k-
dimensional submanifold I'. Precisely, let p be a given vector of R* \ {0} and set
P, :=1d — p ® p/|p|?; if Sym(n) stands for the space of all symmetric (n X n)-matrices,
denote by F': (R™ \ {0}) x Sym(n) — R the function defined as follows:

k

F(p, X) = _Z)\i(pa X)7 (13)

=1

where A;(p, X) < --- < A\,_1(p, X) are the eigenvalues of the matrix P, X P, which corre-
spond to eigenvectors orthogonal to p. The idea is to consider the evolution M*(E, Fr),
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where Fp is now the family of all maps f : [a,b] — P(R") such that df(t) is a smooth
hypersurface flowing through the geometric inequality

od

a—tf + F(Vd;,V%d;) >0  on df(t), t € [a,b], (1.4)
and df(t,x) := dist(z, f(t)) — dist(z,R™ \ f(¢)) is the usual signed distance from the
front.
The conjecture then states that the two weak k-dimensional evolutions actually coincide,
that is, for any set £ C R" there holds

M*(E7 gk) = M*(EafF)

A consequence of the above result is that the natural definition of weak evolution given by
M*(E, Gy,) coincides, in view of comparison results proved in [2], [3], with the zero level

u
set, of the unique solution, in the viscosity sense [5], of the equation E—FF (Vu, Viu) =0

having u(0, z) := dist(z, E) as initial datum. Notice that these comparison results hold
also after the onset of singularities.

The inclusion M*(E,Gy) € M*(E, Fr) has been proved in [2] and is based on the
property that, if T' : [a,b] — P(R") belongs to Gi, then the map ¢t € [a,b] — f(t) :=
{z € R" : np(t,z) < 0?}, for small o > 0, belongs to Fr. The proof of this nontrivial
fact relies on the properties of the eigenvalues of the Hessian of n.. and their connections
with the eigenvalues of the Hessian of the distance function d. from I'(¢), out of I'(¢).
The opposite inclusion, namely

M*(E,Gy) 2 M*(E, Fr), (1.5)

is more delicate, and consists in proving that, if A is an open set, then M(A,Gy) is a
barrier with respect to Fr. This is proved arguing by contradiction, and is the main
result of the present paper. A sketch of the proof, omitting technical details, runs as
follows. Choose amap f : [a,b] — P(R") belonging to Fr such that f(a) C M(A, Gx)(a)
and such that, at some t* € Ja,b[, f(t*) “crosses” OM(A,Gy)(t*) at a certain z* €
af (t*) N OM (A, G)(t*). The main point is to contruct a flow I'¢ : [t*,t* + 7] — P(R")
belonging to Gy such that its e-tubular neighbourhood T'.(¢*)F at time t* contains x*
in its boundary, is contained in f(¢*) and, at the point x*, has the k& smallest principal
curvatures equal to those of f(t*) and has an expanding velocity strictly larger than
the expanding velocity of f(¢*). Then I'.(¢)7 must cross f(t) at later times ¢ > ¢* at
points close to z*, and therefore I'c(¢) cannot be contained in M (A, Gi)(t). However,
this inclusion must be verified, due to the spatially translation invariance of the involved
equations, and we reach a contradiction.

The content of the paper is the following. In Section 2 we give the notation, all needed
properties of the distance function and of the squared distance function, and the defini-

tions of barriers used throughout the paper. In Theorem 2.7 we point out a comparison
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result between hypersurfaces and k-dimensional submanifolds. Section 3 is devoted to
preliminary lemmas, used to prove (1.5). In Section 4 we prove the conjecture. We
conclude the paper with some observations and generalizations.

Acknowledgements. We wish to thank Luigi Ambrosio for useful discussions.

2 Notation and main definitions

In the following for simplicity we let I := [0, 00|, even if all results still hold if I is
replaced by [0,7] for some 7' > 0. We denote by P(R") the family of all subsets of
R*, n > 2; k will be an integer with 1 < £k < n—1. If z € R* and p > 0, we set
By(z) :={y €R" : |y — 2| < p}. B

Given a set E C R", we denote by int(E), E and OF the interior, the closure and the
boundary of E, respectively. We set dist(-, ) = +oo,

d,(z) = dist(z, E) — dist(z, R* \ ), np(x) = %(dist(a:, ).

