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1. INTRODUCTION

In [12] De Giorgi introduced a notion of weak solution, called minimal barrier,
for a wide class of evolution problems. In the particular case of geometric flows
of subsets of R™, the concept of minimal barrier can be described as follows (see
Section 2.1 for precise definitions). First we choose a nonempty family F of maps
which take some time interval into the set P(R"™) of all subsets of R™: for instance
F can be the family of all smooth local evolutions with respect to a given geometric
law. Then we define the class B(F) of all maps ¢ : [0, +oo[— P(R™) which are
barriers for F in [0, +o0o[ with respect to the inclusion of sets, that is, if f : [a, b] C
[0, +o0[— P(R™) belongs to F and f(a) C ¢(a), then it must hold f(b) C ¢(b).
Finally, we define the minimal barrier M(E, F)(t) with origin in E C R", with
respect to F, at time ¢ € [0, +-o00[ as

(1.1)  M(E, F)(t):=({¢(t) : ¢ : [0,+0c[— P(R"), ¢ € B(F),$(0) 2 E}.

We stress the dependence on F of the minimal barrier (see Example 2.1) and also the
fact that the minimal barrier is unique and globally defined, for an arbitrary initial
set E. Therefore, given any initial function up : R® — R, (1.1) yields a unique
global evolution function M, 7(¢,z) (assuming wy as initial datum), defined as
the function which, for any A € R, has M ({up < A}, F)(t) as A-sublevel set at time
t € (0,400

The aim of this paper is to compare the minimal barrier with the viscosity
solution of geometric fully nonlinear parabolic problems of the form

(1.2) % + F(t,x, Vu, V?u) = 0.
The definition of viscosity solution has been introduced by Crandall and P.-L. Lions
[11] (we refer to [10] for a bibliography on this argument). It has been exploited by
Evans-Spruck [13] in the case of motion by mean curvature and by Chen-Giga-Goto
9], Giga-Goto-Ishii-Sato [16] in the case of geometric evolutions of the form (1.2).
We recall that, in order to define the viscosity evolution V(E)(t) of a bounded
open set E C R"™ for problem (1.2), first we find the unique continuous viscosity
solution of (1.2) (with a suitable initial datum negative inside E) and then we
recover V(FE)(t) by setting V(E)(t) := {x € R" : v(t,z) < 0}.

A comparison result for sets E with compact boundary in case of driven motion
by mean curvature (whose corresponding function F' is given by F(t,z,p, X) =
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—tr((Id — p @ p/|p|?) X) + g(t,x)|p|, g being the driving force) has been proved in
[7], and shows that the two weak definitions are essentially equivalent. The proofs
of [7] rely on a paper by Ilmanen [20], where viscosity solutions are compared, in
the case of motion by mean curvature, with the so called set theoretic subsolutions.

The results of [20,7] are based on Ilmanen’s interposition lemma and on Huisken’s
estimates [18] of the existence time for the evolution of a smooth compact hyper-
surface in dependence on the L° norm of its second fundamental form, without
requiring bounds on further derivatives of the curvatures. The above results of
Ilmanen and Huisken apply basically to the case of motion by mean curvature; it
seems difficult to recover the time estimates of [18] for a general evolution law of the
form (1.2) (some generalizations of Huisken’s results can be found in [2,3]). This
is the main reason for which we follow, in this paper, a completely different ap-
proach to the problem, which allows us to compare minimal barriers with viscosity
solutions for a general F'.

A further remark on the definition of minimal barrier is the following: denoting
by Fr the family of all local smooth geometric supersolutions of (1.2) (see Definition
2.5), to ensure that M(E, Fr) is well defined we do not need to assume that F, if
considered as a function on symmetric matrices, is decreasing (degenerate ellipticity
condition); it turns out [6] that when E is open we have

(1.3) M(E, Fp) = M(E, Fp+),

where F't is defined as the smallest function which is degenerate elliptic and greater
than or equal to F, i.e.,

(1.4) Ft(t,z,p,X) :=sup{F(t,z,p,Y): Y > X}.

Such a result is obtained in the present paper by passing through the viscosity
theory (Corollary 6.2) and allows to remove the degenerate ellipticity assumption
from the hypotheses of all results of Sections 3 and 5, provided that also F'* satisfies
the assumptions listed in [16].

Finally we observe that M(E, Fr) and M, 7, verify by definition the com-
parison principle and it is immediate to check that, if 0F is smooth, M(E, Fr)
coincides with the classical evolution of E, as long as the latter exists, provided
that the classical evolutions are barriers on their time interval of definition (which
is the case, for instance, for uniformly elliptic smooth functions F).

Let us briefly summarize the content and the main results of the present paper.
In Section 2 we introduce some notation and the notion of minimal barrier and
regularized minimal barriers with respect to a family F (Definitions 2.2, 2.3, 2.4). In
Proposition 2.2 we show that the minimal barriers agree with the smooth evolutions
whenever the latter exist. We conclude Section 2 with two examples of minimal
barriers obtained with particular choices of F: Example 2.1 concerns motion by
mean curvature whenever F consists of smooth convex evolutions; in Example 2.2
we consider the case of inverse mean curvature flow. Sections 3-5 are concerned with
geometric evolutions of the form (1.2) where F' satisfies some of the assumptions
made by Giga-Goto-Ishii-Sato in [16]. In Section 4 we prove some auxiliary results
on barriers used throughout the paper. The comparison result between barriers
and viscosity solutions is divided into two parts. In Section 3 we prove that the
sublevel sets of a viscosity subsolution of (1.2) are barriers (Theorem 3.2) and in
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Section 5 we prove that a function whose sublevel sets are barriers is a viscosity
subsolution of (1.2) (Theorem 5.1). In Theorems 3.2 and 5.1, in order to simplify
the proofs, we distinguish the case in which F' does not depend explicitly on z with
the general case; if F' is not degenerate elliptic we extend the results to the function
F*. In Corollary 6.1 we summarize the comparison results whenever there exists
a unique uniformly continuous viscosity solution v of (1.2) having a given initial
datum. More precisely, if E C R™ is a bounded set, for any ¢ € [0, +00[ we have

(L5 M (E,Fr)(t) ={z € R" : v(t,z) < 0},
) M*(E,Fp)(t) ={z € R" : v(t,z) <0},

where M, (E, Fr) and M*(E,FF) are the lower and upper regularized minimal
barriers (see Definition 2.3). In particular

(1.6) M*(E, Fr)(t) \ My (E, Fr)(t) = {x € R" : v(t,z) = 0}.

Equality (1.6) is connected with the so called fattening phenomenon (see (2.5) and
Remark 6.1).

In case of nonuniqueness of viscosity solutions, we show in Corollary 6.3 that
My, 7 coincides with the maximal viscosity subsolution, see also Example 6.1.
If F is not degenerate elliptic and if F'* verifies the assumptions of Corollary 6.1,
then (1.5) holds when v is the viscosity solution of (1.2) with F* in place of F
(Corollary 6.2). In Remark 6.6 we extend our results to the case in which F' has
superlinear growth and F is unbounded, where the notion of viscosity evolution is
the one introduced by Ishii-Souganidis in [22].

Acknowledgements. We wish to thank Ennio De Giorgi for many useful sug-
gestions and advices. We are also grateful to Luigi Ambrosio, Gerhardt Huisken,
Tom Ilmanen and Alessandra Lunardi for interesting discussions.

2. NOTATION AND MAIN DEFINITIONS

In the following we let I := [tg, +00[, for a fixed ¢ty € R; in Sections 3-6 we will
take to = 0. We denote by P(R"™) the family of all subsets of R, n > 1. Given a
set C C R™, we denote by int(C), C and dC the interior part, the closure and the
boundary of C, respectively; x is the characteristic function of C, i.e., xc(z) =1
ifreC,xe(x)=0ifz ¢ C. If C # R™ and C # (), we set

do(z) := dist(z, C) — dist(z, R" \ C),
and for any o > 0

(2.1) C, :={zr e R":dist (z,R"\ C) > g},
(2.2) Cf:={z e R" : dist(z,C) < o}.

Given a map ¢ : J — P(R"™), where J C R is a convex set, if ¢(t) # R™ and
$(t) # 0 for any t € J we let dy : J x R™ — R be the function defined by

dg(t, r) := dist(z, ¢(t)) — dist(z, R™ \ ¢(t)) = dg)(z)-
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If ¢1,¢2 : J = P(R"), by ¢1 C ¢2 (resp. ¢1 = ¢2) we mean ¢1(t) C ¢a(t) (resp.
$1(t) = ¢a(t)) for any t € J.

Given a function v : J x R® — R we denote by v, (resp. v*) the lower (resp.
upper) semicontinuous envelope of v.

For z € R" and R > 0 we set Br(z) :={y € R": |y —z| < R} and S" ! :={z €
R" : |z| =1}.

If ¢1,c0 € R, we let ¢y A cg = min(cy, c2) and ¢; V ca = max(cy, ¢2).

We denote by Sym(n) the space of all symmetric real (n x n)-matrices, endowed

with the norm | X |* = Z X7, where X = (X;).
ij=1
Given p € R™ \ {0}, we set P, :=Id — p ® p/|p|?. Finally we define
Jo=1xR"x (R"\ {0}) x Sym(n),  Jy:=1x (R"\{0}) x Sym(n).

Remark 2.1. All results of this paper still hold when I in Jy and Jy is replaced by
[to,to + T , for some T > 0.

2.1. Definitions of minimal barriers. The following two definitions are a par-
ticular case of the definitions proposed in [12].

Definition 2.1. Let F be a family of functions with the following property: for
any f € F there exist a,b € R, a < b, such that f : [a,b] — P(R"). A function
¢ is a barrier with respect to F if and only if there exists a convexr set L C I such
that ¢ : L — P(R™) and the following property holds: if f : [a,b] C L — P(R")
belongs to F and f(a) C ¢(a) then f(b) C ¢(b). We denote by B (F) the family of
all barriers ¢ such that L = I (that is, barriers on the whole of I).

Definition 2.2. Let E C R"™ be a given set. The minimal barrier M (E,F,to) :
I - P(R"™) (with origin in E at time to) with respect to the family F at any time
t € I is defined by

(23) M(E,Fto) (1) == ({6(t) : ¢:1>PR"), ¢ €B(F), d(to) 2 E}.
Let us observe that M (E,F,ty) € B(F) (uniqueness of the minimal barrier),
M(E,]:,to)(to) = E, and that E1 g Ez implies M(El,j:,to) g M(Eg,f,to)
(comparison property).

