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Abstract

In this paper we study the minimizing total variation flow u; = div(Du/|Du|) in R" for
initial data ug in Llloc(RN ), proving an existence and uniqueness result. Then we characterize
all bounded sets ) of finite perimeter in IR?> which evolve without distortion of the boundary. In
that case, ug = xq evolves as u(t,z) = (1 — Aqgt)*xq, where xq is the characteristic function of
0, Aq = P(Q)/]9], and P(Q) denotes the perimeter of 2. We give examples of such sets. The

solutions are such that v := Agxq solves the eigenvalue problem —div (IB—Z\) = v. We construct

other explicit solutions of this problem. As an application, we construct explicit solutions of the
denoising problem in image processing.

Key words: Total variation flow, nonlinear parabolic equations, finite perimeter sets, calibrable
sets.
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1 Introduction

In this paper we are interested in the equation

ou ) Du . N
Fri div (m> in 0, 00[xR™, (1)
coupled with the initial condition
u(0,z) = ug(z) z € RN (2)

for a given ug € Li (IRN). This PDE appears (in a bounded domain D) in the steepest descent
method for minimizing the total variation, a method introduced by L. Rudin, S. Osher and E. Fatemi
[33] in the context of image denoising and reconstruction. When dealing with the deconvolution or

reconstruction problem one minimizes the total variation functional

[ 1 3)

with some constraints which model the process of image acquisition, including blur and noise. The
constraint can be written as z = K *u+n, where z is the observed image, K is a convolution operator
whose kernel represents the point spread function of the optical system, n is the noise and w is the
ideal image, previous to distortion. The denoising problem corresponds to the case K = I, and the
constraint becomes z = u + n. Then one minimizes (3) under one of the above constraints [33].
Numerical experiments show that the model is adapted to restore the discontinuities of the image
[33], [18], [36], [35], [25]. Indeed, the underlying functional model is the space of BV functions, i.e.,
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functions of bounded variation, which admit a discontinuity set which is countably rectifiable [2], [26],
[38].

To solve (3) (with the specified constraint) one formally computes the Euler-Lagrange equation
and solves it with Neumann boundary conditions, which amounts to a reflection of the image across
the boundary of D. Many numerical methods have been proposed to solve this equation in practice,
see for instance [33], [18], [36], [35], [25] (see also [31] for an interesting analysis of the features of most
numerical methods explaining, in particular, the staircasing effect). This leads to an iterative process
which, in some sense, can be understood as a gradient descent. Thus, to understand how total variation
is minimized by functional (3) we shall forget about the constraint and study the gradient descent
flow of (3). In a bounded domain, this leads to the study of (1) under Neumann boundary conditions
and this study was done in [3] where the authors proved existence and uniqueness of solutions, and
constructed some particular explicit solutions of the equation. This study was completed in [5] where
the authors proved that the solution reaches its asymptotic state in finite time and studied its extinction
profile, given in terms of the eigenvalue problem

—div (@ZQ = . (4)

A similar study was done in [5] for Dirichlet boundary conditions. Still, we need a better understanding
of the behavior of (1) when minimizing the total variation and, for that, we need to have at our
disposal explicit solutions which display this behavior. To avoid technicalities due to the presence
of the boundary, we will study (1) in the whole space and we will construct a family of explicit
solutions corresponding to the evolution of sets, i.e., solutions whose initial condition is given by the
characteristic function xq of a set 2. In particular, in two space dimensions, we are interested in
understanding for which bounded sets 2 the solution of (1) and (2) with ug = xq decreases its height,
without distortion of the boundary of €.

In this respect, a useful remark is that the functional (3) can be regarded, up to a constant and
on a bounded domain, as the anisotropic perimeter [12] of the set {(z,y) € RY x R : y < u(z)},
corresponding to the anisotropy given by the cylindrical norm ¢(z,¢) := max{||z|,|(|}, for (z,{) €
RN x IR. Therefore, equation (1) is similar (even if not exactly the same) to the equation defining
the anisotropic mean curvature flow corresponding to ¢. Interestingly enough, it turns out that, when
N = 2, the problem of determining those bounded connected sets {2 whose characteristic function
evolve by decreasing its height is close to the problem of determining which planar horizontal facets
of a given solid subset of IR? x IR do not break or bend under the ¢-anisotropic mean curvature flow.
This problem has been considered in [10], [11] and the techniques developed there can be adapted, to
some extent, to the present situation (see in particular Theorem 4).

Let us explain the plan of the paper. In Section 2 we recall some basic facts about BV functions
and the integration by parts formula. In Section 3 we study the well-posedness of (1) and (2) for
initial data uo in L2(IRY). In Section 4 we give the definition of entropy solutions of (1) and (2)
for initial data ug in Li (IRY), and we state the existence and uniqueness theorem (see Theorem 3).
Section 5 and Section 6 are devoted to prove the uniqueness and the existence part of Theorem 3,
respectively. In Section 7 we prove the regularity in time of the entropy solution when the initial
condition is bounded above or below by a constant. In Section 8 we characterize all bounded connected
subsets  of IR? for which the solution of (1) and (2) with ug = xn does not deform its boundary but
only decreases its height. In Theorem 4 we prove that if C C IR? is a bounded set of finite perimeter

which is connected, then the solution u of (1) and (2) with u(0,z) = x¢ () is given by

P(0)

u(t,z) = (1 — Aot) " xe(z), Ao = W,

(where P(C) stands for the perimeter of C' and |C| for the Lebesgue measure of C) if and only C is



convex, 0C is of class Cb! and

ess sup kac (p) < Ac, (5)
pealC

where kgc denotes the (almost everywhere defined) curvature of dC. The characterization for general
non connected bounded sets of finite perimeter €2 is the argument of Section 9, see Theorems 6 and 7.
In particular, beside the conditions of Theorem 4 on each connected component C; of 2,7 =1,...,m,
a new property must be added in the list of necessary and sufficient conditions, which reads as follows.
Let 0 < k < m and let {iy,...,i} C {1,...,m} be any k-uple of indices; if we denote by E;, ;. a
solution of the variational problem

k m
min U g QRQ\ U Cij )

j=k+1

then

k
Z (6)

Notice that (6) implies, in particular, a condition between the mutual distances between all sets
P(Ci)
Cil 2
bounded open convex sets of class C+! satisfying the curvature bound (5) and the variational property
described in (6).

The previous results allow us to explicitely compute the minimum of the denoising problem

1
. D — 2
uEL2(lRI%%WnBV(IR2) {/ | Du| + /\/ (u—f) da:} ) (7)

where A > 0, f := > bid¢;xc;, for b € IR and Cj sets of the type described above. Indeed, in
Section 10 we prove that if the function v := 3", Ac;xc; solves (4) then u:= )" a;A¢c;xc; solves
(7) where a; := sign(b;)(|b;| — A\)T. A converse statement holds if b; — a; = A, or b; — a; = — ), for
all ¢ = 1,...,m. Note that a; is given in terms of a soft thresholding of b; with threshold A. This is
in coincidence with the soft thresholding rule applied to the wavelet coefficients of a noisy function
(the uncorrupted function being in some Besov space) [37], [23], [22], [24]. Finally, in Section 11, we
illustrate our results, in particular the réle of condition (6), with some explicit examples.

C; are

C;. More generally, we construct solutions of (4) of the form Y 7" | Ac,x¢; where ¢, :=

2 Some notation

Let Q be an open subset of IRV, A function v € L'(Q) whose gradient Du in the sense of distributions
is a (vector valued) Radon measure with finite total variation in @ is called a function of bounded
variation. The class of such functions will be denoted by BV (Q). The total variation of Du on @
turns out to be

sup {/ udivz dz : z € C5°(Q; R™), ||2|| oo () = esssup |z(z)| < 1} ) (8)
Q TEQ

(where for a vector v = (v, ...,vy) € RY weset [v[2 := 3>V | v2) and will be denoted by | Du|(Q) or by

i=1Y
fQ |Dul. It turns out that the map u — |Du|(Q) is L}, .(Q)-lower semicontinuous. BV (Q) is a Banach

space when endowed with the norm fQ |u| dz + |Du|(Q). We recall that BV (IRV) C LN/ (N-1D(RV).
The total variation of u on a Borel set B C @ is defined as inf{|Du|(A) : A open ,B C A C Q}.

A measurable set FE C IRY is said to be of finite perimeter in Q if (8) is finite when u is substituted
with the characteristic function xg of E. The perimeter of E in @ is defined as P(E, Q) := |Dxz|(Q).



We shall use the notation P(E) := P(E, IR"). For sets of finite perimeter E one can define the essential
boundary 0*E, which is countably (N — 1) rectifiable with finite HV~! measure, and compute the
outer unit normal v (z) at #~~! almost all points z of 0* E, where H"~! is the (N — 1) dimensional
Hausdorff measure. Moreover, |Dx | coincides with the restriction of HV~! to 0*E.

Each set F of finite perimeter will be identified with the representative (in its Lebesgue class)

given by the set of all points z € IR" such that lim, o+ % = 1. Here B,(z) denotes the open
ball of radius p centered at z, | - | stands for the Lebesgue measure, and wy is the Lebesgue measure

of the unit ball of IRN. It is clear that if OF is Lipschitz continuous, then the precise representative
we are choosing is an open set.