It is well known that, if £ has smooth compact boundary, then dj is smooth in a suitable
tubular neighbourhood U of OF, Vd is, on OF, the exterior unit normal to 0F, and the
restriction of V?d,, to the tangent space to OF coincides with the second fundamental
form of OE. In addition, if y € U and denoting by 7(y) := y —dg(y)Vdg(y) the (unique)
orthogonal projection of y on OF, then

k(7 (y)) :
Aily) = , 1=1,...,n—1, 2.1
SRS RO ) -
where A;(y), ..., \_1(y) are the eigenvalues of V2dg(y) corresponding to eigenvectors
orthogonal to Vdg(7(y)), and k1 (7(y)),-..,kn—1(7(y)) are the principal curvatures of

OF at m(y).
Notice that Ady, evaluated on OF, is nonnegative for smooth convex sets.

The following results on the square distance function have been proved in [1], [2]. Let T’
be a smooth compact submanifold of dimension k& without boundary; then 7. is smooth
in a suitable tubular neighbourhood € of I On I' the matrix V?p, represents the
orthogonal projection on the normal space to ['; if y € Q, V?n(y) has exactly n — k
eigenvalues equal to one, and the remaining k eigenvalues are strictly smaller than one.
Precisely, if 7(y) := y — Vnp(y) is the (unique) orthogonal projection of y on I'; then

do(y)ri(m(y) .oy <i<k,

ni(y) = § 1+ dr(y)ki(n(y)) (2.2)
1 if k <i<n,




where p1(y), ..., un(y) are the eigenvalues of V?n.(y) and k1 (7(y)),- .., kr(m(y)) are
the principal curvatures of I' at 7(y) along Vd.(y).
Notice that, if y € Q\ I, then

1
Vdp(y) = p (V2nr(y) — Vdr(y) ® Vdr(y)) -
r(¥)
Therefore,
)
1+ dp(y)ri(m(y))
Nly) =492 ifh<i<n-—l, (2.3)
dr(y)
0 if 1 =n,
\
where A;(y), ..., \n_1(y) are the eigenvalues of V?d(y) corresponding to eigenvectors

orthogonal to Vd.(y), and A, (y) is the eigenvalue corresponding to Vd.(y), which van-
ishes.
Finally, —AVn coincides, on I', with the mean curvature vector of I'.

Given a map ¢ : L — P(R"), where L C R is a convex set, we denote by dgy My -
L x R* — R the functions defined as

dy(t, z) := dist(z, ¢(t)) — dist (z, R* \ ¢(t)) = ) (),
no(t,2) = 5 (dist(, 6(1))” = 10 ().

If ¢1,¢0 : L = P(R"), by ¢1 C ¢ (resp. ¢d1 = ¢o, ¢1 M o) we mean ¢ (t) C ¢o(t) (resp.
1(t) = ¢a(t), d1(t) N Po(t)) for any ¢ € L.

Geometric barriers. The families Fr and G,
Let us recall the definitions of geometric barriers and minimal barriers in the sense of

De Giorgi [7].

Definition 2.1. Let F be a family of maps with the following property: f € F if there
erist a,b € R, a < b, [a,b] C I, such that [ : [a,b] = P(R™). We say that a map
¢: I — P(R™) is a barrier with respect to F, and we write ¢ € B(F), provided that the
following property holds: if f : [a,b] C I — P(R™) belongs to F and f(a) C ¢(a), then
1) € 6(b).

It is clear that the intersection of an arbitrary family of barriers is a barrier.
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Definition 2.2. Let E C R" be a given set. The minimal barrier M(E,F) : I — P(R")
with respect to F, with origin at E CR™ (at time 0) is defined as

M(E, F)(#) =({6(t) : ¢ €B(F),0(0) 2 E}. (2.4)
If p> 0, we also set
Ef = {z e R* : dist(z, E) < p}, E, = {z e R" : dist(z,R" \ E) > p},

M.(E,F)=|JM(E, F), M (EF)=\M(E} F).

Recalling the definition of F' in (1.3), we now define the family Fp of all smooth evolutions
of compact hypersurfaces without boundary, evolving with inward normal velocity bigger
than or equal to the sum of the smallest £ principal curvatures.

Definition 2.3. Let a,b € R, a < b, [a,b] C I and let f : [a,b] = P(R™). We write
f € Fr if and only if the following conditions hold:

(i) f(t) is closed and Of(t) is compact for any t € [a, b];
(i) there exists an open set A C R" such that d; € C*°([a,b] X A) and 0f(t) C A for
any t € [a,b];
(111) the following inequality holds on Of (t):
od,;

W(t, z) + F(Vd;(t,z),V?d,(t,z)) >0, tela,b], z€df(t). (2.5)

We write f € Fy. (resp. [ € Fr) if the inequality > (resp. the equality) holds in (2.5).