For simplicity of notation, we drop the dependence on ty of the minimal barrier,
thus we write M(E,F) in place of M(E, F,to).

The following regularizations have been introduced in [7] for driven motion by
mean curvature, and will be useful in the sequel.

Definition 2.3. Let E C R". Ift € I we set
0>0

M*(E, F)(t) == [ | M(E], F)(t).

>0

(2.4)

Following [5], we say that the set F develops fattening (with respect to F) at time
t, €1 if]

H" (M*(E,f)(t) \ M*(E,f)(t)> =0 for t € [to,tl]a

H" (M*(E,f)(t) \ M*(E,]-")(t)) >0  for some ¢ € ]t1, +00] ,
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where H™ denotes the n-dimensional Hausdorff measure (note that one could define
the m-dimensional fattening by replacing H™ with H™, 0 < m < n).

Once the evolution of an arbitrary set is uniquely defined, we can define the
unique evolution of an arbitrary initial function wug.

Definition 2.4. Let ug : R™ — R be a given function. The two functions

Moy, 7, Myy 7 1 I X R" = RU {£o0} are defined by

Mo #(t, ) == inf{\ € R: M({up < A}, F)(¢) > =},
(2.6) My, 7(t,z) == inf{\ € R: M,({uo < A}, F)(t) > z}.

If F cousists of functions f : [a,b] C I — P(R™) such that f(¢) is compact for
any t € [a,b], if M(A,F)(t) is open for any open set A C R”, and if up : R® - R
is upper semicontinuous, then there holds

(2.7) {x e R" : My, 7(t,x) < A} = M({uo < A}, F)(1), tel.

Hence under these assumptions M, #(t,-) is upper semicontinuous; if we drop the
upper semicontinuity assumption on ug, we have Muo, F =My 7.
General properties of minimal barriers will appear in a forthcoming paper [6].
The definitions of the minimal barriers for geometric evolutions described by a
function F' are a particular case of the previous definitions, by choosing a suitable
family Fr, and read as follows.

Let F : Jo — R be an arbitrary function.

Definition 2.5. Let a,b € R, a < b, [a,b] C I and let f : [a,b] - P(R™). We
write f € Fp if and only if the following conditions hold: f(t) is compact for any
t € [a,b], there exists an open set A C R™ such that dy € C*([a,b] x A), 0f(t) C A
for any t € [a,b], and

(2.8) %(t, z) + F(t,r,Vds(t,x), V3ds(t,x)) >0 t € la,b[, z€df(t).

We write f € Fz if and only if f € Fp and the strict inequality holds in (2.8).

Obviously B(Fr) C B(Fz), hence M(E,Fp) O M(E,Fz). One could equiva-
lently replace ]a, b[ with [a, b] in (2.8).

Remark 2.2. Definition 2.5 (and consequently the definition of minimal barrier)
can be adapted to geometric flows on a riemannian manifold (V,g) by substituting
P(R™) with the family of all subsets of V ordered by the inclusion, the euclidean
distance with the geodesic distance on (V,g), and the operators V,V? with the
corresponding intrinsic operators.

We recall that F' is geometric [9, (1.2)] if
F(t,z, \p, A\ X +op®p) = AF(t,z,p, X),

forany A > 0, 0 € R, (t,z,p, X) € Jy.
If we define F(t,2,p, X) = [p|F(t, 2, &, Zp2) for (t,z,p, X) € Jo, then F is

geometric and ﬁ(t,m,Vdf,V2df) = F(t,z,Vdys,V?dy) for f € Fp, so Fp = Fp.
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Hence in what follows, without loss of generality, we can always assume that the
function F' is geometric.

A concept close to the minimal barrier (without the regularization defined in
(2.4)) in the case of motion by mean curvature (i.e., F(t,z,p, X) = —tr(P, X Pp))
for compact sets was introduced by Ilmanen in [20] and was called set-theoretic
subsolution; in that case Fr is essentially the family of all local smooth evolutions by
mean curvature, and (2.8) is considered with the equality instead of the inequality.

Notice that to define M(E, Fr) we need only that Fp is nonempty, which is
guaranteed under very mild assumptions on F'

Proposition 2.1. Assume that there exists a function Fy : Jo — R which is
bounded on compact subsets of Jy and Fy < F. Then the family Fr, (hence Fr) is
nonempty.

Proof. Let R > 0 and 0 < € < 1 be such that
1
— > sup{| (1,2, p, X) |t €[to, to + /2 |o| € [R/2, R, [p|=1,0<|X| <2V — 1/R}.

Let R(t) := —(t — to)/e + Ry and d(t,z) := |x| — R(t). When t € [tg,to + €R/2]
then R(t) € [R/2, R], and therefore sup 'V%d| < 2v/n —1/R. We
t€[to,to+eR/2],|z|=R(t)
then have
od

1
S (ba) == > —Fi(ta, Vd(t,0), V() t€ o to+eR/2[, |2l = R(2).

It follows that the map t € [to,to + €R/2] — Bpg() belongs to .7:}?1. O

If F' is of class C*°, if it does not depend explicitly on x and is geometric and
uniformly elliptic then, as proved in [15], any compact boundary of class C* has a
unique smooth evolution for small times. Hence we have the following proposition,
which shows in particular that the minimal barrier agrees with the smooth evolution
whenever the latter exists (see (2.11)).

Proposition 2.2. Assume that F' : J; — R does not depend on x, is geometric,
uniformly elliptic and of class C>*°. We write f € Fg if and only iof f € Fr and
equality holds in (2.8). Then for any E C R™ we have

(2.9) M(E, Fr) = M(E, Fr)

and if E is open we have also

(2.10) M(E, Fz) = M(E, Fr).
Moreover for any f : [a,b] C I - P(R"), f € Fr, we have

(2.11) M(f(a), Fr,a)(t) = f(t),  t€[a,b].

Proof. To prove (2.9) it is enough to show M(E,F7) 2 M(E,Fr). Hence we
are reduced to show that M(E,Fz) € B(Fr). Let f : [a,0] C I — P(R"),
f € Fr, f(a) C M(E,F5)(a). We have to prove that f(b) C M(E,F5)(b). The
set Of(s) is of class C* and compact for any s € [a,b], therefore the L° norm
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of the second fundamental form of df(s) (and of V3dy, if necessary) is uniformly

bounded with respect to s € [a, b]. Hence there is 7 > 0, independent of s, so that

the evolution of f(s) by (2.8), with the equality, is of class C* in [s, s + 7] for any
m

s € [a,b]. Write [a,b] = U[ti,ti+1] where a =t < --- <tpp1=betiy1 —t; < T
=1

Let us denote by f%(t) the geometric evolution of f(t;) by means of (2.8) with the

equality. Then, using the comparison principle between smooth evolutions, we have

f(tiz1) C fi(t;x1). Reasoning by induction on i, we have fi(t;) C M(E FF)( i)

for any ¢ = 1,...,m + 1, hence f(t;41) C M(E Fz)(tiy1) for any ¢ = 1,...,m.

For i = m we conclude the proof of (2.9).

Let E be open. To prove (2.10) we need to show that M(E,Fz) € B(Fr).
Let f : [a,b] C I — PR"), f € Fp, f(a) C M(E,Fz)(a) =: A. We have
to show that f(b) C M(E,Fz)(b). As A is open (see (4.24)) and since f(a) is
compact, we have dist(f(a), R"\ A) > 0. For any ¢ € [a,b] we can find a bounded
closed tubular neighbourhood of df(t), of thickness ¢(t), each point of which has
a unique orthogonal projection on 9f(t), and such that ¢ := inf{c(t),t € [a,b]}
is strictly positive. Let L be the Lipschitz constant of F (¢, Vd¢(t, ), V2ds(t, z))
and M be the supremum of |V2d; (¢, z)|* when ¢ € [a,b] and = belongs to the c(t)-
tubular neighbourhood of df(t). Pick a C*° function p : [a,b] — ]0,4o00] so that
o(a) < min(c,dist(f(a), R"\ A)) and ¢+ 2MLp < 0. The map g : [a,b] = P(R"),
g(t) := f;zt) (t) = {z € R™ : dist(z, f(t)) < o(t)} is of class C*°, and each point
y € 0g(t) is of the form y = x + o(t)Vd¢(t, z) for a unique z € df(t). We observe
that g € Fz. Indeed for any y € dg(t), y = z + o(t)Vds(t,z), x € df(t), we have

2dy(t,y) = V23ds(t, z)(Id + o(t) V2 (¢, 2)) ™1, so that

V2dy(t,y) — V2ds(t,7)| < 2Mol2).

Therefore, recalling that f € Fp, for any t € ]a,b[ we have

- %(t y) = —%(t )+ o(t) < F(t,Vds(t, ), V2ds(t,z)) + o(t)
(2.12) = F(tVde(ty), V2df(t737)) o(t)

< F(t, Vdy(t,y), Vdg(t
t

,y)) + 2LMo(t) + o(t)
< F(t, Vdy(t,y), Vidg(t, y)

);

so that g € Fz. Hence f(b) C g(b) C M(E, Fz)(b).

Let us prove (2.11). It is enough to show that for any f : [a,b] — P(R"),
f € Fz, we have M(f(a),Fz,a)(t) C f(t) for any ¢ € [a,b]; this follows by the
comparison principle between smooth evolutions, since f is a barrier on |[a, b] with
respect to Fp. [

Remark 2.3. To prove (2.10) for open sets E we need that F is locally Lipschitz
in the X -variable. As we shall see in (6.5), equality (2.10) holds true under weaker
assumptions on F' (which may also depend on x).

Example 2.1. Let F'(p, X) = —tr(P,XP,) (i.e., motion by mean curvature) and

Cr:={f:[a,b] > P(R"™), f € Fr, f(t) is convex for any t € [a, b},
Dr :={f:[a,b] > P(R"), f € FF, f(a) is convex}.
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Then for any £ C R™ we have

M, (E.Cr) = Mu(E, Dp) = M. (E, Fa),
M*(E;CF) = M*(EaDF) = M*(E7]:G)7

where

F(p,X) if X >0,

0 elsewhere.

G(p, X) ;:{

Note that if n = 2 then G = F A Q.

Proof. Let E C R™. Using [18] (see also [14]) we know that a smooth convex
set flowing by mean curvature remains convex, hence we have that M(E,Cr) D
M(E,Dr). Reasoning as in the proof of (2.9) we also have M(E,Cr) = M(E, Dp).
Furthermore, as Cr = Cq C Fg, we have M(E,Cr) C M(E, Fg).