We now recall [1] some basic results about connected components of sets of finite perimeter. Let
E C IR" be a set with finite perimeter. We say that E is decomposable if there exists a partition (A, B)
of E such that P(E) = P(A) + P(B) and both |A| and |B| are strictly positive. We say that F is
indecomposable if it is not decomposable; notice that the properties of being decomposable or indecom-
posable are invariant modulo Lebesgue null sets. It turns out that, if F is a set with finite perimeter in
IRV, there exists a unique at most countable family of pairwise disjoint (modulo | - |) indecomposable
sets {E;}ier such that |[E;| > 0 and P(E) = Y, P(E;). Moreover HN ! (E\ U,;c; Bi) = 0 and the
E;’s are maximal indecomposable sets, i.e. any indecomposable set F' C F is contained (modulo |- |)
in some F;. We call the sets F; the connected components of E.

We denote by BVj,.(Q) the space of functions w € Ll (Q) such that wy € BV (Q) for all ¢ €

loc
C°(Q). For results and informations on functions of bounded variation we refer to [2], [26].

If 4 is a (possibly vector valued) Radon measure and f is a Borel function, the integration of f with
respect to o will be denoted by [ fdu. When p is the Lebesgue measure, the symbol dz will be often
omitted.

By L. (]0,T[; BV(IRN)) we denote the space of functions w : [0,7] — BV (IRN) such that w €
L' (]0, T[xR"N), the maps ¢ € [0,T] = [~ ¢ dDw(t) are measurable for every ¢ € Cj(IR"Y; R") and

' |Dw(t)|(RN) dt < co. By LL(]0,T[; BViec(IRN)) we denote the space of functions w : [0,T] —
Bonoc(RN) such that wy € LL (10, T[; BV (IRY)) for all € C§°(IRY).
Following [8], let
Xo(RYN) := {z € L°(R"; RY) : div z € L*(R")}.
If z € Xo(IRYN) and w € L2(IRN) N BV (IRY) we define the functional (z, Dw) : C§°(IRN) — IR by the

formula

<(z,Dw),<p>::—/ wgodivzd:c—/ wz-Vedr.
RN RN

Then (z, Dw) is a Radon measure in R,
/ (z, Dw) :/ z-Vwdz Vw € L2(RN) nWHH(RY),
RN RN
and

‘/(Z,Dw)‘ g/ (2, Dw)| < ||z||oo/ \Dw| VB Borel set C RY. 9)
B B B

Moreover, we have the following integration by parts formula [8], for z € Xo(IRY) and w € L2(IRN) N
BV (IRM):

/]RNwdivzdm—i-/ (2, Dw) = 0. (10)

RN



We denote by 6(z, Dw) € L“’BM(RN) the density of (z, Dw) with respect to |Dw|, that is
(z, Dw)(B) = / 0(z, Dw) d|Dw| for any Borel set B C IRY. (11)
B

In particular, if  is bounded and has finite perimeter in IR", from (10) and (11) it follows

/ div z dz :/ (z,—Dxq) = / 0(z,—Dyxq) dH" 1. (12)
Q RN o*Q

Notice also that if 21,20 € X2(IRY) and z; = 2o almost everywhere on Q, then 0(z1, —Dyxq)(z) =
6(z2, —Dxq)(z) for HN~l-almost every z € §*Q.
We recall the following result proved in [8].

Theorem 1. Let Q C RN be a bounded open set with Lipschitz boundary. Let u € BV (Q) and
z € L®(Q; RN) with div z € LN(Q). Then there exists a function [z - v € L®(09) such that
||[Z'VQ]||L°°(69) < ”ZHLOO(Q;RN): and

/ u divz dz +/ 0(z, Du) d|Du| = / [z vYu dHN 1. (13)
Q Q o

In particular, if Q is a bounded open set with Lipschitz boundary, then (12) has a meaning also if z
is defined only on 2 and not on the whole of IR", precisely when z € L*®(Q; RY) with div z € LY (Q).
In this case we mean that 6(z, —Dyxgq) coincides with [z - v%].

Remark 1. Let Q C IR? be a bounded Lipschitz open set, and let zinn € L®(Q; IR?) with divzinn €
L2 (Q), and zoys € L®(IR? \ Q; IR?) with divzey € L2 (IR?\ Q). Assume that

loc loc

0(Znn, —Dxa) () = —0(Zout, —DXle\ﬁ)({L') for H' — a.e z € OQ.
Then if we define z := zinn on Q and z = Zoy, on IR?\ Q, we have z € L*®(IR?*; IR?) and divz €
L% (IR?).

3 Initial conditions in L*(IRY)

Throughout the paper, given a (possibly vector valued) function f depending on space and time, we
usually write f(¢) to mean the function f(¢,-).

Definition 1. A function u € C([0,T); L2(IRY)) is called a strong solution of (1) if
u € W,22(0,T; L2(RN)) N LL,(0, T[; BV (R"))
and there ezists z € L (]0, T[x RN ; R") with ||z||oc < 1 such that
uw=divz  inD (J0,T[xR")

and

/IR () — wm(t) = /IR (2(t), Du) - /JR Du(t)] Y € XRY) 0 BV(RY), . t € [0,T].

(14)
The aim of this section is to prove the following result.

Theorem 2. Letug € L2(IRY). Then there exists a unique strong solution u of (1), (2) in [0,T]x RY
for every T > 0. Moreover, if u and v are the strong solutions of (1) corresponding to the initial
conditions ug,vg € L?(IRYN), then

I(u(t) = v()) " llz < (o —vo) *ll2 for any t > 0. (15)



Proof. Let us introduce the following multivalued operator A in L?(IRY): a pair of functions (u,v)
belongs to the graph of A if and only if

u e LA (RYN)N BV (RY), v e L*(RY), (16)

there exists z € Xo(IRN) with ||z]|eo < 1, such that v = —div z (17)

and

/ (w—u)v S/ z-Vw—/ | Dul, Vw € L2(RY) n WH(IRN).
RN RN RN
Let also ¥ : L2(IRY) — ] — 00, +0c] be the functional defined by

/ \Du| if we L2(RY) N BV(RY)
U(u) := RN (18)

+00 if uwe L*(RN)\ BV(RY).
Since ¥ is convex and lower semicontinuous in L?(IR"), its subdifferential 3¥ is a maximal monotone
operator in L2(IRYN).
We divide the proof of the theorem into three steps.

Step 1. The following assertions are equivalent:
(a) (u,v) € A
(b) (16) and (17) hold,

and
/IRN(w—u)'US/]RN(z,Dw)—/IRN IDu|  Vw e L2(RY) N BV (RV); (19)

(c) (16) and (17) hold, and (19) holds with the equality instead of the inequality;
(d) (16) and (17) hold, and

/IRN(Z,DU) :/IRN |Du. (20)

It is clear that (c) implies (b), and (b) implies (a), while (d) follows from (b) with the choice
w = u using (9). In order to prove that (a) implies (b) it is enough to use Lemmas 5.2 and 1.8 of [8].
To obtain (c¢) from (d) it suffices to multiply both terms of the equation v = —div z by w — u, for
w € L2(RY) N BV(IRY) and to integrate by parts using (10).

Step 2. The operator A is maximal monotone in L?(IRY) with dense domain. The proof of the
monotonicity of A follows from (c¢) of Step 1 and (10). Note also that, as a consequence of Step
1, one can prove that A is closed. The other assertions can be proved as in [3],[4]. Indeed, if
f € L2(IRN) N L*®(IRN) has compact support, using the idea of approximating A with the p-Laplace
operator (see [3], [4]), one can prove that, if A > 0, there exists a solution u of

u+ ANAu = f. (21)

The closedness of A implies that (21) can be solved for any f € L?(IR"). It follows that the range of
I+ MA is the whole of L2(IR"), and therefore A is maximal monotone. The density of the domain of
A can be proved as in [3].



Step 3. We also have A = 0¥. The proof is similar to the proof of Lemma 1 in [4] and we omit the
details.

As a consequence, the semigroup generated by A coincides with the semigroup generated by 0¥
and therefore (see [16]) u(t,z) = e *ug(z) is a strong solution of

us + Au 3 0,

ie,u € VVlé’f (10, T[; L2(IRN)) and —uy(t) € Au(t) for almost all ¢ € ]0,T[ ([16], Theorem 3.1). Then,
according to the equivalence proved in Step 1, we have that

/ (u(t) — wyus(t) = / (2(t), Dw) - / Du(t) Vw € LXRY)NBV(RY)  (22)
RN RN RN
for almost all ¢t € ]0,T[. Now, choosing w = u — ¢, ¢ € C(IRY), we see that u(t) = div z(t) in
D'(IR") for almost every t € ]0,T[. We deduce that u; = div z in D’ (0, T[xIR"). We have proved
that u is a strong solution of (1) in the sense of Definition 1.

The contractivity estimate (15) of Theorem 2 follows as in [3], [4]. This concludes the proof of the
theorem. 0

Given a function g € L2(IRN) N LY (IRYN), we define

ol =su{| [ s(outa) do

Part (b) of the next Lemma gives a characterization of A0 which will be useful in Section 9 to find
vector fields whose divergence is assigned. This part of the lemma was proved in [30] in the context of
the analysis of the Rudin-Osher-Fatemi model for image denoising; for the sake of completeness, we
shall include its proof.

:u € L2(RN) N BV (IRY), / | Du| < 1}.
IRN

Lemma 1. Let f € L2(IRN) N LY (IRN) and X\ > 0. The following assertions hold.

(a) the function u is the solution of

. - i 2
weLz(RIJgngV(RN)D(w), D(w) := /IRN [Dw| + o /IRN(w f)? dz (23)

if and only if there exists z € Xo(IRYN) satisfying (20) with ||z||ec < 1 and —Xdivz = f — u.

(b) The function u =0 is the solution of (23) if and only if ||fl« < A.