One can prove that the families Fr, F; and F5 are nonempty. We recall that —%dtﬁ is
positive for expanding sets. Notice that F'(p,-) is 1-Lipschitz.

We now define the family G, of all smooth local mean curvature evolutions of compact
submanifolds of dimension £ without boundary.

Definition 2.4. Let a,b € R, a < b, [a,b] C I, and let T : [a,b] — P(R"). We write
' € G of and only if the following conditions hold:

(i) L(t) is compact for any t € [a, b];

(it) there ezists an open set A C R" such that n. € C*([a,b] x A), T'(t) C A for any
t € [a,b], and rank(V?np) =n — k for any t € [a,b], z € T'(¢);
(iii) the following system holds on I'(t):

ovVnp

5 (t,z) — AVnp(t,z) =0, t € [a,b], x € T'(¢). (2.6)




The properties of 7 listed at the beginning of this section, together with the observa-

tion that —BZ?F represents the projection of the velocity on the normal space (see [2]),
motivates (iii) of Definition 2.4.

In [1] it is proved that the elements of Gy can be, surprisingly, characterized by an
equation involving only second derivatives of 7, valid in a tubular neighbourhood of T'.
More precisely, let I' be a map satisfying properties (i) and (ii) of Definition 2.4; then
I' € Gy if and only if, in a tubular neighbourhood of I'(t) where np is smooth, ¢ € [a, b,

there holds

I e

=0, (2.7)
at o 1—pu

where p varies among the eigenvalues of V7.

Remark 2.5. The families Fr and Gy are translation invariant in space, that is, if
f € Fp (resp. T' € Gy) then f+y € Fr (resp. T' +y € Gy) for any y € R*. Using this
fact one can check that, if A C R" is an open set, then M(A, Fr)(t) and M(A,Gy)(t)
are open for any t > 0.

The following result concerns short time existence of k-dimensional smooth mean curva-
ture flows.

Theorem 2.6. Let a > 0 and let M C R" be a smooth compact k-dimensional subman-
ifold without boundary. Then there exist T > 0 and a map I' : [a,a + 7] — P(R") such
that I'(a) = M and T’ € Gy.

Proof. See [8, Section 2|. 0

We conclude this section with the following observation, which is a geometric maximum
principle between smooth manifolds of different codimension evolving by mean curvature,
and is an interesting result by itself. We give a proof based only on properties of barriers.

Theorem 2.7. Let I',f : [a,b] C I — P(R"), I' € Gi, f € Fr, and assume that
Do) C f(a). Then T(b) C f(5).

Proof. As I'(a) C f(a), we have M*(T'(a), Fr,a)(b) C M*(f(a), Fr,a)(b), where the
two barriers are defined starting at time a (i.e., replace 0 with a in (2.4)). We recall
now that in [2] it is proved that, if u denotes the unique solution, in the viscosity sense

0
[5], of the equation 8_7; + F(Vu, V*u) = 0 with initial datum u(a,z) = dist(z, I'(a)),

then {z € R" : u(t,z) = 0} = I'(¢) for any ¢ € [a,b]. Moreover, by a comparison result
between minimal barriers and viscosity solutions [3, Corollary 6.1], there holds

M*(T(a), Fr,a)(t) = {z € R" : u(t,z) = 0}.
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We deduce that M*(I'(a), Fr,a)(b) = ['(b). Finally, M*(f(a), Fr,a)(b) = f(b) (see [3]).
We then have

I(b) = M*(I'(a), FF,a)(b) € M*(f(a), Fr,a)(b) = f(b).

3 Some useful lemmas

In this section we show some preliminary results needed in the proof of Theorem 4.1.