To complete the proof it is enough to show

(2.13) M(A,Cr) 2 M(4, Fa),

for any open set A C R™. We will prove that, given g : [a,b] C I — P(R"™), g € F3,
we have

(2‘14) g(t) - M(g(a’)’cF; a)(t)7 te [a7 b]a

which implies M(E,Cr) D M(E, FZ) for any E C R™, which in turn, thanks to
(2.10), implies (2.13).

For any = € 0g(a), let C, C g(a) be a convex set with smooth boundary such
that 0C; N dg(a) = {z}, Vde,(z) = Vdgyg)(z), Vide,(x) = V?dye)(z) and
sup,cac, V2o, (y)| < 2|V3de, ()|, which implies |V?dg,| < K, for a positive
constant K independent of z € dg(a). By [18] we can find 7 > 0, indepen-
dent of z € 0Og(a), such that there exists a smooth mean curvature evolution
fz:la,a+ 7] = P(R™), fz(a) = C; and f, € Cr N Fz. Note that

od, dde,
E(aax) > ot (a,x).

(2.15)

Using (2.15) and an argument similar to the one in Lemma 5.1 (see [6]) we have

dg(t) C U fz(t) for any t € [a,a + 7], that implies, as g(t) is compact for any
z€dg(a)

t € [a,b], g(t) € M(g(a),Cr,a)(t) for any t € [a,a + 7]. Now (2.14) follows by an

induction argument and the compactness of [a,b]. O

Example 2.2. Let us define the family G as follows. A function f : [a,b] — P(R"™)
belongs to G if and only if f(t) is compact for any t € [a, ], there exists an open
set A C R" such that dy € C*([a,b] x A), 0f(t) C A for any t € [a,b], and

od 1
=F L

—— >0 telab[, z€df(t)

Ad
= 0, ot Adf -

Then the associated minimal barrier M(FE, G, tg) provides a definition of weak evo-
lution of any convex set £ C R" by the inverse mean curvature (see [19]).

We conclude this section by recalling that in [12] a suitable choice of F is sug-
gested to obtain motion by mean curvature of manifolds of arbitrary codimension,
see Remark 6.4 and [1].
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3. LEVEL SETS OF SUBSOLUTIONS ARE BARRIERS

Let us begin the comparison between the minimal barriers and the viscosity
evolution. From now on we take I = [0,4o00[ (i.e., tp = 0) and all barriers we
consider are barriers on [0, +oo[. Moreover we use the word subsolution to mean
viscosity subsolution (and similarly for solution and supersolution). The function
F is always geometric, and we denote by F, (resp. F*) the lower (resp. upper)
semicontinuous envelope of F'.

We list here some assumptions we use in the sequel. We follow the notation
of [16, pp. 462-463]; we omit those properties in [16] which are not useful in our
context.

(F1) F:Jy — R is continuous;
(F2) F is degenerate elliptic, i.e.,

F(t,.’E,p,X) > F(t7$7p7 Y)
for any (¢t,z,p, X) € Jy, Y € Sym(n), Y > X;

(F3) —o0 < Fi(t,2,0,0) = F*(t,2,0,0) < +oo for all t € [0, +o0[, z € R™;

(F4) for every R > 0, sup{|F(¢t,z,p, X)| : |p|, | X| < R,(t,z,p,X) € Jo} < +o0.
One can check that if F' is geometric and satisfies (F4), then F,(¢,,0,0) < 0,
F*(t,z,0,0) > 0 for any t € [0, +o0[, z € R™.

(F6) For every R > p > 0 there is a constant ¢ = cg,, such that

|F(t,.’17,p, X) o F(taxaQ7Y)‘ < C(|p— Q| + |X - YD
for all t € [0, 400, z € R", o < |p|, |q| < R, |X|,|Y]| < R;
(F6’) for every R > p > 0 there is a constant ¢ = cg , such that
‘F(t,:[,‘,p,X) o F(t7x7Q7X)| < C|p o q|
for any t € [0, +oo[, z € R™, o < [p[,[q| < R, [ X[ < R;
(F7) there are gp > 0 and a modulus o7 such that
Fi(t,z,p, X) — Fi(t,2,0,0) > —o1(|p| + [ X]),
provided t € [0, +oc[, z € R", [pl, | X| < 00;

(F8) there is a modulus o3 such that
fory € R™, (t,z,p, X) € Jo;

(F8) for any R > 0 there is a modulus o such that

for y € R", (t,z,p, X) € Jo, | X| < R;
(F9) there is a modulus o9 such that Fy(t,x,0,0) — F*(¢t,y,0,0) > —oa(|z — y|) for
any t € [0, +oo[, z,y € R";
Id 0 X 0 Id -Id .
— < < > 0.
(F10) suppose that ,u(o Id) < (0 Y) < y(—Id I > with g, v > 0. Let
R >2vV p and let o > 0; then

Fu(t,z,p, X) = F*(t,y,p,=Y) > —|z — y||plo(1 + |z — y| + v|z — y[?)

for (¢,z) € [0, +oo[xR"™, p < |p| < R, with some modulus @ = o , independent
Oft?',L"y?X?Y’/'I/?y'
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Remark 3.1. One can check that, if F' is geometric, then condition (F6) (resp.
(F6°), (F8), (F10)) is equivalent to the analogous condition in [16]. Moreover (F})
implies conditions (6.31) of [9] and (F10) implies (F2) (see [16, proof of Theorem
2.1, case 2/) and (F8’). Furthermore, it is proved in [16, Proposition 4.3] that (F3),
(F8) imply (F9), and (F2), (F6), (F8) imply (F10).

Let A C R™. We recall [9,10] that a function u : [0,400[xA — R is called a
viscosity sub-(super) solution of

(3.1) % + F(t,z,Vu,V?u) =0

in |0, +oo[x A if u* < +o0 (resp. u, > —o0) in [0, +o00[x A and

(3.2) %—f(f, )+ F.(.7, V(L. 7), V(7)) < 0
o - _ Ry TN O2 (T -
(3.3) (resp. E(t’ z)+ F*(t,z,Vy(,T), VY (t,T)) > 0)

for any function ¢ € C*°(]0, +o00[x A) such that u*—1) (resp. u,—1) has a maximum
(resp. minimum) at (£,%) € ]0,4+o0c[x A (one achieves an equivalent definition of
viscosity sub- and supersolution by taking C? test functions ).
Finally, we define

F.(t,z,p,X) :=—F(t,z,—p,—X)

for any (t,z,p, X) € Jy. Note that if F' is degenerate elliptic then F is degenerate
elliptic.
The following theorem is proved in [16, Theorem 4.9].

Theorem 3.1. Assume that F : Jo — R is geometric and satisfies either (F1)-
(F4), (F8), or (F1), (F3), (F4), (F9), (F10). Let vy : R® — R be a continuous
function which is constant outside a bounded subset of R™. Then there exists a

unique continuous viscosity solution (constant outside a bounded subset of R™) of
(3.1) in ]0, +oo[xR™ with v(0, z) = vo(x).

Given a bounded open set E C R™ we define the viscosity evolutions V(E)(t),
I'(t) of E, OF respectively (the so called level set flow) as

(3.4)  V(E)(t)={zreR":v(t,z) <0}, [(t) :={x e R" :v(t,z) = 0},

where v is as in Theorem 3.1 with vo(z) := (—1) Vdg(z) A 1. It is proved in [16]
that, if u denotes the solution of (3.1) with «(0,-) = wug(-), where up : R® - R
is an admissible initial function such that {uy < 0} = {vy < 0} and {uy = 0} =
{vo = 0}, then {u(t,-) <0} = {v(t,-) <0} for any ¢t € [0, +00[. Applying the same
argument to —u, —v, which are solutions of (3.1) with F replaced by F., we also
have {u(t,-) > 0} = {v(t,-) > 0} for any ¢ € [0,+oc[. We then conclude that ug
and vg give raise to the same level set flow.

When F : J; — R does not depend on x € R™ all previous definitions are
consequently modified in the obvious way.

The following result can be proved reasoning as in [1, Lemma 3.11].
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Lemma 3.1. Assume that F : Jy — R is geometric and satisfies (F2) and
(F4). Let Q@ C R™ be an open set and let u : [0,400[xQ — | —oc0 ,0] (resp.
u : [0,+00[xQ — [0,400[ ) be an upper (resp. lower) semicontinuous function
satisfying the following properties:
(i) for every (t,z) € |0, +o00[xQ with u(t,z) = 0, there is a sequence {(tm,,Tm)} of
points of |0, +00[xQ converging to (t,z) such that u(t,, ) =0 and t,, <t;
(ii) u is a viscosity sub (resp. super) solution of (3.1) in the set {(t,x) € ]0,4+00[x€ :
u(t,z) < 0} ( resp. in the set {(t,x) € |0, +o0[xQ : u(t,z) > 0} );
(15i) |u(t,z) — u(t,y)| < |z —y| for any t € ]0,+o0| , z,y € .
Then u is a viscosity subsolution (resp. supersolution) of (3.1) in ]0,4o0[x£2.

The main result of this section reads as follows.

Theorem 3.2. The following two statements hold.
A) Assume that F : J; — R does not depend on x, is geometric and satisfies (F1)-
(F4), (F6), (F7). Let u and v be, respectively, a viscosity sub- and supersolution

of

9
(3.5) 8—1: + F(t, Vu, V2u) = 0

in |0, +oo[xR"™. Then for any A € R we have

(3.6) {r e R":u*(-,x) < A\} € B(Fr),
(3.7) {zr e R" :u*(-,z) < A} € B(Frp).
(3.8) {z e R" : v.(-, ) > A\} € B(Fr,),
(3.9) {z € R" : v.(-,2) > A\} € B(FFr,).

Let w be the unique uniformly continuous viscosity solution of (3.5) in ]0,4+00[xR™
with w(0,z) = up(z) a given continuous function which is constant outside a
bounded subset of R™ (see Theorem 3.1). Then for any A € R we have (3.6),
(8.7) with u* replaced by w and (3.8), (3.9) with v, replaced by w. If additionally
F = F, then for any A € R we have also

(3.10) {zeR":w(,z) = A} € B(Fr).