(c) If N=2, A0={f € L*(R?) : || f||. < 1}.
Proof. (a). Thanks to the strict convexity of D, u is the solution of (23) if and only if 0 € dD(u) =
0V (u)+ (u—f) = A(u) + (u— f), where U is defined in (18) and the last equality follows from step 3
in the proof of Theorem 2. This is equivalent to —Adiv (%) = f — u, i.e., there exists z € X, (IRY)
satisfying (20) with ||z||cc <1 and —Adivz = f —u (recall the definition of A in the proof of Theorem
2).
(b). The function u = 0 is the solution of (23) if and only if

1 1
/ |Dv|+ —~ | (v—f)?dz > —~ f?dz Vv e L*(IRN)Nn BV(IRY). (24)
IRN ZA _ZRN ZA _ZRN

Replacing v by ev (where € > 0), expanding the L?-norm, dividing by € > 0, and letting ¢ — 0+ we
have

(z)v(z) dz

‘ < A/ |Dv| Vv e L2RY) N BV(RY). (25)
RN RN



Since (25) implies (24), we have that (24) and (25) are equivalent. The assertion follows by observing
that (25) is equivalent to ||f]l« < A.

(c). Let N = 2. We have A0 = {v € L2(IR?) : 3z € X3(IR?),||2|lco < 1,—divz = v}. On the other

hand, from (a) and (b) it follows that || f|« < 1 if and only if there exists z € Xo(IR?) with ||z < 1
and such that f = —divz. Then the assertion follows. O

Let us give a heuristic explanation of what the vector field z represents. Condition (20) essentially
means that z has unit norm and is ortogonal to the level sets of u. In some sense, z is invariant under
local contrast changes. To be more precise, we observe that if u = Y7 | ¢;xp, where B; are sets of
finite perimeter such that H¥~1((B; U9*B;) N (B; U8*B;)) =0 for i # j, ¢; € IR, and

Du
—div ( = ) = f € L*(R" 26
v (1) = € Y, (26)
‘gg‘) = ffor any v = ) 7, d;jxp, where d; € IR and sign(d;) = sign(c;). Indeed, there
is a vector field z € L®(IR"Y; R") such that ||z|c < 1, —divz = f and (20) holds. Then one can
check that |Dyp,| = sign(c;)(2, Dxp,) as measures in IRY and, as a consequence, (z, Dv) = |Dv| as
measures in IRY.

then also —div (

Let us also observe that the solutions of (26) are not unique. Indeed, if u € L2(IRY) N BV (IRY) is
a solution of (26) and g € C*(IR) with g'(r) > 0 for all € IR, then w = g(u) is also a solution of (26).
In other words, a global contrast change of u produces a new solution of (26). In an informal way,
the previous remark can be rephrased by saying that also local contrast changes of a given solution
of (26) produce new solutions of it. To express this nonuniqueness in a more general way we suppose
that (u1,v), (ug,v) € A, i.e., there are vector fields z; € Xo(IRY) with ||2;||eo < 1, such that

—divz; = v, / (zi, Duj) = / | D, 1=1,2.
RN RN

Then
0 = —/ (divz; — divze)(u; — ug) dz = / (21 — 22, Duy — Dus)
RN RN
= / |Duy| — (22, Duy) +/ | Dug| — (21, Dug).
RN RN
Hence

/ |Du1|:/ (%, Du1) and / |Du2|—/ (1, Dus).
RN RN IRN IRN

In other words, z; is in some sense a unit vector field of normals to the level sets of uo and a similar
thing can be said of zo with respect to u;. Any two solutions of (26) should be related in this way.

The following estimate, which is a consequence of the homogeneity of A [14], will be useful to
prove the regularity in time of the solution when the initial condition is in L. .(IR") (see Lemma 4 of
Section 7 below).

Proposition 1. Let ug € L2(IRN), ug > 0, and let u be the strong solution of (1) and (2). Then

u'(t) < @ for a.e. t > 0.

Moreover, if ug < 0, then u'(t) > @ for almost every t > 0.



Proof. We consider the case ug > 0, the other case being similar. First, let us prove that for any
A > 0, and any t > 0, we have that

Atu(at) = e A (A ). (27)

By Crandall-Liggett’s exponential formula e (ug) = limp 00 (I + £A)™"(ug) in L2(RYN) [21], it is
enough to prove that for all 4 > 0,
(T4 A O i) = AT+ Mad)™ (o). (28)

A lyy — Uu)

We have v, = (I + pA)~ (A tug) if and only if (v, € A, which is equivalent to the

existence of z, € Xo(IRN) such that

A lyy —
div g, = N0 v
1
/ (2u, Dvy,) :/ |Dv,,|.
RN RN
Then, we have
- A
div gy = 20,
[ GuD0w)) = [ 1DOw,)
Q RN
- _
which is equivalent to say that ()\U/u u) € A, that is, v, = A7! (I + /\pA) l(uo), and (28)

holds.

Fix ¢t > 0 a differentiability point of u. For h > 0, let A be such that A\t = ¢ + h. Now, applying
(27), we obtain

w(t+h) —u(t) = ut) —u(t) = (1= A" Hu(At) + A u(At) — u(t)

_ _h —tAy -1
= t+hu(t+h)+e (A" ug) — u(t).

Now, since A" 'ug < ug, by Theorem 2 we get e_tA()\_luo) < u(t). Hence

h

u(t—l—h)—u(t)St_l_h

u(t + h),

and the result follows. O

4 The notion of entropy solution

Let
P:={peWH(R): p' >0, supp(p’) compact}.

Definition 2. A function u € C([0,T); L., .(IRY)) is called an entropy solution of (1), (2) if u(t)
converges to ug in Li, (IRY) ast — 07,

p(u) € Ly, (10,T[; BVioc (RY))  Vpe P,
and there ezists z € L (]0, T[x RN ; R") with ||z||oc < 1 such that

up = div 2 in D' (J0, T[xR") (29)



and

_/OT/]RNj(u—l)er/OT/RNnd\D(p(u—l))|+/OT/IRNZ.V77P(U_Z)SO (30)

foralll € R, all p € C* (0, T[xR"), with n > 0, n(t,z) = ¢(t)¥(z), being ¢ € C° (10, TY),

1 € CP(IRY), and all p € P, where j(r) := / p(s) ds.
0

The notion of entropy solution for scalar conservation laws was introduced by Kruzhkov in [29]
in order to prove their uniqueness and the L' contractivity estimate using the doubling variables
technique. Carrillo [17] was the first to apply Kruzhkov’s method to parabolic equations, and more
recently, Benilan et al. [13] introduced the notion of entropy solution for elliptic equations in divergence
form in order to prove uniqueness when the right hand side is a function in L. The case of parabolic
equations was considered by Andreu et al. [7]. In all these cases, the elliptic operator was in divergence
form and it excluded the case of operators derived from functionals with linear growth in Du. The
case of the total variation with Neumann and Dirichlet boundary conditions was considered in [3] and
[4], respectively, and the general case was considered in [6].

Inequality (30) is a weak way to impose equality (14); indeed if we integrate by parts, we formally
substitute (29), using ||z||coc < 1 and the fact that 7 is nonnegative, we get

/IRNZ'VHP(U—I) —/IRNJ'(U—Z)W—/]RNHd(z,D(p(u—l)))

> — [ tw=vm= [ ndeDew-D)]

which, after integration in time, shows that the opposite inequality in (30) is satisfied.

Remark 2. Ifug € L?(IRY), then the strong solution of (1), (2) coincides with the entropy solution,
see Lemma 2 in Section 6 below.

The aim of Sections (5) and (6) is to prove the following result.

Theorem 3. Let ug € Li (IRN). Then there exists a unique entropy solution of (1) and (2) in

loc

[0,T] x RN for all T > 0. Moreover, if ug,ugr € Li. (IRN) are such that ugy — ug in L. (IRN) and

loc loc
u, ug, denote the corresponding entropy solutions, then up — u in C([O,T];LIIOC(RN)) as k — +oo.

5 Uniqueness in L. (IRY)

loc

Let @ > N, Ty(r) := max(min(r, k), —k), T} (r) = max(Tx(r),0) (k > 0) and let j, be the primitive
of T} (r)*~! vanishing at 7 = 0. If N = 1, we take a > 2, so that j, € WH™(IR).

Proposition 2. Let ug, g € LL . (IRY). Let u,@ be two entropy solutions of (1) with initial conditions
ug, g, respectively. Then

/ jolult) — a(t) < / jaluo — ) VE> 0. (31)
RN

RN

Proof. Let T > 0 and Qr := )0, T[xRN. Write j = ja, j*(r) := j(—7), p(r) = T} (r)*7L, p*(r) ==
3*(r) = —p(~r). Let z,Z € L®(Qr; RN) with ||z]|oc < 1, ||Z]lec < 1 and such that, if r,7 € RY, with
Il <1, ||I7|]| <1 and ly,l3 € IR, then

_/OT/]RNJ-(U—zl)m+/0T/RNnd|D(p(u—h))|+/0T/1RN(z—r)-Vnp(u—h)

T
+// r-Vnpu—1) <0,
o JmY

(32)
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and

_/OT/IRNJ'*(E—l2)77t+/0T/]RNndID(p*(ﬂ—l2))|+/0T/IRN(E—F)-Vnp*(ﬂ—12)

T
+/ / 7-Vnp*(u—1) <0,
0 RN

for all n € C(Qr), with 1> 0, n(t,z) = $(t)(x), being € CG° (10, T, ¥ € C(IRY).