Lemma 3.1. For any E C R" we have
M (E, Fr) = M.(E, F7), M*(E, Fr) = M*(E, F7). (3.1)

Proof. Equalities (3.1) are proved if we show that M(A, Fr) = M(A, Fz) for any open
sett A C R". This, in turn, thanks to Remark 2.5, will follow if we show that given any
¢: I — R if ¢(t) is open for any ¢ € I, then

¢ € B(Fr) <= ¢ € B(Fz). (3.2)
It is clear that B(Fz) D B(Fr). In order to prove (3.2), we need to show that if
¢ € B(F7), then ¢ € B(Fr). Let f: [a,b] C T — PR"), f € Fr, f(a) C ¢(a).
For any t € [a,b] we can find a bounded tubular neighbourhood (Gf(t)):(t) of 0f(t), of
thickness ¢(t), each point of which has a unique orthogonal projection on df(t). We set
2c = inf{c(t),t € [a,b]} > 0. Let L be the Lipschitz constant of F(Vd;, V?d;) and
M be the supremum of |V?d;|* when ¢ € [a,b] and = € (8f(t)):. Pick a C* function
p: [a,b] = ]0,4o00[ such that p(a) < min (c,dist(df (a),R" \ ¢(a))) and p+2MLp < 0.
The map g : [a,b] = P(R"), ¢(t) := f(t);r(t) = {z € R" : dist(z, f(t)) < p(t)} is of class
C=, and each point y € dg(t) is of the form y = z+ p(t)Vd,(t, z) for a unique z € 9f(t).
Moreover g € F7. Indeed for any ¢ € [a,b] and any y € 9g(t), y = = + p(t)Vd,(t, z),
x € 0f(t), we have V?d (t,y) = V?d(t,z)(Id + p(t)V?d,(t,z))~", so that

Therefore, recalling that f € Fr, we have
od od
_9 - __1 :
S2(t,y) = — 5L (@) + ()
< F(Vd,(t,2), V2d,(t,2)) + (1) = F(Vd,(t,), Vd, (1, 2)) + p(1) (3:3)

< F(Vdy(t,y), V?d,(t,y)) + 2LMp(t) + p(t) < F(Vd,(t,y), V?d,(t,y)),



so that g € F7. Hence f(b) C g(b) C ¢(b), and therefore ¢ € B(Fr). o

Given f : [a,b] C I — P(R"), we say that f is a (n — 1)-dimensional smooth compact
flow if and only if conditions (i) and (ii) of Definition 2.3 hold.

The next lemma is a kinematic result on (n — 1)-dimensional smooth compact flows, and
concerns the case in which two initial smooth sets g(a) C f(a) cross each other during
the subsequent evolution (which happens when, at z € dg(a) N df(a), the expanding
velocity of g(a) is strictly larger than the expanding velocity of f(a)). We omit the proof
which is based on continuity and compactness arguments.

Lemma 3.2. Let f,g : [a,b] = P(R™) be two (n — 1)-dimensional smooth compact
flows, x € R” and p > 0. Assume that

z € 9f(a) N dg(a),

g(a) € f(a),
od, ad
E(a,x) < a—tf(a,x).

Let 0 < 6 < b—a be such that each point of Of (t), fort € [a,a+ 6], has a unique smooth
orthogonal projection w(t,-) on df(a). Set xz(t) := w=1(t,z). Then there exists T € |0, 0]
such that the following holds: for any t € la,a + 7] there exists R(t) > 0 such that

f(#) N Brey(z(t) C int(g(t)) N Bray(z(t))-
Moreover T depends in a continuous way on small perturbations of f, g in the C*-norm.

Remark 3.3. Since the statement of Lemma 3.2 is local, the reqularity of f and g on
open sets containing 0f(t), 0g(t), t € [a,b] (see (ii) of Definition 2.8) is not necessary.
More precisely, it is enough to assume that the functions dy, d, are of class C* in
la,a + '] x By,(x), for suitable p > 0 and 0 < 6" < b — a such that each point of

d0f(t) N B,(x) has a unique smooth orthogonal projection w(t,-) on 0f(a) N Bay(z), for
t € la,a+ ).

We conclude this section with the following result.

Lemma 3.4. LetI' : [a,b] C I — P(R"), I' € G, and choose 0 > 0 such that np is
smooth on Q :={(t,z) : t € [a,b],n-(t,z) < 0?}. Then

aaitr(t, z) 4+ F(Vdp(t,z), VZdp(t,2)) >0,  (t,z) €Q, = & L(2).
As a consequence, the map f : [a,b] — P(R"™) defined by f(t) := {x € R" : dist(z,T'(t)) <
o} belongs to Fp.

Proof. See [2, Theorem 3.8 and Remark 6.2]. o



4 Main result

We are now in a position to prove De Giorgi’s conjecture.

Theorem 4.1. Let E C R" be a given set. Then

Proof. In order to prove (4.1), it is enough to show that, given any open set A C R"
there holds
M(A,Gy) = M(A, Fr).

