Calcolo delle Variazioni. — Barriers for a class of geometric evolution prob-
lems. Nota di GIOVANNI BELLETTINI e MATTEO NOVAGA.

ABsTRACT. — We present some general results on minimal barriers in the sense of De Giorgi
for geometric evolution problems. We also compare minimal barriers with viscosity solutions for
fully nonlinear parabolic geometric problems of the form us + F(t,z, Vu,V?u) = 0. If F is not
degenerate elliptic, it turns out that we obtain the same minimal barriers if we replace F with
F*, which is defined as the smallest degenerate elliptic function above F.

KEY woRDS: Barriers; Nonlinear partial differential equations of parabolic type; Mean curva-
ture flow; Viscosity solutions.

RIASSUNTO. — Barriere per una classe di problemi geometrici di evoluzione. Vengono presen-
tati alcuni risultati di carattere generale sulle minime barriere nel senso di De Giorgi per evoluzioni
geometriche di insiemi. Vengono anche confrontate le minime barriere con le evoluzioni ottenute
usando le soluzioni nel senso della viscositd, per problemi geometrici parabolici completamente
non lineari della forma ut + F(t,z, Vu, V2u) = 0. Se F non & ellittica degenere, si osserva che si
ottengono le stesse minime barriere se, al posto di F, si considera la funzione F*, definita come
la pilu piccola funzione ellittica degenere maggiore o uguale a F'.

0. INTRODUCTION

In [9] De Giorgi introduced a notion of weak solution, called minimal barrier, for
a wide class of evolution problems. An interesting example that falls within this
general definition is the mean curvature flow; in this case, since singularities may
appear at a finite time even starting from smooth compact data, it is particularly
important to have a (possibly unique) notion of weak evolution. In the litera-
ture there are many different generalized approaches to geometric evolutions; in
particular we mention the pioneristic work of Brakke in the context of geometric
measure theory, the viscosity approach of Evans-Spruck [10], Chen-Giga-Goto [5],
Giga-Goto-Ishii-Sato [11], the method of the distance function of Soner [16], the
variational approach of Almgren-Taylor-Wang [1] and its generalization by means
of the minimizing movements of De Giorgi [7], the elliptic regularization method
[14] and the set-theoretic subsolutions of Ilmanen [13], the minimal barriers [9] and
the penalization method on higher derivatives of De Giorgi [8].

The aim of this note is twofold. Firstly in Section 3 we present some general
properties of minimal barriers for geometric evolutions: in particular, concerning
geometric fully nonlinear parabolic problems of the form

(0.1) % + F(t,z, Vu, V?u) = 0,

we study under which conditions on F' the disjoint sets property and the joint sets
property hold (see Definition 4.1). Moreover, denoting by Fp the family of all
smooth local geometric supersolutions of (0.1) (see Definition 2.8), and denoting by
M(E, Fr) the minimal barrier starting from an open set £ C R™ (see Definition
2.2), we observe (Theorem 3.2) that

M(EaFF) :M(EafF’*')a

where F'T is defined as the smallest degenerate elliptic function greater than or
equal to F' (see (1.1)). Secondly, in Section 5 we show (see Theorems 5.2, 5.3) that
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minimal barriers are equivalent to viscosity solutions for geometric problems of the
form (0.1) under the assumptions on F' made by Giga-Goto-Ishii-Sato in [11]. More
generally, it turns out that the minimal barrier is the maximal between all viscosity
subsolutions assuming a given initial datum (Corollary 5.3). All proofs will appear
in [2,3].

1. NOTATION
In the following we let I := [tg, +00], for a fixed ty € R; in Section 5 we will take
to = 0. We denote by P(R™) the family of all subsets of R™, n > 1. If C' is a subset
of R™ such that C' # R™ and C # 0, we set do(z) := dist(z, C) — dist(z, R" \ C),
and for any o > 0

C, ={rx e R":dist (z,R"\ C) > o}, C} :={z € R" : dist(z, C) < g}.

Given a map ¢ : J — P(R™), where J C R is a convex set, if ¢(t) # R™ and
#(t) # 0 for any t € J we let dg : J x R™ — R be the function defined as

de(t,x) == dist(z, ¢(t)) — dist(z, R" \ ¢(t)) = dy) ().