B) Assume that F : Jo — R is geometric and satisfies (F1), (F3), (F4), (F6’),
(F7), (F9), (F10). Then, if we substitute (3.5) with (3.1) and F(t,p, X) with
F(t,z,p, X) all assertions of statement A) hold.

Proof. Statement A).

To prove (3.6) it is enough to consider the case A = 0. Let f : [a,b] C [0, +00[—
P(R™), f € Fr, and f(a) C {z € R" : u*(a,x) < 0}; we have to show that f(b) C
{z € R™: u*(b,x) < 0}. Reasoning as in [1, Corollary 3.9, step 7] and using Lemma
3.1 one can check that the function § := d¢ V0 is a continuous supersolution of (3.5)
in Ja,b[xR™ (see also [4, Theorem 3.1]). Then 0 is a continuous supersolution of
(3.5) in ]a, b] x R™ (see, for instance, [9, Lemma 5.7]). Moreover, since subsolutions
are preserved by the composition with a continuous nondecreasing function (see [9,
Theorem 5.2]), we have that u* A0 is an upper semicontinuous subsolution of (3.5)
in Ja,b] x R". As f(a) C {z € R" : u*(a,z) < 0} and f(a) is compact, there
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is € > 0 such that §(a,-) — € > (u* A 0)(a, ) on R™. We can apply the viscosity
comparison principle in [16, Theorem 4.1] to u* A 0 and § — €, and we obtain

(3.11) O(t,z) > (u* ANO)(t,z) +¢, (t,z) € [a,b] x R™.
This implies
fA)C{z e R" :u*(t,z) < —e} C{z € R" : u*(t,z) < 0}, t € [a,b],

and (3.6) is proved. The relation in (3.7) follows from (3.6) by observing that
{zeR" :u*(-,x) <0} = ﬂ{x e R":u*(-,z) < €}
e>0

Assertions (3.8), (3.9) follow from (3.6), (3.7) by recalling that —u* is a super-
solution of (3.5) with F' replaced by F,, and (3.10) follows from (3.7) and (3.9).

Statement B).

Following the proof and the notation of statement A) and using the viscosity
comparison principle in [16, Theorem 4.2] and the fact that a supersolution in
Ja,b|xR™ is a supersolution in |a,b] x R™ (see [9, Lemma 5.7]), in order to show
that f(b) C {z € R™ : u*(b,z) < 0} it is enough to prove that the function
X(t, @) :=1— x4 («) is a supersolution of (3.1) in Ja, b[xR".

Let (¢, ) € Ja,b[xR™ and let 9 be a smooth function such that (x — ) has a
minimum at (¢, Z). Assume first that T € int(f(¢)). We can suppose that x(¢,Z) =
¥ (t,7) = 0. As x is twice differentiable at (,7) we have Vi (£,7) = 0, V29 (,T) <
0. Moreover there exists two sequences {(t%), Tm)}, {(tg), Zm)} converging to (¢, T
with tg) <t< t%) for any m € N, such that X(tg,?,a:m) =0> lb(t%),a:m), 1=1,
Therefore %—f(f, Z) = 0, and we conclude %—f(f, z)+ F*({,7,V¢(t,7), V(L T))
F*(t,7,0,V*Y(t,T)) > F*(%,,0,0) = 0.

The case T € R™\ f({) is similar. It remains to consider the case T € 9f(t). Pick
€ > 0 and 7 > 0 small enough so that each point of B,/5(T) has a unique smooth
orthogonal projection on 9 f(t) belonging to B.(Z) for any t € [t — 7,t+ 7] C ]a, b[.
Define

DN ~—

|

sup F*(t,z,p,X) if z € B.(%),
F.(t,z,p,X):=( z€B:(2)
F*(t,xz,p, X) elsewhere.

Note that f € Fp, F. is geometric, upper semicontinuous and satisfies (F2)
and (F4). We claim that the function 6 := dy V 0 is a supersolution of % +
Fe(t,,Vu,V?u) = 0 in [t — 7, + 7[xB¢/2(Z). To prove the claim we follow [1,
Corollary 3.9, step 7]. Thanks to Lemma 3.1 it is sufficient to prove that § is a super-
solution in {§ > 0}. Let & be a smooth function and (to, o) € ]t — 7,1+ 7[x B, /5(7)
be a minimizer of (§ — &), with d(tg,2z9) > 0. Choose yo € 0f(to) N B.(T) satis-
fying d(to, z0) = |zo — yo| and set ((t,y) := &(t,y + o — yo). Then (to,yo) is a
minimizer of (§ — ¢) by the triangular property of . Let V := H,(9), where o > 0
is such that dy is smooth on {z € R" : dist(z,0f(t)) < o}, t € |t — 7, + 7|, and
Hy,(r):=rAN0c/2, 7> 0. As yo € 9f(to), (to,yo) is also a minimizer of (V — ().
Reasoning as in [1, Thorem 3.8 and Corollary 3.9], we have that V is a supersolu-
tion of 2% + F,(¢,z, Vu, V?u) = 0 in (Jt — 7,1+ 7[x B, /2(T)) N {V > 0}; by Lemma
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3.1 it is a supersolution in |t — 7,% + 7[xB,/2(Z). Therefore

0< %(to,yo) + Fe(to, Yo, V<(to, ¥0), VZ¢(to, Y0))
o€

= E(tﬁ; '/EO) + Fe(t()a Yo, v&(tO’ $0)7 V2§(t07 "L'O))

= %(to,xo) + Fe(to, o, VE(to, %o), VZE(to, 0)),

and this proves the claim.

Using the stability properties of viscosity supersolutions it then follows that also
the function x is a supersolution of %-i—F6 (t,z, Vu, V2u) = 0 on Jt—7, +7[X B /2(T)
(see for instance |1, Lemma 4.3]). Therefore

o

W(i’ 7) + F.(1,Z,Vy(t,T), V29 (t,T)) > 0.

Letting € — 0 we get (3.3). O
We recall that F'+ : Jy — R is defined by

F*(t,z,p, X) :=sup{F(t,z,p,Y): Y > X},  (t,z,p,X) € Jo.

Notice that F* is the smallest degenerate elliptic function greater than or equal to
F; moreover, if F is geometric (resp. lower semicontinuous) then F'* is geometric
(resp. lower semicontinuous).

Remark 3.2. The theses (3.6), (3.7) still hold if we assume that F*, in place of
F, satisfies the assumptions in Theorem 3.2, statements A), B), and we replace F
with F in (3.1) and (3.5) (recall that F+ > F, hence B(Fp+) C B(Fr)).-

Remark 3.3. In Theorem 3.2, if F' does not depend explicitly on (t,z), then ug
can be taken uniformly continuous (see [22, Theorem 2.2] and also [1, Theorem

2.4]).

4. SOME USEFUL RESULTS ON BARRIERS

All results of this section will be used to prove Theorem 5.1, which is the converse
of Theorem 3.2.

The next lemma shows that we can construct arbitrarily small elements of Fz
with assigned normal and curvatures in a suitable neighbourhood of a given point.
Note that we will not assume that F' is degenerate elliptic.

Lemma 4.1. Assume that F : (R™\{0}) x Sym(n) — R does not depend on (t,x),
1s geometric and lower semicontinuous. Let L C R™ be a closed set with smooth
boundary. Let T € OL and o € R be such that

(4.1) a+ F(Vdr(z),V?dp(z)) > 0.
Then for any R > 0 there exist 7 > 0, f : [a,a + 7] = P(R"™) and o > 0 such that

(4.2) fla)C L, 0f(a)NB,(@) =0LNB,(7), a=—7(a,3),
(4.3) feFzm, f(t) € Br(®), t €a,a+ 7]
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Proof. As F' is lower semicontinuous, it is the pointwise supremum of a family of
continuous functions, and since F; < Fy = F ;1 C F ;2, we can assume that F' is

continuous. Fix R > 0 and set (p, X) := (Vdr (%), V2dL(Z)).

CASE 1. Assume that F' is degenerate elliptic. Choose any smooth compact
set, that we denote by f(a), such that f(a) C L N By, (Z) and df(a) N B,(T) =
0L N B,(T), for a suitable o € 0, R/2[. We claim that there exists a function
F : ({R™\ {0}) x Sym(n) — R with the following properties: F is geometric, of
class C*°, uniformly elliptic and

o+ F(p,X) =0,
F(Vday (), Vo) (@) < F(Vdgpa(z), Vidpa(x), =€ df(a).

Let us prove the claim. Fix 0 < € < (a+ F(p, X))/2; approximating F' by convolu-
tion and using the compactness of 0f(a), we can find a degenerate elliptic function
G.: (R™\ {0}) x Sym(n) — R of class C* such that

(4.5) ‘Ge (Vdf(a), V2df(a)) — F(Vdf(a), V2df(a))| < €/2 on df(a).

Set F.(p, X) := ma%&,%) for (p, X) € (R™\ {0}) x Sym(n); then F. is

geometric, of class C*° and degenerate elliptic. In addition G, (Vd F(a)s V2df(a)) =
F, (Vdf(a), V2df(a)) on df(a), hence (4.5) holds with G, replaced by F.. Let n > 0
be such that

(4.6) NAdg) ()] < €/2, z € 0f(a).

Set c:= —a — Fc(p, X) + nAds()(Z). Then ¢ < —e, since by (4.5), (4.6) and (4.1)

—c=a+ F(p, X) —nAdso)(T) > a+ F(p, X) —e > e
Define F : (R™\ {0}) x Sym(n) — R as
F(p,X) := F.(p, X) — ntr(P,X P,) + c.