As already remarked in the Introduction, the inclusion M(A,Gy) € M(A, Fr) has

been proved in [2, Remark 6.2]. Indeed, let T : [a,0] C I — P(R"), ' € Gy, with
I'(a) € M(A, Fr)(a). Let us show that I'(b) C M(A, Fr)(b). Choose ¢ > 0 and f
as in Lemma 3.4; then f € Fp. Moreover, as M(A, Fr)(a) is open (Remark 2.5) and
['(a) is compact, possibly reducing o we can assume that f(a) C M(A, Fr)(a), which
implies I'(¢t) C f(t) € M(A, Fr)(t) for any t € [a,b]. Therefore M(A, Fr) € B(Gx),
which implies M (A, G) C M(A, Fr).

Let us prove that M(A, Gx) D M(A, Fr).

Define ¢ := M (A, Gi), and recall that ¢(t) is open for any ¢ € I (Remark 2.5). We shall

first prove that ¢ is a barrier for suitable spherical evolutions belonging to Fr; precisely,
givenz € R*, R>0and T > 0,

Bg(z) C ¢(T) = Brg(r) C ¢(T +1), te [0,R?/(2k)[ , (4.2)

where R(t) := v/ R? — 2kt. Indeed, (4.2) follows from the fact that ¢ is a barrier for
all evolutions 0Bg(x) NV, where V' is a generic affine subspace of R of dimension k
passing through =z.

By (3.2) of Lemma 3.1, it is enough to prove that

M(A,Gi) € B(F7).

Let f: [a,b] C T — P(R"), f € Fp, with f(a) C ¢(a). We have to show that
-

f(b) C #(b). We preliminarly prove that
int (f(b)) € ¢(b)- (4.3)
Suppose by contradiction that (4.3) does not hold. Set
t* :=sup {t € [a,b] : int(f(s)) C é(s), s € [a,1]}. (4.4)

It is not difficult to show that int(f(t*)) C &(t*), so that t* < b. Indeed, assume by
contradiction t* > a and int(f(t*)) € ¢(t*). As f is a (n — 1)-dimensional smooth
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compact flow, given z € int(f(¢*)) \ ¢(¢t*), we can find 0 < 77 < t* —a and R > 0 so that
Br(z) Cint(f(¢)) for any t € [t* — 11, t*]. Therefore Br(z) C ¢(t) for any ¢t € [t* — 7, t*[
and = ¢ ¢(t*), which contradicts (4.2).

We now divide the proof of (4.3) into five steps; step 6 then concludes the proof.

Step 1. There exist z* € df(t*) N 0p(t*), a decreasing sequence {t,,} of points of |t*, b]
and a sequence {R,,} of positive numbers, with lim,, , oty = t*, limy, 4100 By = 0,
such that for any m € N

(int (f(tm)) \ 9(tn) ) N Br,, (2) # 0. (4.5)

The proof of this step, as well as the proof of step 2, follows closely a part of the
proof of Theorem 5.1 of [4]. Let us first prove that df(t*) N 0¢p(t*) # (). Assume by
contradiction that df(t*) N 0p(t*) = 0, and set n(t) := dist(f(¢), R™ \ ¢(¢)) for t € [a, b].
As Of(t*) is compact and ¢(t*) is open, we have n(t*) > 0. Let us prove that n(t*) <
lim inf, 4« 7(s). Indeed, if not, there exists a sequence {s,,}, sm > t*, sp, | t*, such that
N(t*) > lims 100 1(8m). Then 1(sim) = [Ym — Pml, for some y,, € f(sm), pm € R*\(s1m);
possibly passing to a subsequence, we have y,, = y € f(t*), pm — p ¢ R* \ ¢(t*) as
m — +o0o. Let p > 0 be such that B,(p) C ¢(t*). Then B,j2(p) N (R™ \ ¢(sm)) # 0
definitively in m, which contradicts (4.2). Then 0 < n(t*) < liminf,;n(s) = 0, a
contradiction. Then K := 9f(t*) N dp(t*) # .

Assume now by contradiction that for any z € K there exists R(z) > 0 and 0 < t(z) <
b — t* so that

(int( () \¢(s)) NBr(z) =0, Re]0,R()], s €t t* +t(x)]. (4.6)

As K is compact, we can find zy,...,2, € K (and corresponding ¢(z1), ... ,t(zs)) so
that each R(z;) satisfies (4.6) and |J, Bpz;) 2 K. Let R > 0 be such that H :=

U,ex Ba(®) € UL, Briz,), and let T := min,—; 4 t(z;). Then for any z € K we have

(int( £(s)) \¢(s)) NBr(z) =0, selt*t*+1. (4.7)

Let ¢ > 0 be such that dist(f(t*) \ H,R* \ ¢(¢*)) > ¢. Then using (4.2), (4.7) and the
fact that f is a (n — 1)-dimensional smooth compact flow, we contradict the definition
of t*. This concludes the proof of step 1.