Given ¢1,¢2 : J — P(R"), by ¢1 C ¢2 (resp. ¢1 = ¢2) we mean ¢1(t) C ¢a(t)
(resp. ¢1(t) = ¢pa(t)) for any t € J.
Given a function v : J x R® — R we denote by v, (resp. v*) the lower (resp.
upper) semicontinuous envelope of v.
For z € R™ and R > 0 we set Br(z) :={y € R": |[y—z| < R} and S" ' :={z €
R" : |z| =1}. If ¢1,¢c0 € R, we let ¢; A ca = min(cy, c2) and ¢; V c2 = max(cy, ¢2).
We denote by Sym(n) the space of all symmetric real (n x n)-matrices. Given p €
R™\ {0}, we set P, := Id—p®p/|p|?. We also set Jy := I xR"x (R"\{0}) x Sym(n).
Given a function F : Jy — R, we denote by F, (resp. F™*) the lower (resp.
upper) semicontinuous envelope of F'.
For any (t,z,p, X) € Jy, we define

Fc(t7$7p7X) = —F(t,ﬂf, —-D, _X)a
(1.1) Ft(t,z,p,X) :=sup{F(t,z,p,Y): Y > X},
F~(t,z,p, X) :=inf{F(t,z,p,Y): Y < X}.

We say that F' is locally Lipschitz in X if for any (t,z,p) € I x R"™ x (R™\ {0})
the function F(¢,z,p,-) is locally Lipschitz.

We recall that F is geometric [5, (1.2)] if F (¢, x, A\p, AX +op®p) = AF(t,z,p, X),
forany A > 0,0 € R, (t,z,p, X) € Jo.
For all definitions and results concerning viscosity solutions we refer to [6] and
references therein. In the appendix we list some assumptions used in the paper,
following the notation of [11].

2. DEFINITIONS OF BARRIERS AND MINIMAL BARRIERS.
Definitions 2.1, 2.2 are a particular case of the definitions proposed in [9].
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Definition 2.1 (barriers). Let F be a family of functions with the following prop-
erty: for any f € F there exist a,b € R, a < b, such that f : [a,b] — P(R™).
A function ¢ is a barrier with respect to F if and only if there exists a con-
vex set L C I such that ¢ : L — P(R™) and the following property holds: if
f:a,b] C L — P(R") belongs to F and f(a) C ¢(a) then f(b) C ¢(b). We denote
by B (F) the family of all barriers ¢ such that L = I (that is, barriers on the whole
of I).

Definition 2.2 (minimal barrier). Let E C R"™ be a given set. The minimal
barrier M (E,F,tg) : I — P(R™) (with origin in E at time to) with respect to the
family F at any time t € I is defined by

(21) M (B, F,to) (1) =) {¢(t) . ¢:1—PRY), ¢ €B(F), ¢ty D E}

Definition 2.3 (maximal inner barrier). Let E C R™ be a given set. The
mazimal inner barrier N'(E,F,to) : I — P(R™) (with origin in E at time ty) with
respect to the family F at any time t € I is defined by

(22)  NEF o)) = J{st): v:1->PRY, veBF), v(t) C B},

where g(]:) is as in Definition 2.1 with the set inclusion C replaced by D.

The connections between M(E, F,ty) and N (E, F,tg) are explained in Theorem
4.3.

The following regularization was introduced in [4] and turns out to be very useful.

Definition 2.4 (regularizations of barriers). Let E C R™. Ift € I we set

ML(E, F o) (t) == | M(E;, F to)(t), M (E,F,to)(t) =) M(ES, F,to)(t),

Ni(B, F to)(t) == N (E,, Foto)(t), N (B, F,to)(t) := | N(ES, Fto)(1).

Once we have a unique evolution of any subset E of R™, we have a unique
evolution of any initial function wug.

Definition 2.5. Let ug : R®™ — R be a given function. The two functions

My 7, Myy 71 I x R" = RU {+o0} are defined by

My 7(t, z) == inf{A € R: M({uo < A}, F,to)(t) > z},

(2:3) My, 7(t, ) == inf{X € R: Mu({ug < A}, F,t0)(t) 3 z}.