Then F is geometric, of class C°°, uniformly elliptic, a + F (P, X) = 0; in addition,
for any x € df(a), we have

F(Vd)(2), V2dg(a) () < F (Vi) (@), V2ds(a) (@) + €/2 = 10d () (2) +
< F(Vdf(a) (z), V2df(a) (.’L‘)) +e+c< F(Vdf(a) (z), V2df(a) (.’L‘)),

and the claim is proved.
Denote by €2 an open set containing 0 f(a) and such that dy) € C*(Q2). Let u
be the unique smooth solution [15, Theorem 2.1] of

ou ~
ou 2,,(Id — uV2u) 1
(4.7) t—l—F(Vu,Vu(d uVau)~ ") =0,

u(a, z) = dy ) (z)
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on [a,a + 7] X Q, 7 > 0 sufficiently small. Let 0f(t) := {z : u(z,t) = 0} and f(¢)
be the closure of the bounded connected component of R™ \ 9f(¢). In [15, Lemma
2.3] it is also proven that [Vu| =1, hence f € F%. Notice that 8Tdtﬁ(a,f) = o and
f(t) € Br(z) for t € [a,a+ 7], provided that 7 is small enough. It remains to show
that f € Fz. As dy is of class C* in a neighbourhood of df(-) and the inequality
in (4.4) holds, possibly reducing 7 we can assume

F(Vdg(t,x),V3ds(t,z)) < F(Vdg(t, @), Vids(t,z)),  t€la,a+7], zedf(t)
Therefore on 0f(t), t € [a,a + 7], we have

o=, F(Vdys, Vidy) < I F(Vdy, V2dy),
ot ot
so that f € Fz. The proof of (4.2) and (4.3) is complete.
CASE 2. Assume that F' is not degenerate elliptic. The proof is divided into
three steps.
STEP 1. For any € > 0 there exist a smooth compact set, that we denote by
fe(a), and 0 = o(e) > 0 such that

(4.8) fe(a) C L, O0fc(a) N B,(Z) = 0L N B, (T),

(4.9) Vdeg(a) (x) > X — %Id for any = € df(a) with Vdy, ) (z) = b;

moreover we can find a constant k < 0 independent of € such that (1+ k)Id < X
and

(4.10) V2d; (o) (z) > kld, € €10,1], z € dfc(a).

Let € > 0; up to a rotation and a translation, we can assume that there exist a
neighbourhood U’ = U! of 0 in R™™!, a smooth function  : U’ — R such that
Z = (0,1(0)) and VI(0) = 0, and a neighbourhood U = U, C Bg(Z) of Z in R™ such
that

UNOoL = {(«,l(z)):2' € U}, UNLC{(«,y):y>1U),2" €U},
V2(z') > V2(0) - %Id, o el

Given p > 0, we choose a function g = g, : [0, +00[— [0, +o00[ with the following
properties: g € C*®([0,+o0[), g is convex, g = 0 on [0, 0], g(s) = st/o for s €
[20,4+00[. We define h = hy : U' — R as h(z') := l(z') + g(]2’|). Notice that for
z' € U’ we have

1 @ ' Q!

2 _ o2 2
V2h(z') = V2U(z') + [Wg'(\x'\)(ld— W> +9" (@) | > v2ua).
Define H = H, := {(2',y) : y > h(2’), 2’ € U'}. Let us observe that, at each point
(z, h(xg)) with z; € U" and Vh(z) = 0, the second fundamental form of 0H is

V2h(z}); therefore

V2dg (ah, h(z))) > X — %m.
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To have (4.8), (4.9) it is then enough to define f.(a) C U as a C* regularization of
H N B,(Z), where p = pu(e) and p = g(€) are suitable positive numbers sufficiently
small.
Eventually, property (4.10) holds by construction.

STEP 2. Let € > 0 and dfc(a) be as in STEP 1. Then there exists 0 = §(¢,p) such
that

- €
(4.11)  ze€df(a), Vs (o)(x) =p, [p— Dl <0 = V?dy, (o) (z) > X — - 1d.

Indeed, assume by contradiction that there exists a sequence {p,,} C S*~} sich that
Pm = Vdy (a)(Tm) for ., € 0fc(a), limpm_s {0 P = P and V2df€ (@) (@m) < X = £1d.
Passing to a (not relabelled) subsequence, we have

lm =z, =71¢€ 8f6(a), Vdf6 (a) (5) =D.

m—-+oo

By (4.9) we have

X—Td> lm Vdy, 0 (en) = Vd;, @) > X - ~1d,

m—+oco

a contradiction.

To continue the proof of the lemma, we introduce some notation: Y will be
always an element of Sym(n), we set

(4.12) B = nslin F(q, k1d), ci= tr(y — kId) >0,
qe n—1

and define mg, m;y : [0, +oo[— [0, +00[ as
mo(s) := max{|F(q, kId) — F(q,kId+Y)|: g € S""1,Y > 0,tr(Y) < s},

(4.13) mi(s) := max{|F(q,7) —F(qg,X+Y)|:qeS™ Y| < s}.

Then my(0) = m1(0) = 0, and mg, my are continuous and nondecreasing.
Moreover, recalling (4.1), we choose 0 < € < min(1, ¢) in such a way that

(4.14) F(p,Y— %Id) + a > 2mq (V2€) + mg(c) — mo(c — ¢), p—p| <e.

STEP 3. Let € be chosen as in (4.14) and let f.(a) be the corresponding set

given by STEP 1. Then there exists a geometric, uniformly elliptic function F' :
(R™\ {0}) x Sym(n) — R of class C* such that

a+F(@,X)=0,
(4.15) _ ( ) ) )
F(Vdfe(a) (:U), \% dfe(a) (:E)) < F(Vdfé(a) (.’E), \% dfs(a) (.73)), S 8f€(a)

Let us define the function mgy : [0, +o00[— [0, +00[ as my = myg on [0, c — €] and, if
s> cC—e€,

ma(s) :=max (mo(s),mo(c— €) —l—max{‘F(q,Y— %Id) - F(q,Y— %Id-i— Y)‘ :

qeS™hY >0,tr(Y) Ss—c-l—e}).
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Choose ' < min(8, ma(c) — @), let 0 < 6 = §(¢) < € be given by STEP 2 and
pick a function g = g5 € C°°(S™™!) such that

(416)  g(p) = max g(q):=ma(c) —a,  g(p):= g for|p—pl >4

Let us prove that for any x € df.(a) we have
(4.17) g(Vde(a) (a:)) — Mo (tr(Vzde (a)(z) — kId)) < F(Vdfe(a) (z), Vzdfs(a) (x))

Let z € 0fc(a) and set (p, X) := (Vdy, (o) (2), V?dy, () (2)).
If |p — p| > § then, recalling (4.16) and the definition of 3, 5, we have

(4.18) g(p) =B < B < F(p,kId).
Moreover
ma(tr(X — kId)) > mo(tr(X — £Id))

4.19
(4.19) > max {F(p,kId+Y) — F(p,kld) : Y > 0,tr(Y) < tr(X — kId)}.
Taking Y = X — kId, by (4.18) and (4.19) we have

9(p) — ma(tr(X — kld)) < F(p, kld) + F(p, X) — F(p, kId) = F(p, X)

and (4.17) is proved.
Assume now that [p —p| < 6 < e. Then by (4.16) we have

(4.20) g9(p) < 9(p) = ma(c) — .

Moreover, by (4.11) we also have X > X —£1Id, hence tr(X —kId) > c—e. Therefore,
recalling the definition of ms, we have

(421)  mg(tr(X — KId)) > mo(c — €) + F(p,f - %m) — F(p, X).
Then, by (4.20), (4.21) and (4.14) we find
g(p) — ma(tr(X — kId)) < ma(c) — a —mo(c—€) — F(p,y - %Id) + F(p, X)
< F(p, X) +ma(c) — 2m1(v/2¢) — mg(c).
To prove (4.17) it is enough to show that
(4.22) ma(c) — 2m1(V/2€) — mo(c) < 0.
If ma(c) = mo(c) then (4.22) is obvious; otherwise
ma(c) — mo(c) = —mo(c) + mo(c — ¢€)
X- EId) —F(q,f— EId+Y)‘ LgeS™ LY > 0,tr(Y) < e}
n
Y _ _ Y _ E . n—1
0. X Id) F(q,X nId-i—Y)‘ LgeS™LY >0,tr(Y) < e}
g, X — Id) — F(q,7>‘ 1q € S"_l}
bd v _ € . n—1
,X) —F<q,X nId-i—Y)‘ Lge S LY >0,tr(Y) < e}
< ma(e/v/n) +m1(V2e) < 2m1(V2e).
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Therefore (4.17) is proved.
By (4.17) and the continuity of F', there exists ¢’ > 0 such that

F(Vdy (2)(2), Vs, (a)(@) + V) — g(Vdy (o) (2)) + ma(tr(V3dy (o) () — KId)) > €,

for any z € 0fc(a), Y >0, tr(Y) < €.

Choose now an odd function m € C*(R) such that m > mgy on [c + €, +o0[ ,
|m —mgq| < € on [0,c+ €], m(c) = ma(c) and m'(z) > A for any x € R and for a
suitable constant A > 0. Eventually, we set

G(p,X) = g(p) — m(tr(X — kId)), (p, X) € ™! x Sym(n),

Fp, X) = [ple (2. 2202) . (p.x) € 7\ {0)) x Sym(n).

pl” |p

Then one can check that F is smooth, geometric, uniformly elliptic and o +
F(p,X) = 0. The inequality in (4.15) follows from (4.17) and the definition of
F. The proof of STEP 3 is concluded.

Now the thesis follows reasoning as in CASE 1 replacing f(a) with fc(a) (see (4.7)
and below). O

Remark 4.1. Following [24, Theorem 8.5.4], one can show that the number T in
the statement of Lemma 4.1 can be chosen depending in a continuous way on the
initial datum wu(a,x) in (4.7) in a C** neighbourhood of dy gy, for any a € ]0,1][.

Remark 4.2. From Lemmoa 4.1 one can check that the following holds. Let o, oy, €
R with o, — o, %, z,,, € R™ with x,,, = %, and OL,0L,, be a family of smooth
closed hypersurfaces such that © € OL, x,, € OL,,, OL,, — OL locally in C*°, and

a+ F(Vdg(z), V() >0,  am+ F(Vdz, (¥m), VL, (Tm)) > 0

for any m € N. Then we can find corresponding 7,7y, > 0, f, fm € Fz given by
Lemma 4.1, such that 0 fmy,(a) — 0f(a) in C*°, hence T, — T by Remark 4.1.

Let F : Jo — R be a given function. Following [25, Section 3] and slightly
changing the notation, given a map ¢ : [0, +oo[— P(R"™), we set

(4.23) 6-(t) = int( N ¢(s)), t € [0, +ool.

>0 sE[t—e,t+€]N[0,4o00[

Given ¢ > 0, we also let 95 : [0,400[— P(R") be the map defined by 9Z(t) :=
(¥(t)z-
Proposition 4.1. If F: J; = R does not depend on x, then

(4.24) ¢ € B(Fr) = inl(¢) € B(Fr).
If F : Jy — R s lower semicontinuous, then

(4.25) ¢ € B(Fz) = int(p) € B(Fz), ¢ € B(Fz).