We choose two different pairs of variables (¢,z), (s,y) and consider u, z as functions of (¢,z) and
u, z as functions of (s,y). Let 0 < ¢ € C$°(]0,T]), 0 < 9 € C(IRY), (pn) a standard sequence of
mollifiers in IRY and (,) a sequence of mollifiers in IR. Define

(33)

M (t, T, 8,y) = pn(t — s)pn(z — y)¢<t ; S)w(“' ;r y) > 0.

Note that for n sufficiently large,
(t,2) = mn(t, 2, 5,9) € C5° (10, T[xRY)  V (s,y) € Qr,

(s,y) = nn(t,z,s,y) € C§° (]O,T[XBN) V (t,z) € Qr.

Hence, for (s,y) fixed, if we take [y = u(s,y) and r = Z(s,y) in (32), we get

-/ § [ it o+ [ ' [ mdD. (o = a0

[0 =2 Vam plu—(s.0) (34)

+/OT /]RN Z(s,y) - Vann p(u —a(s,y)) <O0.

Similarly, for (¢,z) fixed, if we take lo = u(t,z) and 7 = 2(¢,z) in (33), we get

_/()T/IRNj*(ﬂ_U(t,$))(n”)s+/0T/IRN7ind‘Dy (0* (@ — u(t, 7)) |

T
[0 @t Yy o' @ it o) (35)

+/OT/]RNz(t,x).vynn p* (@ — ult, 7)) < 0.

Now, since p*(r) = —p(—r) and j*(r) = j(—r), we can rewrite (35) as
T T
_/0 /]RNJ(U(t,:E) —)(n)s +/0 /RN mn d|Dy (p(u(t,z) — ) |
T
+/0 /IRN(z(t,x) —Z) - Vyn, p(u(t,z) —u) 56)

-/ ' [ #t0) Fymptuttz) ) <o.

11



Integrating (34) with respect to (s,y) and (36) with respect to (¢,z) and taking the sum yields

[ dutta) (e, u) () + (m).)
QrXxQr
nd| Dy (p(u — (s, n d|D u(t,z) — u(s
+/QTXQT77 | Dz (p( ( y)))|+/QTXQT77 | Dy (p(u(t,z) —u(s))|
+/ (z(t,a:) —E(s,y)) : (Vznn + Vy"?n) p(u(t,.’li) - U(s,y))
QrXxQr

+/QT><QT Z(3,y) - Verm p(u(t, z) —u(s,y)) —/Q 2(t,T) - Vyna p(u(t, z) —u(s,y)) < 0.

TXQT
Now, by Green’s formula we have

/ 2(5,1) - Varin plut, z) — (s, y)) + / i d1 Dy (plu(t, 2) — (s, ))) |
QT XQT

QQrXQr

= —/ M (2(s,y), Dap(u(t, ) —u(s,y))) +/ M d| Dy (p(u(t, z) —u(s,y))) [ > 0,
QrXQr QrXQr

and

- / 2(t,2) - Vi plult,z) — (s,y)) + / i dIDy (p(u(t, ) — (5, 1))) |
QTXQT QTXQT

= / M (2(¢, ), Dyp(u(t, z) —u(s,y))) + / mn d| Dy (p(u(t, z) —u(s,y))) | > 0.
QrXxQr QrXQT

Hence, from (37), it follows that

_ / 3ty ) — (s, 9) ((1n)s + (7a)s)
QT XQT

(38)
+/ (z(ta :I:) - E(s,y)) ’ (Vacnn + vynn) p(u(t,z) — H(s,y)) <0.
QrXQr
Since .
(1) + ) = ntt = )pn(e =)0 (57 )0 (252
and
Vann + Vynn, = pn(t — 8)pn(T — y)¢(t —|2— S>V¢($ ;_ y)a
passing to the limit in (38) as n — +oo yields
-] ittt w2 W)
' (39)

+ [ (elt) ~20,) - Ty(e) gOp(u(t.a) e, ) <0
Let us choose 9 = ¢%, ¢ € CP(IRYN), ¢ > 0. Since (39) holds for any ¢ € C§° (]0, T7]), it follows

Ju(t,z) —u(t,z))p(z)® < / (E(t,:(:) — z(t,x)) -Vo(z)* p(u(t,z) —a(t,z)).

E IRN IRN
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Therefore

d

G|ttt —aae)@r <20 [ putt.a) — (o)l Ve

IRN

<a( [ (ptutto) -ateople =) © ([ vpr)” (a0

<o [ e —ste i) ([ v

Now, we observe that T} (r)* < ja(r) for all r € IR. Hence

a—1

4 [t —ueanet <2( [ it -ataner) ([ \wwa)é,

and, therefore,
d 1 1
S( [ dtuten) —awanet) " <za( [ e
dt IRN RN

Setting o, () := ¢(%) instead of p(z) we get

%(/RNj(u(t,w) —ﬂ(t,w)wg); < 2a(/m |Wn|a>‘1 — ognt=e </IRN |V<p|“>;.

Integrating from 0 to 7' and using the facts that u(t) — uog, u(t) — %o in LL.(RY) as t — 0%, we
have

(/IRNj(“(T’””) —H(T,:L‘))w%)é < (/IRNj(uO —ﬂo)wﬁf)a +2aTn¥</RN \V@af. (41)

Letting n — oo and recalling that o > N, we obtain that

/IRNj(u(T,z) —a(T,z)) < /mNj(uO — ).
O

Corollary 1. Let ug,ug € L. .(IRYN). Let u,u be two entropy solutions of (1) with initial conditions
ug, Uy, respectively. If ug < ug then u < w. In particular, the entropy solution of (1) is unique.

Proof of the last assertion of Theorem 3. Write (41) for u(t,z) and ug(t,z). We have

(/RNj(u(t,x) — u(t, ﬂc))soi'{); < (/]RNj(uo — u()k)gof{) Y oatn’ et (/IRN |V¢|a) é,

for any t € [0,7] and any n,k > 1. Given p € IN, let n, € IN be such that

1
—a a1
2aT'n,, [Vepl*) < -.
P RN p

Choose now ¢ € C$°(IRY) of the form ¢(z) = ¢(|z|) where ¢ is a decreasing function. By our choice
of ¢ we have that

([, it —w(fr,ac)xoa)é < ([ dtute.a) - woes,

1

= 1
< i(ug — a -
< ([ it - v, )"+

o
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for any t € [0,7] and any k > 1. Now, let k, € IN be such that

1
a 1
o o) 1
(/RN](UO 'U'Ok:)(Pnp> <5

for any k£ > k,. Then

(/IRNJ'(U(t,x) —’u,k(t’w))(pa); S%

for any ¢ € [0, 7] and any k > k,. We conclude that uy — u in C([0,T]; L .(IR")).

Remark 3. The same proof above yields that (uy) is a Cauchy sequence in C([0,T]; LL (IR™)) when
(uok) is a Cauchy sequence in Ll (IR™).

6 Existence in L] (IRY)

Lemma 2. Let ug € L*>(IRN) and let u be the strong solution of (1) and (2). Let T >0, p € P, set
= [y p(s) ds, and let o € C([0,T] x R") with compact support in . Then

/ 7 (u // <pt_|_/0T/IRN(pd|D(p(u))‘ (42)
/ /IRNZ Ve plu / 3(0)(0).

If in addition p € P N CY(IR), then the equality holds in (42). In particular, u is an entropy solution
of (1).

Proof. Assume first that p is of class C'. Then

d . :
G = [ e+ [ i
¢ d(z, D(

— _/IRN d(z, p(u)))—/IRNZ'V<PP(U)+/IRNJ(U)<Pt-

Integrating both terms of the above equality in ]0,7'[, and using the fact that

/ o d(z(t), Dp(u(t)))) = / o dD(p(u(t)|  forae. t €0,
RN RN

which is a consequence of Proposition 2.8 in [8] (here we use p € C') and the equality

/ wd(z(t),Du(t)):/ o dDu(t)]  for ae. t €10, 7],
RN RN

/ ; / / (pt+/0T/]RN(pd|D(p(u))| (43)
/ /]RNZ Ve p(u / 5 (u0)(0).

If p € P is generic, we approximate p in the uniform norm with functions p, € P N C'(IR), then
write (43) for p, instead of p and let n — oo to conclude that (42) holds. O

we obtain
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Proof of existence. Let ug € LL (IRY). Let up, € L2(IRN) be such that ug, — ug in LIOC(RN)
Let u,, be the strong solutions of (1) corresponding to the initial conditions ug,. By Remark 3, (u,) i
a Cauchy sequence in C([0,T]; Lj .(IR")). Thus we may assume that u, — u in C([0,T]; loc(RN)
for some u € C([0,T]; Li . (IRN)). In particular, we have that u(t) — ug in LL (IRY) as t — 0+.

loc

Now, let p € P and let ¢ € C§°(]0, T[xRY). Inserting u = u,, into (42) gives

[ ek [ eanpunis- [ [ ot (a4)

with an equality if p € P N C'(IR). In particular, the choice of j(r) = r, i.e., p(r) = 1, gives

T T
/ / Uy = / / on- V. (45)
0 RN 0 RN

Possibly passing to a subsequence, we may assume that z, — z weakly* in (L*°(]0, T[x RY))N. Letting

n — oo in (45) we have
T T
/ / uPy :/ / z- V. (46)
o JRrN o JRrN

We conclude u; = div z in D’ (]0, T[xRY). As j(u,) — j(u) and p(u,) — p(u) in C([0,T]; L], .(RN)),
letting m — oo in (44) we obtain

[ e [ eapwwis— [ [z venw

(IRM)) we have

)

provided ¢ > 0. In particular, since j(u),p(u) € C([0,T); L{. .

p(u) € L% (10,T[; BVioc(RY))  Vp e P,

and we conclude that u is an entropy solution of (1).