Besides the concept of barrier, we can also consider the concept of local barrier.

Definition 2.6 (local barriers). A function ¢ is a local barrier with respect to
F if and only if there exists a conver set L C I such that ¢ : L — P(R™) and
the following property holds: for any x € R™ there exists R > 0 (depending on ¢
and z) so that if f : [a,b] C L — P(R™) belongs to F and f(a) C ¢(a) N Br(x),
then f(b) C ¢(b). We denote by Bioc (F) the family of all local barriers ¢ such that
L =1 (that is, local barriers on the whole of I).
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Definition 2.7 (local minimal barrier). Let E C R" be a given set. The local
minimal barrier Mioe(E,F,to) : I — P(R™) (with origin in E at time to) with
respect to the family F at any time t € I is defined by

Mige(B, F t0)(1) = {6(0): 611> PR), 6 € Boe(F), lto) 2 E}.

Note that a similar definition to Definition (2.6) can be given by localizing also
with respect to time. The connection between barriers and local barriers is ex-
plained in Theorem 3.1.

The definitions of barriers for geometric evolutions described by a function F
for problems of the form (0.1) are a particular case of the previous definitions, by
choosing a suitable family Fr, and read as follows. Let F': Jy — R be an arbitrary
function.

Definition 2.8. Let a,b € R, a < b, [a,b] C I and let f : [a,b] - P(R™). We
write f € Fr (and we say that f is a smooth local geometric supersolution of (0.1))
if and only if the following conditions hold: f(t) is closed and Of(t) is compact
for any t € [a,b], there exists an open set A C R"™ such that df € C*([a,b] x A),
Of(t) C A for any t € [a,b], and

(2.4) %(t, z) + F(t, 2, Vds(t,x), Vids(t,z)) >0 t € la,b], z € df(t).

We write f € Fz (resp. [ € .7:1,5, [ € Fg) if the strict inequality (resp. the
inequality <, the equality) holds in (2.4).

It turns out that, if F' is bounded on compact subsets of Jy, then B (Fr) coincides
with the class of all barriers with respect to the subfamily of Fr consisting of all
f :]a,b] = P(R™) such that f € Fr and f(¢) is compact for any ¢ € [a, b]. Notice
also that R™ \ M, (E, Fr, to) = N*(R"\ E, Fg ,to), and R" \ M*(E, Fp,t) =
Ni(R"\ E, F§ , to).

3. GENERAL RESULTS ON BARRIERS.

The following lemma shows some general properties of the minimal barrier, such
as comparison and semigroup property. If 7 € R, by M(E,F,7) we mean the
minimal barrier constructed by taking barriers on the interval [7, +00[ containing
FE at the time 7.

Lemma 3.1. Let E C R™. Then the following properties hold.
(1) M(E,F,to) erists and is unique;
(2) M(E,F,to) € B(F);
(3) E1 C Ey = M (Ey, F,ty) C M (Es, F,to);
(4) M(E,F,to) (to) = E;
(5) if f:la,b] C I —PR"), feF, then

(3.1) f) S M (f(a), F,a)(t),  t€la,b];

(6) FCG= M(E,F,to) C M(E,G,to);
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(7) assume that the family F satisfies the following property: given f : [a,b] C I —
PR"), f e F,t € ]a,b[, then f‘[a t],f|[t 0 € F. Then M (E,F,ty) verifies the
semigroup property, i.e.,

M (E, F,to) (t2) = M (M (E, F,to) (t1), F,t1) (t2) if to <ty < ts.
The following proposition shows in particular that the minimal barrier coincides
with the smooth evolution of (0.1) whenever the latter exists (see (3.2)).

Proposition 3.1. Assume that F' does not depend on x, is geometric, uniformly
elliptic and of class C*°. Then for any E C R™ we have M(E,Fz) = M(E, Fr).
Moreover for any f : [a,b] C I — P(R"), f € Fr, we have

(3.2) f(t) = M(f(a), Fp,a)t),  tE€]a,b]

For simplicity of notation, from now on we drop the dependence on ty of the
minimal barrier.