Proof. Assertion (4.24) follows from the spatial translation invariance of the family
Fr and from the definition of barrier. Assume that F' depends on z and is lower
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semicontinuous, and let ¢ € B(Fz). Let f : [a,b0] = P(R"), f € Fz, f(a) C
int(¢(a)). As f is smooth, f(a) is compact and F is lower semicontinuous, we can
pick ¢ > 0 small enough such that the map f; belongs to Fz and f, (a) C ¢(a).
Then f; (b) C ¢(b), which implies f(b) C int(4(b)), hence int(¢) € B(Fz). Assume
now that f(a) C ¢_(a). As f is smooth, f(a) is compact and ¢_(a) is open,
there exists ¢ > 0 such that g := fJ belongs to Fz and g(a) C ¢_(a). By the
definition of ¢_, there is ¢ > 0 such that g(a) C ¢(a + 7) for any 7 € [—¢, €.
Let 7 € [—¢,€¢] and define h(t) := g(t — 7) for t € [a + 7,0+ 7]. As F is lower
semicontinuous, possibly reducing €, we have h € Fz; moreover h(a+7) C ¢(a+7),
hence g(b) = h(b+ 7) C ¢(b+ 7). Hence g(b) C ﬂ ¢(s), therefore
s€[b—e,b+€]N[0,+ o0

scit( ) 4s) o). O

s€[b—e,b+e€]N[0,+ o0

Lemma 4.2. Given ¢ : [0,+oo[— P(R") and ¢ > 0 we have (¢_), = (¢,)—- In
particular (6_); = ($—_); = (¢-);)-

Proof. Let o > 0 and t € [0, 4+00[. Given € > 0 set I(t,€) := [t —€,t + €] N[0, +00].
Let us prove that

(4.26) L,:

[Uint( ﬂ gb(s))];:U[ ﬂ gb(s)};::RQ.

>0 SE€I(t,€) e>0  s€l(t,e)

It is enough to show (4.26) when, instead of € > 0, we take unions over a sequence
{€m }men of positive numbers converging to zero as m — +oo. Let us define

Qm::int( ﬂ ([)(s))

s€I(t,em)

We can assume that €2, # R™ for any m € N, otherwise the result it trivial. Let
xz € L,. Then

(4.27) dist (m,ﬂ (R™\ Qm)) > 0.

m

To prove that x € R, we need to show that there exists m; € N such that

dist(m,R"\ N gb(s)):dist(:c,R"\le)>g.

s€l(t,emy)

Assume by contradiction that dist (x, R™\ Q,,) < ¢ for any m € N. Let y,, €
R™ \ Q,, be such that |y, — x| < p. Possibly passing to a subsequence (still
denoted by {e,}) we have lim,, s 4o ym = y with |z — y| < p; moreover y €
N, (R™\ @), since yp, € Npey(R™\ k). We then have a contradiction with
(4.27). We have proved that L, C R,. The opposite inclusion follows from the

fact that [ ﬂ qb(s)]_ = [int( ﬂ qb(s))}; C [Uint( ﬂ gb(s))]; for

s€l(t,e) ¢ s€l(t,e) €>0 s€I(t,e)

any € > 0.
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Let us show now that for any ¢ > 0

=] qﬁ(s)L:int( N o)) = e

s€I(t,e) s€I(t,e)

Let z € 5. Then there is ¢ > 0 so that dist (z, Usert,o B™\ qS(s)g) = c. Hence for
any s € I(t,€) we have dist(z, R" \ ¢(s),) > ¢, which implies dist(x, R™ \ ¢(s)) >
¢+ o . Therefore

dist (a: U @®"\ ¢(s))) >c+0> 0,

s€l(t,e)

hence z € l5,. We have proved that vy C I7. The opposite inclusion follows from
the fact that ¢(s), 2 I for any s € I(t, ¢).
From (4.26) and (4.27) we then have

(4.28) (=) () =Lo=R,=J15=Jre = (¢, ().

e>0 e>0

The last assertion of the lemma is a consequence of (4.28) and the equality ¢__ =
o—. O

We conclude this section with the following proposition.

Proposition 4.2. Let F : Jy — R be a function such that for any R > 0
(4.29) Cgr:=sup{|F(t,z,p,X)|:t € [0,+o0[,z € R",|p| =1,|X| < R} < +00.

Let ¢ € B(Fz) and (t,%) € ]0,4+00[xR™ be such that T € R"™\ ¢(t). Then there
exists a sequence {(ty,Zm)} of points of 10, +oo[xR™ with z,, € R™ \ ¢(t,,) and
tm <t such that (tm,Tm) = (£, T) as m — +oo.

Proof. Let h : [0,400[— ]0,400[ be any strictly increasing C*° function such that

e 1
h(R) > Cpg for any R > 0. For any ¢ > 0 define H(p) := / ———— dr. Then
0

h(v/n—1/r)
H : [0, +o0o[— [0, +00] is strictly increasing, surjective, H(0) = 0, H € C°([0, +o0[)N
C*(]0, +oc[). Let o := H . Given 0 < a < b, ¢ > 0, z € R™, one can check that
the function g : [a,b] - P(R") defined by g(t) :={y € R" : [y—z| < pp(e+b—1)}
belongs to Fz. Let now Z € R™ \ ¢(¢). To prove the proposition it is enough
to show that there exists a sequence {t,,} converging to ¢ with ¢,, < ¢, such that

By, —tm)(@) N (R™ \ (tn)) # 0. Assume by contradiction that for t,, 1t we
have By, (G_¢,,)(T) C ¢(tm). Let t* > 1 — ¢, be such that op(t*) = 20p(t — tm).
The map t € [tm,t | = By (¢*4t,-¢t)(T) belongs to Fz. Hence, as ¢ € B(Fz)

and By (1+)(T) = Bay, (1—t,,)(T) € ¢(tm), we have T € B, 4y _3(T) C ¢(1), a
contradiction. [

5. A FUNCTION WHOSE LEVEL SETS ARE BARRIERS IS A SUBSOLUTION

Our aim is now to prove a converse of Theorem 3.2 (Theorem 5.1). To do this
we need several preliminary results.
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Definition 5.1. Let f : [a,b] C [0,400[— P(R™). We say that f is a smooth
compact flow if and only if f(t) is compact for any t € [a,b] and there exists an
open set A C R"™ such that df € C*°([a,b] x A) and 0f(t) C A for any t € [a, b].

Lemma 5.1. Let f,g : [a,b] — P(R"™) be two smooth compact flows, x € R"™ and
o> 0. Assume that
{z} = 0f(a) N dg(a) N By(z),

(9(a) \ {2}) N By(z) C ini(f(a)) N By(z),
ad
8—tf(a,3:) < W(a,az).

Then there exists 0 < 7 < b — a such that
(5.1) g(t) N By(z) C int(f(t)) N By(x) t € la,a+ 7).

Moreover, T depends in a continuous way on small perturbations of f and g in the
C? norm.

Proof. Let ¢ := 1[%a(a,2) — %1 (a,z)] and n(t) = dist(9g(t) N By(x),df(t) N
By(z)), for t € [a,b]. Since f, g are smooth compact flows, using the hypotheses

we can find 0 < o0 < g and 7 > 0 such that, for t € [a,a + 7],

dd,

9dy odg B2 B2
ot

(5.2) ()~ S (1.2) > ¢ yedglt)n B, (@), 2 € Of(1) N Bola),
and n(t) = |y — z| = y,2z € B,(z). Reasoning as in [7, Lemma 4.2] one can check
that for any ¢ € [a,a+ 7] we have liminf,_,y+ M > ¢, which in turn implies
n(t) > c(t — a) for any ¢ € [a,a + 7] and (5.1) follows.

The continuity of 7 follows by construction. [

The following proposition plays a crucial role in the proof of Theorem 5.1 and is
based on Lemma 4.1; note that we will not assume that F' is degenerate elliptic.

Proposition 5.1. Assume that F : Jy — R is geometric and lower semicontinu-
ous. Let ¢ € B(Fz) and let f : [a,b] = P(R™) be a smooth compact flow. Assume
that there exist 6 € |a,b] and x € R™ such that

{z} = 0F(0) N 9¢(0),
(5.3) FO)\{z} € int(¢(0)),
f(t) € int(g(t),  t€[a,b]\ {0}

Then

(5.4) %(e,x) + F(6,2,Vd;(6, ), V2d; (8, 2)) < 0.

Proof. cASE 1. Suppose that F' does not depend on (¢, ).
Assume by contradiction that

dd;

5 T F(Vds,V?ds) =2¢>0  at (0,z).
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As f is a smooth compact flow, there exists #; > 0 such that, for every ¢t € [0 —
01,0+ 01] =: 1(0), each point y € df(t) has a unique smooth orthogonal projection
7(t,y) on O f(0). From now on we restrict to the interval I(). Set x(t) := 7~ 1(¢, z),

p(t) := Vds(t,z(t)), X(t) :=V3d;s(t,z(t)), a:=c— F(p(0),X(0)).

We can assume that

od;

(5.5) -

(t,z(t)) > «
and, as F' is lower semicontinuous, possibly taking a smaller #;, we can also assume
(5.6) a+ F(p(t),X(t)) >0, teI(0).

Choose a function g : 0f(0) — [0,+oc] of class C*° verifying the following proper-
ties:
(i) o(y) =0 if and only if y = z;
(i) Vo(z) =0, V?o(z) = 0;
(iii) the map t € I(0#) — f1(t) is a smooth compact flow, where 0f;(t) := {z €
R":z=y— o(n(t,y))Vds(t,y),y € 0f(¢)}
In particular f; : I(0) — P(R™) satisfies (5.3) with [a, b] replaced by I(f), and

(5.7) ft) Sf), 0fE)NOF() ={z(t)}, Vidp(tz(t)=X(t), tel(h).

Fixt € |0—61, 0[. Recalling also (5.6), we apply Lemma 4.1 with Z and L replaced by
z(t) and f(t) in the order. Hence there exist 7, > 0, oy > 0, g4 : [t,t+7¢] — P(R"),
so that

g€ Fp, ge(t) CFE) S o), g:(t) N By, (z) = f(t) N Bo, (x),

(5.8)
(1) € Dgu(t), (o p(0), X (1)) = (205 (0. 2(0)), Ve, (0, 2(0)), 9l (1,2(1) )

(possibly reducing 7; and oy, we can use z instead of z(t) in the first equality in
(5.8)). Using the first equality in (5.8) and the second relation in (5.7) we have

(1) \{2(t)}) N By, () € int(ge(2))-

Using Remark 4.2 we have 7, — 79 > 0 as t — 6, so that there exists ¢; < 6 such

that 7, > 0 — t for any t € [t1,0]. Fix t € |t1,0]; let us apply Lemma 5.1 to the

flows f1, g; (recall that agh (t,z(t)) >a= agi” (t,z(t)) by (5.5)). Then there exists

¢
0 < 7/ < 7 such that

(5.9) f1(s) N By, (z) C int(gs(s)), s € Jt,t + 7{].