7 Time regularity

Let us recall the basic estimates of semigroups generated by subdifferentials. According to Step & of
Theorem 2 and [16, Theorem 3.2] (estimate (15) with v = 0) and [16, Theorem 3.6] (with f = 0,
K = {0}) we have that

1
€SS SUP,¢ 4,00 /IRN lug (s, z)|2dx < n /]RN luo|?dx vt > 0, (47)

g 1
/0 /]RN |ur(t, ) *tdzdt < §/JRN luo|*dz (48)
T
/0 /IRN ‘ut(ta $)|2d$dt < /RN |DUO‘ (49)

Our purpose is to localize estimates (48), (49). To cover the case of initial conditions in L{. .(IRY), we
need to consider the family 7" C P of truncatures T, 3, with a < b, defined by

and if uy € BV (IRY)

a if r<a
Top(r)=< 7 if a<r<b
b if r>b
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Proposition 3. Let ug € L2(IRN) and let u be the strong solution of (1) and (2). Then
p(u)e € L (0. TE L (RY)),  t2p(u) € L2(0,TEL*(RY)),  VpeT.
Moreover, for any ¢ € C§° (RY) and any s < t such that p(u(s)) € BVioc(IRY) we have the estimate
s [ [ wewes [ @ apeuoyis [ gapeaenivae-s [ vt 60
and, if T is such that u(T) € BVio.(IRYN), also

3/ : |t 1 [ appu) < [ ' [ ORI

IRN

Proof. Let ¢ € C§° (RN ) and set

I = {s € 10,T]: u(s) € BVigo(R") / a5, 2)[? da < 1/ o ? da}.
RN S RN

We recall that |0,7[\I has zero measure. Let s,¢ € I. Multiply the equation u:(t) = div z(t) by
(p(u(t)) — p(u(s)))e? and integrate over IR™. After integrating by parts, we obtain

[ 20 6u@) - Do) < [ w@pe) - pum)]s?
RN RN

(52)
~ [ 40 VP b)) - pul)].
RN
Let 6 > 0 and let s,t € I, s,t > d. Using (47), we have
[ PP o@®) |- D ewe) ) < 5 lullpa) - pue)].
RN
(53)
2 — Uu\s .
+ [ 1Vttt — pluts)
Since a similar inequality holds with s and ¢ interchanged, we have
[ #a(ID 6o |- D) < Jlulalplu) - suw)el
RN
(54)

+ /IR 19@RlIp(u(t) - plu(s)).

Asu e Wllof(]O,T[; L?(IRY)), i.e., is a locally absolutely continuous function of time, then also p(u)
is and, from (53), we deduce that [j,n ¢%d|D (p(u))| is absolutely continuous in ]§,T[ for any § > 0
sufficiently small. Put s =t — h € I in (52), divide by h > 0, and let h — 0*. We obtain, at any

differentiability point ¢ of u and [y ©?d|D (p(w)) |,

d
/ Pty + - deID(p(U))IS2/ Ip(w)l|¢l |Vl
RN RN RN

o( [ ) ([ oer)”

1
5/ Ip(w)i*¢® +2(|Velf3.
IRN

IN

VAN
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Since p'(r) € {0,1} for almost every r, we have

1 d
O IR PICONES (55)
RN RN

Observe that inequality (55) holds almost everywhere in ]0,7[. Choosing s € I and integrating (55)
in ]s, t[ we obtain (50). Since ¢ does not depend on time, from (42) it follows

[ it <p+// ¢ dD(p |<// Ve?lp(u |+// jluo)e®  (56)

Inequality (56) proves that [~ ¢?d|D (p(u))| € L*(0,T). Hence t, [fn ©?|D (p(u(ts)))| — 0 for a
subsequence t, — 0+, t, € I. Multiplying (55) by ¢ and integrating on ]¢,,T[ we obtain

%/:/IRN tlp(U)t|2<p2+/tn / ¢? d|D(p(u))| < (T? —t3) /IRN Ve?l.

Integrating by parts with respect to time we obtain

1 T
3| [ ke + T [ G ane |<// ¢ d|D(p(u)]
tn, JIRN RN
I / & d|D(p(u(ta)))| + (T — £2) / V).
RN RN
Letting n — oo, we obtain (51). O

Corollary 2. Let ug € L{, .(IR"). Let u be the entropy solution of (1) and (2). Then

p(u): € Lloc(0 Q3 Lloc(RN))a t%p( )t € Lloc([0 OO[ Lloc(RN))a VpeT.

Proof. Let (uo,) C L?(IR") be a sequence such that ug, — ug in L} (IRY). Let u, be the strong
solution of (1) corresponding to the initial condition ug,. Inserting u = wu, into (42) and using the
fact that the corresponding vector fields z, satisfy || z, ||cc< 1 we obtain

/]RNJ'(Un(T))go? +/OT/]RN 02 d|D (p(un)) | < /OT/]RN V02 () +/lRNj(un(O))<p2 (57)

for any p € P, T > 0, ¢ € CP(IRY) and n € IN. Since the right hand side of (57) is bounded by

Ci=llple T / V| di + sup / §(4n(0))¢?
RN n JRN

we have
T
|| ¢ dpmu)i<c 58)
o JRN
Choose now T > 0 such that u, (T) € BVjec(IRY)) for all n. Using (51) and (58) we have
e 2 2 2 2
3| e <ot [ vgt (59)
0 RN RN

Since p(uy,) — p(u) in C([0,T]; Li,.(IRY)), letting n — oo in (59) we obtain

/ / )22 <c+T2/ IVo|2.
RN N

Since this holds for almost every T' > 0, the conclusion follows. O
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Remark 4. If p(ug) € BVioc(IRYN) we have
p(u) € Ly, (10,T[; BVie(RY)) ,  p(u) € WH? (10, T[; Liy.(RY)) € C([0, T); Lio (IRY))
for any p € T. Indeed, this follows from (50) instead of using (51) in the above argument.

If u is the entropy solution of (1) and (2) for ug € Li. .(IRY) and K € IR, then v(t) := u(t) + K is
the entropy solution of (1) whose initial condition is v(0) = uy+ K. If we denote by S(¢) the semigroup
in L (IRN) constructed from the entropy solutions, we may write S(¢)(ug + K) = S(t)uo + K for any

loc

u(0) =ug € L. .(IRN) and K € IR.

loc

Proposition 4. Let ug € L] (IRY) with ug > —M for some M > 0. If u is the entropy solution of

(1) and (2) we have

u(t) + M
i

Moreover, u; € Li, . (10, T[; Li, . (IRN)) for any T > 0. A similar statement holds if ug < M for some

M > 0.

Proof. Let 0 < vy, € L2(IRN) be such that vo, — ug + M in L} (IRYN). Let v,(t) := S(t)(von). By
Proposition 1 we have

u'(t) < for a.e. t > 0.

v

vhy < for a.e. t > 0.

Tn
Since vy, () = S(t)(von) = S(t)(uo+M) = S(t)(uo)+ M = u(t)+ M in L (]0, T[; L{ (IRN)), it follows
that
u+ M
t

By estimate (60), u; is a Radon measure in |s,¢[x R, for all 0 < s < t and R > 0. Thus

¢
// lut| < oo. (61)
s JBgr(0)

in any ball Br(0), R > 0. Now, taking p = T, the estimate in Corollary 2 says that u; is a function
in L%(Qqp N Bgr(0)), for all a < b, where Qg := {(t,z) € Q : a < u(t,z) < b}, and all R > 0. This
observation together with (61) proves that u; € LL (0, T[; LL .(IRY)). O

loc loc

uy < in D' (]0, T[xR"). (60)

We conclude this section with the following observation. The existence and uniqueness results for
(1) and (2) may be used to prove an estimate for the time derivative of the solution of

% _ div (L> in 10, co[x R", (62)

ot 1+ |Dv|?

when the initial datum v(0,z) = vo(z) € L'(IRN). First, we observe that existence and uniqueness
results for (62) when vy € L*(IRY) can be obtained following the approach in [6]. Next we notice that
if v is the solution of (62) corresponding to the initial condition vy € L'(IRY), then u(t,z,Tn41) =
v(t,z) — 41 is the entropy solution of (1) in RN+ such that u(0,z,2x11) = vo(z) —zn41. In other
words, the semigroups T'(t) and S(t) associated with (62) and (1) satisfy

S(t)(vo — zn41) = T(t)vo — zn41  for any v € L (RY).

we obtain

Now, proceeding as in the proof of Proposition 1 with A = #

u(t +h) + S (vo — 1)) — u(t)

o(t+h) —v(t) = u(t+h)—u(t):th

+h
_ (t+h) +TE) (A tvg) — T(t) +L
= t—|—hu ) Vo t+h33N+1
h
= h'u(t +h) + T (A vg) — T(t)vo.
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This implies that

v(t+ h) —v(t)
h

[[vol|1

<

From this, and using the techniques of completely accretive operators [15] as in [3] it can be proved
that [lvelli < %llvolls-

8 Evolution of sets in IR?: the connected case

Throughout this section, as well as in Sections 9, 10, 11, we take N = 2. Let B C IR? be an open
set; we say that 0B is of class CT! if 9B can be written, locally around each point, as the graph
(with respect to a suitable orthogonal coordinate system) of a function f of class C' with Lipschitz
continuous gradient, and B can be written (locally) as the epigraph of f. If B is of class C1!, we
denote by kpp the (#!-almost everywhere defined) curvature of OB.
Let Q C IR? be a bounded set of finite perimeter. We set
P(Q)

Aq = ———.
1]

We want to study when the function
u(t,z) == (1 — Aat) T xa(z) (63)
is the entropy solution of (1) and (2) when we choose uy = xq-

Remark 5. The function u defined in (63) is the solution of (1) and (2) with u(0,z) = xa(z) if and
only if the function v := xq satisfies the equation

—div (|1D)—Z|> = Aqu, (64)
i.e., if and only if there exists a vector field & € L°(IR%; IR?) such that ||€|c < 1,
_div € = A (65)
and
| &pn=[ o (66)

With a little abuse of notation, we also write that the pair (v,¢) is a solution of (64).
It is clear that if v is a solution of (64) then Aqv is a solution of (4).
If xq is a solution of (64) and C is a connected component of €2, using (65) and (66) it follows that

Ac = Ao (67)

Definition 3. Let Q C IR? be a set of finite perimeter. We say that Q0 is — calibrable if there exists a
vector field &, : IR? — IR? with the following properties:
(i) & € LIZOC(RZ;]RZ) and div¢, € LIQOC(]RZ);

(it) [€q| <1 almost everywhere in §;

(iii) divég is constant on §;
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(i) 0(¢q, —Dxa)(z) = —1 for H!-almost every z € 0*<.