Under suitable assumptions on F, the families Fr and Fz give raise to the same
minimal barriers, as explained in the following useful remark.

Remark 3.1. Assume that F : (R™\ {0}) x Sym(n) — R is continuous and locally
Lipschitz in X. Then for any E C R™ we have

M (E,F7) = M.(E, FF), M*(E,Fz7) = M*(E, Fr),

and the same holds for local minimal barriers.
The following result shows the connection between barriers and local barriers.

Theorem 3.1. Assume that F' : (R™ \ {0}) x Sym(n) — R is continuous and
locally Lipschitz in X. Then

Bioo(F7) = B(FF).

In particular, for any E C R™ we have M(E, Fz) = Mioc(E, F7).

The following theorem provides a sort of canonical representation for minimal
barriers when F' is not degenerate elliptic (i.e., for evolutions without comparison),
and it is one of the main results of this note.

Theorem 3.2. Assume that F': (R™\ {0}) x Sym(n) — R is continuous, locally
Lipschitz in X and FT < 400 in (R™\ {0}) x Sym(n). Then

B(Fz) = B(Fzs)-

In particular, for any E C R™ we have M(E, Fz) = M(E, F,).



4. THE DISJOINT SETS PROPERTY AND THE JOINT SETS PROPERTY.
The following properties play an important role in the theory of minimal barriers.

Definition 4.1. Let F,G : (R™\ {0}) x Sym(n) — R be two functions, and let Fr,
Fa be the corresponding families of smooth local geometric supersolutions. We say
that the disjoint sets property with respect to (.7-'F, .7-'(;) holds if, for any E C R",
we have

M(E, Fr) N M*(R"\ E, Fg) = 0.

We say that the joint sets property with respect to (Fp,fg) holds if, for any E C
R", we have
M(E, Fr)UM*(R"\ E, Fg) = R™.

The following theorems characterizes the disjoint sets property and the joint sets
property in terms of the functions F' and G describing the evolution.

Theorem 4.1. Assume that F, G : (R™\ {0}) x Sym(n) — R are continuous and
locally Lipschitz in X. Assume that FT < 400 and Gt < +oo in (R™\ {0}) x
Sym(n) and that F*, GT are continuous. The following two statements hold.
(i) The disjoint sets property with respect to (Tp,fg) holds if and only if GT <
(FF)e-
(ii) The joint sets property with respect to (.7:1:, fg) holds if and only if GT > (F1),.
The following theorem was proved in [4] in the case of driven motion by mean

curvature.

Theorem 4.2. Assume that F : (R™ \ {0}) x Sym(n) — R is continuous and
degenerate elliptic. Then, for any E C R™ we have

M (E,Fr)=R"\M*(R"\ E, Fr,),
M*(E, Fr) =R"\ M. (R"\ E, Fr,).

The following result shows the connection between minimal barriers and maximal
inner barriers.

Theorem 4.3. Assume that F : (R™ \ {0}) x Sym(n) — R is continuous and
degenerate elliptic. Then for any E C R™ we have

NW(E, Fr) = M.(E, Fr), N*(E,Fp) = M*(E, Fr).

5. COMPARISON BETWEEN THE MINIMAL BARRIERS AND THE LEVEL SET FLOW.
From now on we take I = [0,+o0[ (i.e., o = 0) and all barriers we consider are
barriers on [0, +00[. The following theorem is proved in [11, Theorem 4.9].

Theorem 5.1. Assume that F : Jy — R is geometric and satisfies either (F1)-
(F4), (F8), or (F1), (F3), (F4), (F9), (F10) (see the Appendiz). Let vy : R™ —
R be a continuous function which is constant outside a bounded subset of R™.

Then there exists a unique continuous viscosity solution (constant outside a bounded
subset of R™) of (0.1) with v(0,x) = vo(x).