Using Remark 4.2 we get that 7/ — 75 > 0 as t — 6. Choose t2 € |t1, 0] such that
74, > 0 —13; as gy, (t2) C ¢(t2) by (5.8) and g4, € Fg, ¢ € B(Fz), by (5.9) we have,
for s =0,

z € int(gq, (0)) C int(4(0)),
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which contradicts x € 9¢(0).
CASE 2. Suppose that F' depends on (¢,z). Assume by contradiction that

od
8—;(9,3:) + F(0,2,Vd(0,2), V2ds (0, 2)) > 0.
Let U C [0, +00[xR™ be a compact neighbourhood of (6, z) such that
Ody . 2
1 — F
(5.10) o (9’$)+(J2§2U (t,y, Vds(0,2), Vds (0, 7)) > 0,
and define

miIl F(t7 Y,p, X) lf (3’ z) (= U’
G(Sl Z, P, X) = (tay)eU
F(s,z,p, X) elsewhere.

Notice that G is lower semicontinuous and that ¢ € B(Fz) implies ¢ € B(Fg).
Applying CASE 1 localized in U (with F' replaced by G) we then get a contradiction
with (5.10). O

Proposition 5.2. Assume that F : J; — R is geometric, lower semicontinuous
and satisfies (F4). Let ¢ € B(Fz). The following statements hold:
(i) if F satisfies (F2) then the function (t,z) — —Xg() (T) s a viscosity subsolution
of (3.5) in 10, +o0[xR";
(ii) if F* satisfies (F4) then the function (t,x) — —xg) (@) is a viscosity subsolution
of
ou

(5.11) FT F*(t,Vu, V*u) =0

in ]0, +oo[xR™.

Proof. Tt is enough to show (ii). Let T := sup{t > 0 : ¢(¢t) # 0, #(t) # R™}. To
prove the thesis, it is enough to show that the function dy A 0 is a subsolution
of (5.11) in ]0,T[xR". Indeed, using [9, Lemma 5.7] we have that dy A 0 is a
subsolution of (5.11) in ]0,7] x R™; moreover, using [1, Lemma 4.3] we deduce
that the function (¢, 2) — —X4() (z) is also a subsolution of (5.11) in ]0,7T] x R™,
hence in 0, +o00[xR™.

By [25, Lemmas 3.1,3.2] we have that (dy A0)* =ds_A0. Welet d:=ds_A0O. Let
(t,z) €10, T[xR™. We have to prove (3.2) (with F'T (¢, p, X) instead of F (¢, z,p, X))
for any function ¢ € C*°(]0, T[xR"™) such that (d —1) has a strict global maximum
at the point (¢,7). Set (a,p, X) := (%—f(f, z), Vo (t,7), V2(t,7)).

In view of Proposition 4.2 and Lemma 3.1, it is enough to consider the case
d(t,T) < 0,i.e, T € ¢_(t). Let T € ¢_(¢); then |p| = 1 (we use the fact that d
is locally semiconvex in ¢_(t), see [23]). Since F is geometric, possibly replacing
X with P,XP,, we can suppose Xp = 0. Let § € d¢_(¢) be such that |T — 7| =
—d(t,T), and

U(t,z) =yt e +7-7) —vE7), (tz)€]0,T[xR".

Clearly (a,p,X) = (32(t,%), V¥(Z,7), V2U(L,7)). Moreover, using the triangular
property of the distance, we have dist(z+7Z -7, R" \ ¢_(t)) < dist(z, R"\ ¢_(t)) +
|z — 7|, hence

dt,z) <d(t,y) +dt,z+T-7) + [T -7
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Therefore

A(t, 7) — (t,2) — (5, 7) = d(t,2) — $(t, 5+ 7 — ) < dE.9) +d(t,5+7 — 7)
+Z-gl-¢(tz+7-7) <d(t,y) +dt7z) -y, 7) + [T -7
d( y) w(ta E) = d(za y) - \I;(Za y) - lﬁ(z, E)a
which implies that (d — ¥) has a strict global maximum at the point (Z,7).
Pick 7 > 0 with [t—7,t+7] C |0, T[ and a smooth function ¢ : [t—7,t+7|xR™ —
R with the following properties: ¢ > U, ((¢,7) = ¥(¢,y) =0,

(@, X) = (G5 6.9, VEE.9), T5(07)).

¢%2 + |VC¢|? > 0 (recall that |V{(t,9)| = |Vy(t,T)| = 1) and ( is positive outside a
compact subset of R".

Let us define f: [t — 7,t + 7] = P(R") as f(t) := {z € R™ : {(¢,z) < 0}. Then
f is a smooth compact flow and

(@r.X) = (L6, Vi@, is0p)

(recall that |p| = 1 and Xp = 0). Then assumptions (5.3) (with 6, [a,b] and ¢
replaced by ¢, [t — 7,t + 7] and ¢_ in the order) of Proposition 5.1 are fulfilled
(recall that ¢_ € B(Fz) by (4.25)). Then, from (5.4) it follows

a+ F(t,p,X)<0

and therefore d is a subsolution of (3.5) in {(¢,z) € |0, T[xR"™ : d(t,z) < 0}.
Assume now by contradiction that there exists 0 < ¢ < +oo such that

a+Ft(tp X)=2c.
Let Y € Sym(n) be such that Y > X and
F*(t,p,X) < F(t,p,Y) +c.

Define 1
O(t,x) = Y(t,z) + E((x -7),(Y — X)(z — ).

Then V2®(¢,7) = Y and (d — ®) has a maximum at (¢,Z). Therefore, as d is a
subsolution of (3.5), at (¢,7) we have

o0& _ i
0> — +F(, Ve, V@) =a+ F(t,p,Y) 2 a+ F(,p,X) —c=c>0,

a contradiction. [

We are now in a position to prove the converse of Theorem 3.2.
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Theorem 5.1. Let u : [0, +00[xR™ — R be a function such that u* < +oco. The

following statements hold.

A) Assume that F : J; — R does not depend on x, is geometric, lower semicontin-
uous and satisfies (F4). Suppose that for any A € R

(5.12) {z e R" :u*(-,x) < A} € B(F7).

(i) If F satisfies (F2) then u is a viscosity subsolution of (3.5) in ]0,+oo[xR"™;
(i) if F* satisfies (F4) then u is a viscosity subsolution of (5.11) in ]0, +oo[xR™.
B) Assume that F : Jy — R is geometric, lower semicontinuous and satisfies (F4).
Assume that for any A € R relation (5.12) holds.
(iii) If F satisfies (F2),(F8’) then u is a viscosity subsolution of (3.1) in]0,4+oc0[xR"™
() if F* satisfies (F4),(F8’) then u is a viscosity subsolution of

(5.13) % + F*(t,x, Vu, V?u) = 0

in 10, +oo[xR™.

Proof. Statement A). It is enough to prove (ii). Let (¢,%) € ]0,+0o[xR"; we have
to prove (3.2) (with F*(¢,p, X) instead of F(t,z,p, X)) for any smooth function
1 such that (u* — v) has a maximum at (£,%). Let A := u*(#,Z); we define the
function z : [0, +oo[xR™ — R as

A if w*(t, ) > A\
z(t,g‘;);:{_ 1 U(ﬂlj)— )

A —1 elsewhere.

By (5.12) and Proposition 5.2 (i), setting ¢(t) := {x € R™ : u*(t,z) < A}, it follows
that the function (¢,z) — —xg¢@) () is a subsolution of (5.11) in ]0, +oo[xR".
Therefore also z is a subsolution of (5.11) in ]0,4+o0o[xR™. Since (z — %) has a
maximum at (¢, %), (3.2) follows.

Statement B). It is enough to prove (iv). Following the arguments of the proof
of statement A), it is sufficient to show the following assertion: given ¢ € B(Fz),
the function

x(t,z) == “Xo_(t) (2)
is a subsolution of (5.13) in ]0, +oo[xR™. For any 0 < € < 1 we define d.(t,z) :=

(—e) Vdy_(t,2) NO.
We shall prove that d. is a subsolution of

(5.14) g—? + F (t,x, Vu, V?u) = 0
in )0, +00[xR™, where
(5.15) F.(t,z,p,X):=F(t,z,p,X)—eox|(1 +¢),

and o0x| is the modulus of continuity defined in (F8’). In view of Lemma 3.1 it is
enough to check that d. is a subsolution in {d. < 0}.
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Let (¢,7) € ]0,+oo[xR™. Let 9 be a smooth function such that (d. — ) has a
strict global maximum at (¢,%) and d¢(¢,%) = (¢, T). Set

(a,p, X) := (%—f(z, T), Vo (t,7), V2(E, f)) :

CASE 1. T € ¢_(t) and dist(Z, R™\ ¢_(t)) > €. Then d. is twice differentiable at
(t,Z) with respect to z, therefore p = 0, X > 0. Moreover by Lemma 4.2 we have
(p_)- = ((¢p—-)-)—, hence, as T € (¢p_(t))-, there exists a sequence t,, T t such
that de(tm,T) = —€ < 9 (tm,T), which yields o < 0. Therefore

o+ (Fe)*(ﬂjapﬂ X) S (F+)*(275707X) S (F+)*(i757070) S 0.

CASE 2. T € ¢_() and dist(z, R™ \ ¢(f)) < e. As d. is locally semiconvex in
¢_(t), we have |[p| = 1. Let § € 0¢(t) be such that |T—y| = —d.(t,Z) < e. Following
the proof of Proposition 5.2 and applying Proposition 5.1 we get

a+FH(t,7,p,X) <0.
Therefore, using (F8’) and recalling (5.15), we have
a+ (Fo).«(t,z,p, X) < a+ F(t,7,p, X) <0.

We have proved that d. is a subsolution of (5.14) in |0, +oo[xR".
Reasoning as in [1, Lemma 4.3] we then obtain that ex is a subsolution of (5.14)
in ]0, +oo[xR™, hence L(ex) = x is also a subsolution of (5.14) in ]0, +-co[xR™.
Letting € — 0 and using [9, Proposition 2.4], we get that x is a subsolution of (5.13)
in )0, +oo[xR™. O

We also have a similar statement of Theorem 5.1 for supersolutions.