We say that §2 is +calibrable if there exists a vector field 55 : IR? — IR? satisfying properties (i),
(i), (iii), and such that 0(¢}, —Dxq)(z) =1 for H!-almost every z € 9*Q.

Heuristically, condition (iv) says that the inner (resp. outer) normal trace of £ (resp. of &) is 1.
It is clear that  is —calibrable if and only if © is + calibrable (it is sufficient to define £ := —¢).

Moreover, if 2 is bounded and —calibrable, the constant in (iii) equals —Aq, i.e., —divé, = Aq on .
The following remark should be compared with (a) of Proposition 5.

Remark 6. Let Q C IR? be a bounded set of finite perimeter which is — calibrable. Then

T < Dl VD C Q, D of finite perimeter. (68)

P(Q) _ P(D)
|D
Indeed,

1 1
Ag = — / —divég dz < —P(D).
D] Jp “ D]

Remark 7. Let Q C IR? be a bounded set of finite perimeter. Assume that Q0 is —calibrable and that
R?\ Q is +calibrable. Define
€a on €,
=1 4+ 2
51R2\Q on IR*\ €.
Then & € L®(IR?; IR?) and divé € L™ (IR?).

Lemma 3. Let ) C IR? be a bounded set of finite perimeter. Then v := xq is a solution of (64) if
and only if & is —calibrable with —divé, = Aq in Q and IR?\ Q is +calibrable, with divEEQ\Q =0 in
R%\ Q.

Proof. If (xq, &) is a solution of (64), then &g, := ¢, fEE?\Q := € satisfy (i)-(iii) of Definition 3. Moreover,
by (66) and (12)

0. Dxa)dH! = P = | 0(&faq: ~Dxme0)dH,

so that (iv) of Definition 3 is satisfied. Conversely, it is enough to define § = {5 xa + {EQ\Qlez\Q,
and to use Remark 7 to check that (xq, &) solves (64). O

We are precisely interested in characterizing the sets of Lemma 3. The following theorem answers
to this question, under the additional assumption that € is connected; thanks to Remark 5, we can
characterize those sets (2 such that the function u in (63) is the solution of (1) and (2) with ug = xq.
In Theorems 6 and 7 of Section 9 we consider the general situation.

Theorem 4. Let C C IR? be a bounded set of finite perimeter, and assume that C is connected. The
function v := xc is a solution of (64) if and only if the following three conditions hold:

(i) C is convex;
(ii) OC is of class C11;
(#5i) the following inequality holds:

P
esssup rac(p) < o). (69)
peaC |C|
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To prove Theorem 4, we need several intermediate steps. We start with the proof of the implication
xc solution of (64) = (i) — (447) hold, (70)

which will be given after Lemma 7.
Given any set D C IR?, we define

D, := U{Bp : B, open ball of radius p contained in C'},

where p > 0 is small enough such that D, is nonempty.

The result of the next lemma, without an estimate on the curvature, is proved in Proposition 2.4.3
of [28]. Since in the following the estimate on the curvature plays a crucial réle, we need to include
the proof.

Lemma 4. Let C C IR? be a bounded open convez set. The following conditions are equivalent:

(a) there ezists p > 0 such that C = C,;
1

(b) OC is of class C' and esssup kgc (p)
pealC

Proof. (a) = (b). Assume that C = C, for some p > 0 and fix a point z € dC. Up to a translation
and rotation of coordinates, we can suppose that z = 0, that dC can be written, in a neighbourhood
of 0, as the graph I'y, with respect to the z-variable, of a nonnegative convex function f vanishing at
0 (therefore the open epigraph of f coincides with C in a neighbourhood of z). Since C = C,, the
open ball of radius p contained in the epigraph of f and tangent to I'; at (0,0) lies locally above f.
Therefore we can choose a parabola tangent to I'; at (0,0), lying locally inside the epigraph of f and
above the ball, whose graph has curvature at zero equals % + €. Precisely, for any ¢ > 0 sufficiently

small there exists § > 0 such that f(z) < (% + e) z? for any |z| < 6. It follows that f is differentiable

at x = 0 with f'(0) = 0, i.e. 9C is differentiable at z. Therefore 9C is differentiable at any point.
Since OC is convex and differentiable at any point, it follows that 8C is of class C'.

Let us now prove that C is of class C1!. The idea is the same as before, but now we need a
family of parabolas locally above f, passing to an arbitrary point (¢, f(¢)) for |¢| < § and tangent (at
the same point) to I'y. It will follow that OC is locally an infimum of parabolas with second derivative
larger than % (up to €). Precisely, as C = C,, given € > 0 sufficiently small and possibly reducing 4,

we have )
f(z) < du(z) := (5 + e> (z —a(t))®+b(t) Vx| |t| <9,
where a(t) == t — U and b(t) := ft) — I'(0°_ (note that f € C', so that a and b are well
(1/p)+2¢ (2/p)+4e
defined). Since

f=inf¢ onle <4
[t <6

and since ¢; are semiconcave with semiconcavity constant equal to % + € for any |t| < 4, it follows
that f is semiconcave on [—d, ] with semiconcavity constant equal to % + e. Hence f is of class C!
in [—4,4] and f" < % + & almost everywhere in [—§,4]. Therefore OC is of class C! and, since € is

arbitrary, ess suppcac Kac (p) < %.
_ The implication (b)) = (a) is a particular case of [11, Lemma 9.2], with the choices P = C,

$(&1,82) = V& + &5 and X = p. 0

Remark 8. If condition (a) of Lemma 4 holds, then C = C, for any o € [0, p|, since any ball B, of
radius p is the union of all balls B, of radius o € [0, p| contained in B,.
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Lemma 5. Let a,b € R, a < b, A > 0 and G, : H}([a,b]) — IR be defined as
Gi(u) = / (VI T (@(3)2 — hu(s)] dH!(s). (71)
[a,b]

Assume that there ezists a function uy € H}([a,b]) whose graph is contained in a translated of 83%.

Then uy, is the unique minimizer of Gy in H¢([a,b]).
Proof. 1t is a particular case of [11, Lemma 8.4] with the choice 5(51, &) = €1 + &5 O

Lemma 6. Let Q C IR? be a bounded set of finite perimeter. Assume that IR%\ Q is +calibrable.
Then divfjlrﬁ\Q =0 on IR?\ Q.

Proof. Let for simplicity ¢ := &5, . Let R > 0 be such that Bg D Q and let U be the unbounded
R\

component of IR?\ Q. By assumption we have that divé = a on U N Bg for some real constant .
Using (12) and the properties of £ (see (ii) and (iv) of Definition 3) we have

—2rR+ P(U) < / divé dx < 27R + P(U).
UNBg

If we denote by A the (finite) measure of the union of all connected components of IR? \ §) contained
in Bp, it follows that

~2tR+P(U) _ _ Juas, div€ dz 2zR 4+ P(U) .
TR2—|Q-X~ " |[UnBg| ~ wR2—-|Q-X\
Letting R — +00 we deduce a = 0. O

Proposition 5. Let Q C IR? be a bounded set of finite perimeter which is —calibrable and such that
IR?\ Q is +calibrable. Then

(a) the following relations hold:

P©) _ P(D)

Q] ~ QN D VD C IR?, D of finite perimeter; (72)

(b) each connected component of Q is convez.

Proof. Let £ € L*°(IR%* IR?), ||€|lcc < 1 be the vector field defined by ¢ := &5 xa + €EQ\QXR2\Q. By

Remark 7 we have that divé € L®(IR?). Let D C IR? be a set of finite perimeter. Using Lemma 6
and the fact that —div{, = Aq on 2, we have

—/ xpdivé dr = —/ xaxpdivé dz = )\Q/ Xxanp dz = Ao|Q2N D|.
R2 IR2 IR2
Hence
Aal@N D] < P(D), (73)

and (72) follows.
Moreover from (73) it follows that

P(Q2) < P(D) VD D Q, D of finite perimeter.

We conclude that each connected component of €2 must be convex. O
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Definition 4. Given X € IR we define the functional Gy as
G\(D) := P(D) — A\|D|, D C IR?, D of finite perimeter.

Proposition 6. Let C be a bounded open conver set, and assume that C is —calibrable. Then 0C is
of class C1'1.