Theorems 5.2 and 5.3 clarify the relations between minimal barriers and viscosity
subsolutions for geometric evolutions.
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Theorem 5.2. Assume that F : Jy — R is geometric and satisfies (F1), (F3),
(F4), (F6’), (F7), (F9), (F10). Let u and v be, respectively, a viscosity sub- and
supersolution of (0.1) in 10, 4+o00[xR™. Then for any A € R we have

(5.1) {z e R" :u*(-,2) < A\} € B(Fr),
(5.2) {z e R":u*(-,z) < A} € B(FF).
(5.3) {z e R" 1 v.(-,z) > A\} € B(Fr,),
(5.4) {z e R" : vi(-,z) > A\} € B(FFr,).

Moreover, if we take F* in place of F in all previous assumptions, then (5.1), (5.2)
still hold.

The next theorem is a sort of converse of Theorem 5.2.

Theorem 5.3. Let u,v : [0,+00[xR™ — R be functions such that u* < +o00 (resp.
vy > —00) in [0,+00[xR™. Assume that F : Jy — R is geometric, lower (resp.
upper) semicontinuous and satisfies (F4). Suppose that for any A € R

(5.5) {z e R" : u*(-,z) < \} € B(FR)
(5.6) (resp. {x € R":v.(-,x) > A} € B(Fz)).
If F satisfies (F2), (F8’) then u (resp. v) is viscosity subsolution (resp. supersolu-

tion) of (0.1) in ]0,+o00[XR™ If F* (resp. F~ ) satisfies (F4), (F8’) then u (resp.
v) is viscosity subsolution (resp. supersolution) of

0
(5.7) 6—7: L Ft(t, 2, Vu, Vi) = 0
ou _ 9
(5.8) (resp. — + F~(t,z, Vu, V?u) = 0)

ot
in 10, +oo[xR™.

The following result shows the connection between minimal barriers and the con-
tinuous viscosity solution whenever the latter exists and is unique, and generalizes
a result of [4].

Corollary 5.1. Assume that F' : Jy — R is geometric and satisfies (F1), (F3),
(F4), (F6’), (F7), (F9), (F10). Let E C R™ be a bounded set and denote with
v : [0, +00[xR"™ — R the unique uniformly continuous viscosity solution of (0.1)
with v(0,2) = vo(z) := (=1) Vdg(xz) A1. Then for any t € [0,4+00] we have

(5.9) M (E,Fz7)(t) = M. (E,Fr)(t) = {z € R" : v(t,z) < 0},

(5.10) M*(E,Fz)(t) = M*(E,Fp)(t) = {x € R" : v(t,z) < 0},

hence My, 7, = v. Moreover if F' = F, then M*(E, Fr) \ M.(E, Fr) € B(Fr).

The following results generalize Corollary 5.1.



o]

Corollary 5.2. Assume that F : Jy — R is geometric, lower semicontinuous and
satisfies (F4). Assume that FT satisfies (F1), (F3), (F4), (F6’), (F7), (F9), (F10).
Then for any bounded set E C R™ and any t € [0, +00[ we have

M (E,Fr)(t) = M (E,Fz)(t) ={z € R" : v(t,z) < 0},
M*(E,Fr)(t) = M*(E,Fz)(t) = {z € R" : v(t,z) < 0},

where v is the unique uniformly continuous viscosity solution of (5.7) and v(0,x) =
vo(z) := (=1) Vdg(x) A 1. In particular, thanks to Corollary 5.1, we have

M (E, Fr) = M.(E, Fp+), M*(E,Fr) = M*(E, Fp+)
(compare Theorem 3.2).

Corollary 5.3. Assume that F' : Jy — R is geometric and satisfies (F1), (F3),
(F4), (F6’), (F7), (F9), (F10). Let up : R® — R be a given function such that
uy < 400 in R™. Define

Suy = {v : v is a viscosity subsolution of (0.1) in |0, 4+o00] xR",v*(0,x) = ug(x)}.

If ug is upper semicontinuous then My, r. = Muo,]-‘; =sup{v:v € Sy, }. In the

general case we have My, 7, = Moo, 7z = sup{v : v € Sy, }.