Since f € Fz, there exists ¢ > 0 such that
o4,

o (t*, z*) + F(Vd (", 2%), V2d(t*,2%)) = 2¢ > 0. (4.8)
Let R > 0 be such that
od, )
W(t*,x) + F(Vd,(t*,2),V?d,(t",2)) > ¢ Vz €S, (4.9)
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where

S := Of (t*) N Br(z").

Step 2. Let z* be as in step 1. We can assume that

{z7} =of(t")nog(t),  f(t")\ {27} Cint((t")). (4.10)

Indeed, let 0 < 7 < b — t* be such that each point x € O0f(¢) has a unique smooth
orthogonal projection 7(t,z) on Of(t*) for any t € [t*,t* + 71]. Choose a function
p:O0f(t*) = [0, +o0[ of class C* verifying the following properties:

(i) p(x) =0 if and only if x = z*;

(ii) the map t € [t*,t" + 7] — ((t) belongs to Fz, where ((t) := f,,(t) C f(t) and
o) ={yeR :y=a—p(n(t,x))Vds(t,z),x € 0f(t)};

(iii) ¢ is not a barrier for ¢ on [t*,t* + 7).

Property (ii) can be achieved by taking p(-) sufficiently small in the C? norm, since there
exists ¢; > 0 so that %f + F(Vd;, V3dg) > ¢ for any x € 9f(t), t € [a,b], and F is
continuous.

Property (iii) can be achieved by observing that, by (4.5), for any m € N there exist a
point z,, € int(f(tm)) \ ¢(tm) and o,, > 0 such that B, () C int(f(tm)) N Bg,, (z¥).
Then, if we impose p(z) < o, for any x € 0f(t*) such that |77 (t,,,z) — 2*| < Ry, we
get z,, € int(((¢,,)). Therefore, possibly replacing f by (, we can assume that (4.10)
holds, and the proof of step 2 is concluded.

Step 3. Construction of the k-dimensional flow I', € G.

Fix now a point x € S, let {e1,ey,...,€,} be an orthonormal basis of eigenvectors for
Vad 7 (t*,z), ordered in such a way that ey, ..., e, are the directions corresponding to the
smallest k principal curvatures of S at z (if there exist principal directions of S at z such
that the corresponding principal curvatures have the same value, we arbitrarily choose
a set of k directions corresponding to k smallest curvatures), and e, := Vdf(t*, x). For
any y € R", set P(y) :={y+w: w € P}, where P :=span(ey,... e, e,) is the vector
space generated by ey, ..., e, and the normal to S at z. Notice that, as df(¢*) and P(x)
are transverse at x, there exist pg, € > 0 such that

M :=0(f(t")7) N P(z) N Bpy(x)

is a smooth submanifold of dimension k£ with boundary for any 0 < € < ¢5. We arbitrar-

ily extend M, out of B, (z) to a smooth compact k-dimensional submanifold without
boundary, and we denote it by T'.(¢*), with the constraints

Le(t) N Bpo(z) = Me,  Te(t) C f(t)., (4.11)
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Figure 1: Construction of I'. € G; and of its tubular neighbourhood g, .

see Figure 1.

By Theorem 2.6, for ¢ € |0,¢| we can find 7. > 0 such that there exists a smooth
evolution I'c(t) of I'¢(¢*) by mean curvature, defined in [t*,t* + 7.]. This concludes step
3.

Step 4. Let z € S be fixed as in step 3. For € small enough, we can assume that d._ is
smooth on [t*,t* + 0] X B, j2(z), for a suitable 0 < § < 7, and we claim that

ddy.,
ot

(notice the presence of I'. at the left hand side and of f at the right hand side).
Indeed, using (2.7) there holds

(t,z) <= — F(Vdf(t*,x),vzdf(t*,x)) (4.12)

c
2

adI‘E(t*ax) — ]- 877&(75*,33) — ]- b ,U,Z(t*,.T) (4 13)
ot dp (t*,xz) Ot dp (t*,7) = 1 — pi(t*, z)’ '

where i (t*,2) < ... < p(t*, z) < 1 are the eigenvalues of V. (¢*, ) which are smaller
than one, and precisely by (2.2)