Proof. Set for simplicity { := —£, and recall that div{ = A¢c on C. For any A > A¢ and any finite
perimeter set B strictly contained in C' we then have

G:(B) > /

B

(divé — A)dz > /C (dive — N)dz = G, (C). (74)

Assume now by contradiction that dC is not of class C1'!. By Lemma 4 it follows that C, is strictly
contained in C for some p > 0. Fix o < p such that cA¢ < 1. By Remark 8 we have that C,, is strictly
contained in C. Applying Lemma 5 to the connected components of 9C,, \ dC, we get

G:(C) < G1(0),

o

which contradicts (74). O

Remark 9. (i) If Q C IR? is a bounded set of finite perimeter satisfying (68) it follows that
Grg(D) > 0 for any D C Q of finite perimeter, while obviously Gx,(2) = 0. Therefore 2
minimizes Gy, among all finite perimeter sets D C €.

(i) By the proof of Proposition 6, it follows that if C is a bounded open convex set which is
—calibrable, then C minimizes Gy among all finite perimeter sets B C C' and where A > A¢.

In order to prove the implication (70) of Theorem 4 we need one more lemma.

Lemma 7. Let C C IR? be a bounded open convezr set with C1' boundary satisfying (68) with C in
place of Q. Then (69) holds.

Proof. Let U be a neighbourhood of C and let h € C}(U). Let a € IR be sufficiently small, and let
U, (z,y) :== (z,y) + ah(z,y)v(z,y), where v € C1(U; IR?) is a vector field satisfying |v| = 1 on U, and
v =1v% on 0C. Extend ¥, as ¥, (z,y) = (,y) outside U. Let C, := ¥,(C). By Remark 9 it follows
that C' minimizes G, among all finite perimeter sets contained in C'. Therefore, if A is nonpositive,

0 < lim g)\C (Ca) B g)\c (C)

a—0t [0}

= / [koc — Ac)h dH'.
ocC

It follows koo (z) < A¢ for H'-almost every = € OC. O

We are now in the position to prove the implication (70) of Theorem 4. If x¢ is a solution of
(64), by Lemma 3 (applied with = C') it follows that C is —calibrable with —div{; = A¢ in C and
IR?\ C is +calibrable with divfjéz\c =0 in IR? \ C. Therefore by (b) of Proposition 5 (applied with
2 = C) and the assumption that C is connected it follows that C is convex. Hence by Proposition 6

we have that 0C is of class C!. Moreover, inequality (68) holds. Therefore we can apply Lemma, 7
to conclude that (69) holds.

Let us now prove the opposite implication of Theorem 4, that is
(1) — (44%) = xc solution of (64). (75)

Assume that C is a bounded open C''! convex set satisfying (69). It has been proved in [27] that
(69) is a necessary and sufficient condition for C' to be a minimizer of the functional Gy, among all
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sets of finite perimeter D C C. In this case the function f := Agoxc satisfies ||f||« < 1. Indeed, if
w € L?(IR?) N BV (IR?) is nonnegative, we have

/ f@)w(z)dz = / / ACXCX{w>t} d:vdt:/ Ac|C N {w >t} dt
R? 0o Jm? 0

/0 P(C N {w > 1)) dt g/o P{w > ) dt = /R2 | Duw|

VAN

where we have used that for all ¢ > 0 for which {w > t} is a set of finite perimeter we have that
P(CN{w 2 1}) < P({w > t})

which is a consequence of the convexity of C. Splitting any function w € L?(IR?) N BV (IR?) into
its positive and negative part, using the above inequality one can prove that | [p. f(z)w(z) dz| <
[ |Dwl. Tt follows that ||f|, < 1. Then, by Lemma 1, there is a vector field & € L*°(IR?; IR?) with
Il € |loc< 1 such that

—divé = f = Aexce- (76)

Now, multiplying (76) by x¢ and integrating by parts, we obtain

/W(&DXC):)\c/ﬂchdﬂvle(C)Z/lR2 |Dxcl,

hence x¢ is a solution of (64). The proof of Theorem 4 is concluded.
We conclude this section by recalling that in the paper [27], condition (69) was used as a necessary

and sufficient condition for the existence of a solution u with Vu € L2 (C; IR?) of the equation

Vu
—div| ————== ) =A¢ inC (s
IV( = |Vu|2) ¢ in (77)

Vu(y)

— _,,C
o (z) for any z € 0C.

with boundary condition lim¢gsy s

9 Evolution of sets in IR?: the non connected case

The aim of this section is to generalize Theorem 4 to non connected sets (see Theorems 6 and 7).
Theorem 7 is basically a further generalization of Theorem 6, and has a self-contained and independent
proof. We begin with the following result.

Theorem 5. Let Q C IR? be a bounded open set and assume that OS) is of class C*t. Then IR?\ Q
is +calibrable if and only if

2P(D,R*\ Q) > P(D), D c R?>\Q, D bounded of finite perimeter. (78)

Proof. Assume first that IR? \ Q is +calibrable and set ¢ := 5;;2\5. By Lemma 6 we have divé = 0 on

R?\ Q. Let D C IR?\ Q be a bounded set of finite perimeter. Then
0= / divé dz > H'(0*D N o) — P(D,R?\ Q),
D

which implies (78), since H!(6*D N dN) = P(D) — P(D, IR?\ Q).
Assume now that (78) holds. Let R > 0 be such Bg := Bg(0) D 2 and

dist(0Bnr, 00) > %p(g) (79)
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and set

_ P
Cr= =g (80)

Possibly increasing R, we can assume that |c| < 1. Given a bounded open set A C IR? we now define
the functional

F(€,A) = /A (dive)® dw, &€ HY(A), (81)

where HUV(A) := {¢ € L?(A; IR?) : divé € L?(A)}. Reasoning as in [9, Proposition 6.1] one can prove
that the variational problem

min {]—"(f,BR \ Q) : ¢ € HWV(BR\Q), || <1ae. in Bp\Q, (82)
6(¢,~Dxa) = 1 on 09, 0(¢,~Dxp,) = c on OBx | (83)
admits a solution and, if £&; and & are two solutions, then divé; = divés almost everywhere on By \ Q.

Moreover, arguing as in [9, Theorem 6.7] and [10, Proposition 3.5, Theorem 5.3], it follows that given
any minimizer &pyin we have divémin € L®(Bg \ ) N BV (Bg \ ), and that if 4 € IR and we define

Qu:={z¢€ Bgr\ Q: div&pin(z) > p},

where we can assume that @, ha finite perimeter, then

/ divémin dz = H'(9°Q, N 0Q) + ¢H'(8°Q,, N dBR) — P(Qy, Br \ Q). (84)

m

We claim that div&y, is constant on By \ 2, and therefore div€,y,i, = 0 on B\ Q in view of the choice
of ¢ in (80). Suppose by contradiction that divém;, is not identically zero on Bg \ Q. By (80) and the
Gauss-Green Theorem, it follows that {divéy;, < 0} cannot be the whole of Bg \ Q. It follows that
there exists A > 0 such that @) is a nonempty set of finite perimeter. Using (84) with u = A and (80),
the inequality

/ div€min dz > A|Q)| > 0
Qx

implies
re) 1/ 9% o P(Q) 17 9%
P(Qx, Br\ Q) <1 (9°Qx N 0Q) R (0*Qx N OBR), (85)
that is
re) . P(Q) 1/ 9%
2P(Qx Br\ ) < P(Qx, Br) — 5 M (67Qx N 0Bg). (86)

We now split the proof into three cases.

Case 1. Assume 9*Q) N OS2 = (). In this case we have P(Q, Br \ Q) = P(Q., Br), which inserted in
(86) gives a contradiction.

Case 2. Assume that 8*Q)\ N 0Bg = . In this case we have P(Qy, Br \ Q) = P(Q),IR?\ ) and
P(Qx, Br) = P(Q)), so that (86) implies

2P(Qx, R*\ Q) < P(Q»),

which contradicts (78) with D = Q).
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Case 3. Assume that 0*Q) N 0N # @ and 0*Q) N IBr # (. By the additivity of the perimeter on
connected components, there exists a connected component C' of @) such that (85) holds with C in
place of @,. On the other hand, using the fact that C' is connected, (79), and |c¢| < 1, we get

P(C,Bg\ Q) > 2 dist(0Bg, Q) > P(Q) > H(8*C N oN) — %%1(6*0 N OBg),

which contradicts (85).

Our claim is proved, and therefore divéy;, = 0 on Br \ Q. We now extend &, on the whole of

IR? as follows. Define {;;2\5(35) = —PQ(?) ﬁ if z € IR?\ Bg, and {;;2\5(35) := min(7) if z € B\ Q.

Finally, define 5;2\5 inside 2 as follows: first we extend 5;2\5 in a Lipschitz way, inside 2, in a

suitable open tubular neighbourhood of 912, keeping the constraint ||€||oo = 1. It is then enough to use
a cut-off function to further extend the vector field on the whole of €2, keeping all required constraints.

One can check that 5;2\5 € HW(IR?), ||§1;2\§||oo <1, and divfjl'#\ﬁ =0on IR?\ Q. Tt follows that

IR?\ Q is +calibrable. O
Remark 10. If the set Q in Theorem 5 is convez, then (78) is authomatically satisfied.

The following theorem generalizes Theorem 4 to non connected sets.