Remark 5.2. Assume that F : Jy — R is geometric, upper semicontinuous and
satisfies (F4). Let v : [0,+oco[xR™ — R be a function such that v, > —oco and
{z € R" : v.(-,x) > A} € B(Fg) for any A € R. If F~ satisfies (F4), (F8’) then

v 18 a viscosity supersolution of

ov
4 F~ 2,)) —
o + F~(t,z, Vv, V<)

in 10, 4+o0o[xR™, where F~(t,z,p, X) := inf{F(t,z,p,Y): Y < X}.

6. CONCLUSIONS

The following result shows the connection between the minimal barrier and the

continuous viscosity solution whenever the latter exists and is unique, see Theorem
3.1.

Corollary 6.1. Assume that F : Jy — R is geometric and satisfies (F1), (F3),
(F4), (F6’), (F7), (F9), (F10). Let E C R™ be a bounded set and denote with
v : [0,+00[xR"™ — R the unique uniformly continuous viscosity solution of (3.1)
with v(0,2) = vo(z) := (—1) Vdg(xz) A1. Then for any t € [0,+00] we have

M (B, Fz)(t) = Mu(E, Fr)(t) = {z € R" : v(t,z) < 0},
(6.2) M*(E, FZ)(t) = M*(E, Fp)(t) = {z € R" : v(t, ) < 0}.
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In particular (1.6) holds true and M., . = v. Moreover if F' = F, then
(6.3) M*(E, Fp) \ M« (E,FFr) € B(FF).

Proof. 1t is enough to show that for any bounded open set A C R”

where V(A) is defined in (3.4). By statement B) of Theorem 3.2 we have V(A) €
B (FF), hence V(A) D M(A, Fr).
Let

x(t,x) = TXM(A,FZ)(t) (z), (t,z) € [0, +oo[xR",
By statement B) of Theorem 5.1, x is a subsolution of (3.1) in ]0, +oo[xR™ (note
that x(,z) is upper semicontinuous by (4.25) and [25, Lemma 3.1]). Applying the
viscosity comparison theorem [16, Theorem 2.1] we get x(¢,2) < v(t,z) for any
(t,z) € [0, +oo[xR", hence V(A4) C M(A, Fz).
We conclude that

and the proof'is (6.1), (6.2), (1.6) is complete. Finally, (6.3) follows from (3.10). O

Remark 6.1. Equality (1.6) proved in Corollary 6.1 shows that definition (2.5) is
consistent with the definition of fattening given by means of the (unique) viscosity
solution, see [13], [7]. Notice that, if we adopt definition (2.5), fattening can be
defined also when there is non uniqueness of viscosity solutions, see Fxample 6.1
below.

Remark 6.2. From (6.5) it follows that, under the assumptions of Corollary 6.1,
if ECR™ is bounded and open then M(E, Fr)(t) is open for any t € [0, +o0].

Remark 6.3. Corollary 6.1 in the case of driven motion by mean curvature in
codimension one has been proved in [7], where the minimal barriers are compared
with any generalized evolution of sets satifying the semigroup property, the compar-
ison principle, and the extension of smooth evolutions.

Remark 6.4. Corollary 6.1 also applies to the case of motion by mean curvature
in arbitrary codimension, i.e., when F has the form F(p,X) = — Z?z_lk Ai, where
1 < k <n-—1 1is the codimension and \y < ... < \,_1 are the eigenvalues of
the matriz P,X P, corresponding to eigenvectors orthogonal to p. In [1] it has been
proved that for such a function F there holds V(A) O M(A, Fr) for any bounded
open set A C R™.

The following results generalize Corollary 6.1.

Corollary 6.2. Assume that F : Jy — R is geometric, lower semicontinuous and
satisfies (F4). Assume that FT satisfies (F1), (F3), (F4), (F6’), (F7), (F9), (F10).
Then for any bounded set E C R™ and any t € [0, +o00[ we have

M (E,Fr)(t) = M (E,Fz)(t) = {z € R" : v(t,z) < 0},
M*(E,Fp)(t) = M*(E,Fz)(t) = {x € R" : v(t,z) < 0},

where v is the unique uniformly continuous viscosity solution of (5.13) and v(0,z) =
vo(z) := (—1) Vdg(x) A 1. In particular, thanks to Corollary 6.1, we have

M (E, Fr) = M. (E, Fp+), M*(E, Fr) = M*(E, Fp+).
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Corollary 6.3. Assume that F : Jo — R is geometric and satisfies (F1), (F3),
(F4), (F6’), (F7), (F9), (F10). Let up : R® — R be a given function such that
ugp < +00. Define

Suy = {v : v is a viscosity subsolution of (3.1) in ]0, +o0[ xXR",v*(0,z) = ugj(x)}.

If ug is upper semicontinuous then

(6.6) Moo, 7 = My, 7z =sup{v : v € Sy, }.
In the general case we have
(6.7) Moy 7p = Muo,}'; =sup{v:v € Sy, }-

Proof. Let wy, := sup{v : v € Sy, }. Let up be upper semicontinuous. Given any
set £ C R™ one can verify that M(E, F7)(0) = E. Moreover, given A € R, as
{uo < A} is open, by (4.25) the set M({up < A}, F7)(t) is open. Then, by (4.25)
and (2.7) we have

(6.8) {z e R" : My, 7> (-, 7) <At = M({uo < AL FR) () € B(Fz).

In particular {z € R" : M, z>(0,2) < A} = {ug < A}, hence M, 7>(0,z) =
uo(z) for any x € R™. Moreover, by (6.8) and statement B) of Theorem 5.1 it
follows that M, z> is a subsolution of (3.1). Hence M, r> < wy,.

Let now v be any subsolution of (3.1) such that v*(0,z) = ug(z). Then, given
A € R, by statement B) of Theorem 3.2 we have {x € R" : v*(-,z) < A} € B (FF).
Therefore

{z e R" : v*"(-,z) < A} D M{uo < AL, Fr)(-) ={z € R" : My, 7. (-, z) < A},

which implies v* < M, 7.. Hence My, 7. > w,,. Since MUO,]_-; > My, Frs
(6.6) follows.

Let now ug be arbitrary. It is not difficult to show [6] that given any set E C R™
we have

M(E, Fg) = M. (int(E), Fz) = M(int(E), Ff),

and that M, (E,Fz)(t) is open for any ¢ € [0, +oc[. Therefore, given A € R, we
have

M, ({uo < A}, Fz) = M, (int({ug < A}), Fg)
= Mu({ug <AL FR) = M({ug < A}, Fp).-
Then (6.7) follows from (6.6). O

Remark 6.5. A similar assertion of Corollary 6.3 (under the same hypotheses)
holds for supersolutions. Precisely, if ug is lower semicontinuous (resp. arbitrary)
such that ug, > —oo we have that, for any (t,z) € [0, +oo[xR", the function

sup{p : M({uo > p}, Fr)(t) > o}
(resp. supip: Ma({uo > p}, Fr)(t) > z})

coincides with the infimum of u(t, x), where u varies over all viscosity supersolutions
of (3.1) in |0, +o00] XxR™ such that u.(0,x) = ug(x) (resp. u«(0,x) = up,(z)) and
same assertions with Fp replaced by Fiz.

The following remark shows the connections between the barriers and the vis-

cosity evolution without growth conditions on F' (see [22,17]) and for unbounded
sets F.



COMPARISON RESULTS BETWEEN MINIMAL BARRIERS ... 29

Remark 6.6. Assume that F : (R™\ {0}) x Sym(n) — R does not depend on
(t,z), is geometric and satisfies (F1), (F2). Let u and v be, respectively, a viscosity
sub- and supersolution of

(6.9) % + F(Vu,Vu) =0

in |0, +oo[ xR™, in the sense of [22, Definition 1.2]. Then, reasoning as in Theorem
3.2 and using [22, Proposition 1.6, Theorem 1.7], one can check that (3.6)-(3.9)
hold. Moreover, using also [22, Proposition 1.3], it turns out that Lemma 3.1 is
still true and that, given ¢ € B(Fz), dy A0 is a viscosity subsolution of (6.9).
Therefore, as [1, Lemma 4.3] still holds, if u : [0,400[xR™ — R is a function such
that u* < +oo and satisfies (5.12) for any A € R, then u is a viscosity subsolution
of (6.9) in |0, +oco[ xR™. Finally, in view of Remark 3.3, Corollary 6.1 still holds,
even if E is unbounded.

In particular we have the following result.

Corollary 6.4. Assume that F': (R™ \ {0}) x Sym(n) — R does not depend on
(t,z), is geometric and satisfies (F1),(F2). Let E C R"™ and let v : [0, +0o[xR" —
R be the unique uniformly continuous viscosity solution of (6.9) with v(0,z) =
vo(z) := dg(x). Then for any t € [0,4o00[ we have (6.1) and (6.2). In particular
M*(E, Fr)(t) \ M (E, Fr)(t) ={x € R" : v(t,z) = 0} and My, 7. =v.

Example 6.1. Let n = 2, F(p, X) := —tr(P,XP,) (i.e., motion by mean curva-
ture) and let
vo (w1, T2) = 25(1 + 23)%

Then wug is not uniformly continuous and we have nonuniqueness of continuous
viscosity solutions of (6.9) with v(0, z) = vo(z), see [21]. In this case M,, 7, is, by
Corollary 6.3, the maximal viscosity (sub) solution. One can check, following [21],
that there exist ¢ € [0, 400 and € R™ such that M, 7. (¢t,z) > —M_,, 7.(t, 2),
where —M_,,, 7, represents the minimal viscosity (super) solution.

Note that for any A > 0 the set {vg < A} develops fattening (with respect to
Fr).

Remark 6.7. Let n = 2 and consider the anisotropic motion by mean curvature
given by
F(p, X) = —tr(Pp X Pp)p(0)(4(0) + ¢ (0)),

where ¢ : S — R is a smooth function and p = (p1,p2) = (cos0,sin0) (see [8]).
Then, if ¥ + 4" > 0 on St (i.e., convex anisotropy), we have 1_5"" = F. If the
anisotropy is not conver, then there erists 0 € S' such that ¥ (0) + ¢"(0) < 0,

which implies FT(p, X) = +oo for any X € Sym(2), where p = (cos 0,sin ).
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