. e (T 2)ki(m (7, @)
it @) = 1 ¥ dr (t*, 2)ki(n (7, 7))
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where k1 (7(t*, z)),. . ., k(7 (t*, )) are the principal curvatures of I'c(¢*) along Vdr_(t*, z),
at the projected point 7 (t*,z) € T'(t*). Using (2.3) we then obtain

B

M = L k Ki(m(t*, x
i—1 1- Mi(t*,x) - dre(t ) )12:1: z( (t , ))
(4.14)

= dp (t*
r.( ’x)izzl:l—dpe(t*,x))\i(t*,x)’

where A\;(t*,2) < ... < A\y_1(t*, ) are the eigenvalues of V?d;, (t*,z) corresponding to
eigenvectors orthogonal to Vdy_(t*, z).
Putting together (4.13) and (4.14) we get

ody_(t*, ) _ Xk: i(t*, )
1—d

ot L ONE ) (4.15)

=1

We notice that dp (t*,2) = € and we claim that, by construction, the smallest k eigen-
values of V?dy. (t*,x) corresponding to eigenvectors orthogonal to Vdy. (t*,z) are also

the smallest k eigenvalues of V2d;(t*,z) corresponding to eigenvectors orthogonal to
Vds(t*, x) = Vdp (t*, x), ie.,

(e, Vidr (t*, z)e;) = (e;, V2d,(t*, x)e;), i=1,...,k. (4.16)

Geometrically, (4.16) means that, at the point x, being d = dFE(t*) —e¢, the smallest &

Te(t)d
principal curvatures of the e-tubular neighbourhood I'.(t*)1 are the same as the smallest
k principal curvatures of 0f(t*). Let us prove the claim: using (2.3) we have

ri( (17, 7))

i V2dp, o (17, 2)e;) = =1,...,k 4.1
<€ 7v dFe(t )(t ,.T)@) 1 +€I€Z'(7T(t*,.’1)))’ ? ) ’k ( 7)

In addition, as the second fundamental form of 8( f (t*);) restricted to the tangent space
to T'c(t*) at m(t*,z) concides with the contraction of the second fundamental form of
['c(t*) at m(t*,x) in the normal direction given by Vdsq(t*, 7 (t*,2)), we then have

(ei,VQdf(t*)(t*,w(t*,x))ei) = k(7 (t%, x)), i=1,...,k,
and using (2.1)

(m(t*, z)) .
i VQd o (7 i) = I{Z( ( : =1,...,k. 4.1
<€ ) f(t )(t 737)6) 1 EK,Z'( (t*, ))7 i ) ’ ( 8)

Using (4.17) and (4.18), equalities (4.16) follow.
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Recalling the definition of F', using (4.15), (4.16) and letting ¢ > 0 small enough, we
conclude the proof of step 4.

Step 5. Conclusion of the proof of (4.3).

Let 7 > 0 be small enough in such a way that there exists a unique smooth orthogonal
projection 7(t,-) of df(t) on Of(t*) for any ¢ € [t*,t* + 7] C [a, b].

Let 7' := min{é, 7} where ¢ is defined in step 4, and let g, : [t*,t* + 7'] = P(R") be
defined as

g:(t) ;=T (t)¢.

The set g,(t) is the e-tubular neighbourhood around the smoothly evolving k-dimensional
submanifold ', see Figure 1; notice that, since we are not imposing other conditions on
[c(t*) besides (4.11), the boundary of the set T'c(¢), for ¢ € [t*,t* + 7] is not necessarily
smooth out of a small ball centered at z. Notice also that g,(t*) C f(¢*) by the inclusion
in (4.11).

Since G is translation invariant in space and ¢ € B(Gy), we deduce that the function
t — dist(Cc(¢), R*\¢(t)) is nondecreasing on [t*, t*+7.]. Therefore, recalling the definition
of g, we find that the function ¢ — dist(g,(¢), R" \ ¢(¢)) is nondecreasing on [t*, t* + 7].
Hence, as int(g,(t*)) C ¢(t*), we have int(g,(¢)) C ¢(t), t € [t*, t* + 7.