Remark 5.1. A similar assertion of Corollary 5.3 (under the same hypotheses)
holds for supersolutions. Precisely, if ug is lower semicontinuous (resp. arbitrary)
such that ug, > —oo in R™ we have that, for any (t,x) € [0, +00[xR™, the function

sup{p : M({uog > pu}, Fr)(t) > z}
(resp. sup{p : M.({uo > p}, Fr)(t) > z})
coincides with the infimum of u(t, ), where u varies over all viscosity supersolutions

of (0.1) in |0, 400 xR™ such that u.(0,x) = ug(x) (resp. u4(0,x) = ugp,(z)) and
same assertions with Fr replaced by .7:;.

The following remark shows the connections between the minimal barrier and the
viscosity evolution without growth conditions on F' (see [15,12]) and for unbounded
sets F.

Remark 5.2. Assume that F : (R™\ {0}) x Sym(n) — R is geometric and satisfies
(F1), (F2). Let u and v be, respectively, a viscosity sub- and supersolution of

0
(5.11) 8—1: + F(Vu, Vi) = 0
in ]0,+oo[ xR™, in the sense of [15, Definition 1.2]. Then (5.1)-(5.4) hold. More-
over, if u : [0,400[xR™ — R is a function such that u* < +oo in [0, +oo[xR"™
and satisfies (5.5) for any A € R, then u is a viscosity subsolution of (5.11) in
10, +oo[ xR™. Finally, Corollary 5.1 still holds, even if E is unbounded.

In particular we have the following result.

Corollary 5.4. Assume that F : (R™ \ {0}) x Sym(n) — R is geometric and
satisfies (F1),(F2). Let E C R™ and let v : [0,4+00[xR™ — R be the unique
uniformly continuous viscosity solution of (5.11) with v(0,z) = vo(z) := dg(z) (in
the sense of [15, Definition 1.2]). Then for any t € [0,+oo[ we have (5.9) and
(5.10). In particular M*(E, Fp)(t) \ M.(E,Fr)(t) = {x € R" : v(t,x) = 0} and
Mo, Fr = V.



6. APPENDIX.
We list here some assumptions used in this note. We follow the notation of [11, pp.
462-463]; we omit those properties in [11] which are not useful in our context.
(F1) F: Jy — R is continuous;
(F2) F is degenerate elliptic, i.e., F(t,z,p, X) > F(t,z,p,Y) for any (¢, z,p, X) € Jy,
Y € Sym(n), Y > X;
(F3) —oo < Fy(t,z,0,0) = F*(t,2,0,0) < 400 for all t € [0, +o0[, z € R™;
(F4) for every R > 0, sup{|F(t,,p, X)| : |pl, |X| < B, (t,,p, X) € Jo} < +00;
(F6) for every R > p > 0 there is a constant ¢ = cg , such that

for all ¢ € [0, +ool, = € R™, ¢ < |pl, gl < R, |X|,|Y| < R.
(F6’) for every R > p > 0 there is a constant ¢ = cg,, such that

\F(t,x,p,X) _F(t7$7Q7X)| < c|p—q|

for any ¢ € [0, +oc], # € R, 0 < [p|, a] < R, |X| < B;
(F7) there are gp > 0 and a modulus o7 such that
F*(t,iC,p,X) - F*(t7$7070) < 0-1(|p‘ + |XD7
F*(t,.%',p,X) - F*(t7'7’.707 0) Z _0-1(|p‘ + |XD7

provided ¢ € [0, +oof, z € R", |p|, | X| < go;
(F8) there is a modulus oy such that

[F(t,z,p, X) = F(t,y,p, X)| < & = ylploa(1 + [z = y])

for y € R", (t,z,p, X) € Jo;
(F8) for any R > 0 there is a modulus og such that

for y e Rn7 (t7$7p7X) € JOa |X| < Ra
(F9) there is a modulus o9 such that Fy(t,2,0,0) — F*(¢t,y,0,0) > —oa(|z — y|) for
any t € [0, +o0], 7,y € R";

(F10) suppose that —p (Ig I((Ji) < ()(f }0,) <v <_I;1d _I(Iid> with p,v > 0. Let
R >2vV pand let p > 0; then

for (¢,z) € [0, +oo[xR™, p < |p| < R, with some modulus @ = g , independent
Oft,x,y,X,Y,/j;,V.
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