Observe also that, in view of (4.12) and (4.9), we have that, at (¢*, x),

0d,, 0dp_ _ ¢

= < - —F(Vd,V%d,) <c—F(Vd v2d)<%
ot ot — 2 P P =g

od
o

so that —i= < %f at (t*,z). Applying Lemma 3.2 and Remark 3.3 to f and g, (with

[a, b] replaced by [t*,t* 4+ 7']), it follows that there exist 7, € ]0,7'] and R(¢,z) > 0 such
that

f(t) N Briq)(z(t)) Cint(g.(t)) C ¢(¢), tEe [t t* + 7] (4.19)

*

Since 7, depends in a continuous way on x € S and S is compact, we have 7% :=
mingeg 7, > 0. Possibly reducing 7* and using (4.19), we get

0f () N Brpa(e®) € [ int(g:(1)) C (1), ¢ €', +77].

zeS

Furthermore, we can find n > 0 such that

(01(), N f(t) N Brpa(e?) € | Jint(gu(t) € (1), €]t ¢ +77).

€S

Possibly reducing 7* and using (4.2), we then have

F(t) N Bra(@) C é(t), telt ¢+
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Moreover, by using (4.2) and (4.10), it follows that there exists 74 > 0 such that

)\ Brja(z*) C 6(t), te ", "+l

Hence, for any ¢ € |t*,t* + min{7*, 71 }], we have f(t) C ¢(¢), which contradicts (4.5).
The proof of (4.3) is complete.

Step 6. Proof of f(b) C ¢(b).
Let w > 0 be such that 2 + F(Vd;, V2d,) > % for any z € df(t) and ¢ € [a,b].
Pick a C* function p : [a,b] — [0,4+o0[ such that p(a) = 0, p(b) < cand 0 < p <
w(l+2ML(b—a))~!, where ¢, L and M are as in the proof of Lemma 3.1. Then

w 2MLw(b— a)
1+2ML(b—a) 1+2ML(b—a)

p+2MLp —2w < — 2w < 0,

so that, reasoning as in (3.3), it follows that the map taking ¢ € [a,b] into f(t)j(t) =
{z € R™ : dist(z, f(t)) < p(t)} belongs to Fz. Therefore, from (4.3) (applied with ﬁz_)
in place of f) we have

£6) € int(FB))) € 00)-

[}

The following remark shows that, to compute the weak evolution M*(-, G) in arbitrary
codimension, it is enough to construct the minimal barrier M*(-, Gr) with respect to a
family of tests Gy consisting only of tubular neighbourhoods of evolving k-dimensional
submanifolds.

Corollary 4.2. Let a,b € R, a < b, [a,b] C I, and let f : [a,b] — P(R"). We write
f € Gp if and only if [ verifies (i) and (ii) of Definition 2.8, and there exist I' € Gy and
p >0 such that f(t) = T(t)} for any t € [a,b]. Then for any E C R we have

M*(E, Fr) = M*(E,G) = M*(E,GF).

Proof. By Lemma 3.4 we have Gr C Fp, hence M*(E,Gr) C M*(E, Fr). In addition,
if A is an open set, then M(A,Gr) € B(Gx), hence M(A,Gr) O M(A,Gi). Therefore
the assertion follows from the equality M(A, G;) = M(A, Fr) proved in Theorem 4.1.

i

Remark 4.3. From Theorem 4.1 and [3, Corollary 6.1], it follows that that, for any set
E C R, there holds
M*(E,Gy) = M*(E, Fr) = V(E),

where V(E) is the zero sublevel set of the viscosity solution of g—? + F(Vu, V?u) =0, in
the sense of [5].
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Remark 4.4. The proof of Theorem 4.1 actually shows that a slightly stronger result
holds, namely that, if ¢ : I — P(R™) is a map such that ¢(t) is an open set for any
tel, then

¢ € B(Gy) < ¢ € B(FF).

With slight modifications of the proof, one can extend Theorem 4.1 to the case of
mean curvature motion with a time dependent “forcing term” G : [0,+oco[— R,
G € C>([0,4+oc[;R"); i.e., for k-dimensional smooth compact flows evolving by the
law

Vi =H+ G (1),

where V- and H are, respectively, the normal velocity and the mean curvature vector,
while G+ is the projection of G onto the normal space.

In particular (4.1) still holds, if we define Fr and Gy by substituting (2.5) and (2.6), in
Definitions 2.3 and 2.4, respectively with

%(t, z) + F(Vd(t,3), V2ds(t, @) + (Vd,(t,z),G(t)) >0, t€a,b], z€df(t),

and
8Ztnr (t,x) — AVyp(t, 2) + Viip(t, 2)G(t) =0, te[a,b], z € T().
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