Theorem 6. Let Q) C IR? be a bounded set of finite perimeter. If v := xq is a solution of (64), then
Q has a finite number of connected componenents C1,...,Cy,, and

(i) C; is convex for any i =1,...,m;
(ii) OC; is of class CY! for anyi=1,...,m;

(7ii) the following inequalities hold:

ess sup Kac;(p) <
pEAC; |CZ|

(i) P‘gf) = Plgjl) for any i,5 € {1,... ,m};

(v) let 0 <k <m and let {i1,...,ix} C{1,...,m} be any k-uple of indices; if we denote by F;, . ;,
a solution of the variational problem

k m

min< P(E): E of finite perimeter , U Ci;, CEC R?\ U Ci; ¢ (87)

j=1 j=k+1

we have
k
P(B;,..i,) > Y _ P(Cy). (88)
=1

Conversely, assume that Q C IR? is a bounded open set which is union of a finite number C1,...,Cp,

of connected components satisfying (i)-(v). Then v := xq is a solution of (64).

Proof. Assume that (xq,¢) is a solution of (64). By Lemma 3 we have that € is —calibrable and
IR?\ Q is +calibrable. By (b) of Proposition 5 we have that each connected component C' of (2 is
convex, and by Proposition 6 we have that 0C is of class C1''. By Remark 6 we have that € satisfies
(68) so that, by Remark 9, Q minimizes G, among all finite perimeter subsets of Q. Thanks to the
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results in [27], this is equivalent to (69). Therefore, as Q is bounded, it follows that €2 consists of a
finite number of connected components C4,...,Cy,. Integrating —div{ on each C; we obtain

Ao = Ag, = Ac.

J

Vi, j € {1,... ,m}.

It is not difficult to prove that (87) admits a solution. Moreover this solution is in general not unique;
however, since the portions of the boundary of a minimizer which are not contained in Ufi 1 0C; are
segments, it is possible to prove that the number of different solutions of (87) is finite. Let us now
prove (88). Set

:: 11500 50k \ U C C Rz

We have
0= / divé dz > —P(E;, .4, R?\ Q) + H'(0* D N 9Q)
D
k
>~ P(Bjy,..i, RE\Q) +#' | 0"Dn | | oCy,
j=1
Equivalently
k k k
Y P(Cy,) < P(Bi,,..ip, RZ\Q)+ > _P(Cy)—H' oD | |Jocy | |- (89)
7j=1 7j=1 7j=1

Since the right hand side of (89) is less than or equal to P(E;, . ;, ), inequality (88) follows.

Assume now that €2 is a bounded open set which is union of a finite number C1, .. ., Cy, of connected
components satisfying (i)-(v). Reasoning as in the proof of (75) it follows that each C; is —calibrable,
so that thanks to (iv) it follows that € is —calibrable. To prove that IR%\ is +calibrable, we will show
that (78) is valid. Let D C IR? \ Q be a bounded set of finite perimeter. Denote by C;,,...,C;, the
connected components of {2 whose boundary intersects 0*D. Let E;, _; be a minimizer of problem
(87). Using (88) and the minimality of F;, _; we then have

Sk

k k
> P(C;;) < P(E;,..;) <P|Dul]JCy |- (90)
7=1 7j=1
Observe now that
k k
DU U Ci; | =P(D,R*\ Q)+ > _P(C;,) - H' | "D n (| aCy)))
j=1 j=1
k
=2P(D,IR*\ Q) — P(D) + Y _ P(Cy,),
j=1
which, inserted in (90), gives (78). According to Lemma 3 we have that v := xq is a solution of
(64). O

In order to prove Theorem 7 (without the use of the tools introduced in (81), (82)) we start with
the following observation.

Lemma 8. Let a; > 0 and B; C IR? be bounded measurable sets, fori =1,...,m. Let g := > QX B;-
Then ||gll« <1 if and only if

m
Z o;|B;ND| < P(D) VD C IR?, D bounded of finite perimeter. (91)

i=1
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Proof. Assume that ||g||, < 1. Let D C IR? be a bounded set of finite perimeter. Then
m
> alBindl = [ gxpds < [ 1Dxol = P(D).
i=1 R? R?

Conversely, assume that (91) holds. Let v € L2(IR?) N BV (IR?) be nonnegative. We have
m 00 m oo
gvdr = a-/ / XB; X{v>t) dx dt = a-/ |B; N {v > t}|dt
/IR? g 1 o R? {v>t} ; 1 o %

< /OOOP({vzt})dt:/]m Dwl.

Splitting into the positive and negative parts, the above inequality holds for a generic v € L%(IR?) N
BV (IR?). Therefore ||g|. < 1. O

The following result is essentially a generalization of Theorem 6.

Theorem 7. Let Q C IR? be a bounded set of finite perimeter and assume that Q) consists of a finite
number of connected components Ci,...,Cm. Let b > 0 fori=1,...,m. The function u:=Y ;~, bixc;
is a solution of (4) if and only if

(a) by = P‘g“) foralli=1,...,m;

(b) conditions (i)-(iii) and (v) of Theorem 6 hold.

Proof. Assume that (u,£) is a solution of (4), where u = > 7", bixc,. The identity (¢, Du) = |Du|
implies that (¢, Dx¢;) = |Dxc;| as measures in IR?, for all 4 = 1,...,m. Using this observation and
integrating the equality —divé = u in C; it follows that b; = A¢,. Now, let D C IR? be a set of finite
perimeter. Multiplying the equation —divé = v by xp and integrating in IR? we obtain

P(D) > —/ xpdivédz = 3 b|C; 1 D| > b|C; 1 D) (92)
R2

=1

ie, A¢g; < |CPj(—ODI))| for each j = 1,...,m. As in the proof of Theorem 6, it follows that (i)-(iii) hold.

Finally, let us prove that condition (v) holds. If we write (92) for D = E;, .. ;, we have

m
Z Ac;i|Ci N By iyl < P(Biy,.ig)s
i=1
which gives (6) since C;;, N E;; i, = Cy; for j = 1,....k, while C; N Ey; 5, =0 for i ¢ {i1,..., 4}
Conversely, assume that conditions (a) and (b) hold. Reasoning as in the proof of (75) it follows

that each Cj; is —calibrable. We shall prove that g := > 7", A¢;xc; satisfies ||g||« < 1. According to
Lemma 8, it will be sufficient to prove that

Z Ac;|Ci N D| < P(D) VD c IR?, D bounded of finite perimeter. (93)
i=1

By additivity of the area and the perimeter, it is sufficient to prove (93) when D is also indecomposable.
Let D C IR? be such a set. Since C; are —calibrable sets, by Remark 6 (applied with Q := C; and
D := DN (;), we have that

A¢;|C; N D| < P(C;n D).
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Then, to prove (93), it will be sufficient to prove that

m

E P(C;nD) < P(D) VD C IR?, D bounded indecomposable of finite perimeter. (94)
i=1

Denote by Cj,,...,C;, the connected components of €2 such that D U Ule Ci; is connected. Those
components intersect either D or 9*D. Let F;, _ ; be a minimizer of problem (87). Using (88) and

the minimality of E;, _; we then have

k k
Y P(Ci;) < P(Ei,. i) <P (D ul Cij> . (95)
j=1 j=1
We claim that
k k
P (D oy cz-].> < P(D,R*\Q)+ Y _ P(Ci,) - H' (D n(J ac,-j))> : (96)
j=1 j=1 j=1

Indeed, since 0* (DU X) C (0*D \ X) U (0X \ D) where X := U§:1 Ci;, we have
P(DUX) <HY0*D\ X) +H'(0X \ D) — H'(0"D N 8X)
since the term with a minus sign was counted twice by the first two terms at the right hand side. Thus

P(DUX) < HY0*D\X)+HY0X\D)=P(D,R*\X)+ P(X)—H(OX N D)
= P(D,R*\Q)+ P(X)—-H' (80X N D)

which proves claim (96).
Inserting (96) into (95), we obtain

k
H! (D n(J acij))) < P(D,IR?\ D). (97)
7j=1

On the other hand, since *(C; N D) C (0*D N C;) U (0C; N D) U (0*D N 9C;), we have, using (97),

N k k k
Y P(C;nD) = ) P(C;nD)<P(D,Q)+H (D n( ao,-j))) +H! (8*D n( acz-j))>
j=1

i=1 j=1 j=

—

IA

k
P(D,Q)+ P(D,R*\ Q) + H! (6*D n(J acij))) = P(D).
j=1

We have proved that ||g||« < 1. According to Lemma 1 there is a vector field ¢ € L*®°(IR?; IR?) with
l€lloo < 1 such that —div¢ = u. Multiplying this equation by u and integrating in IR? we obtain

/R2(§,Du):/lR2u2dm:§:P|(CLj)2:/IR2 | Dul.

=1

Therefore, u is a solution of (4). O
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10 Explicit solutions for the denoising problem

Proposition 7. Let A > 0, b € IR and a := sign(b)(|b| — N\)*. If u € BV(IR?) is a solution of (4)
then the function at is the solution of the variational problem (7) with f := bu. Conversely, if au is
the solution of (7) with f = bu and b — a = £\, then @ € BV (IR?) is a solution of (4).

In particular, if Q satisfies the conditions listed in Theorem 6, then alqxq is a solution of (7)
with f = blaxa. The converse stament holds if b —a = +\.

Proof. Recall (see Lemma 1) that a function v € BV (IR?) is the solution of (7) if and only if u is the
solution of

. Du
u — Adiv (W) = f. (98)

Let f := bu where u satisfies (4). Without loss of generality we may assume that b > 0 (the case b < 0
can be obtained by changing b — —b and u — —u). Suppose first that b > A, so that a = b— A. Since

Da
“Adiv (ﬁ) = Xa=(b—a)T
it follows that u := au satisfies (98). Now, assume that 0 < b < X, so that a = 0. Let ¢ € L>®(IR?; IR?)
be such that [|¢[|cc < 1 and —divé = @. Obviously, if z := £¢, then ||z]o < 1, and —divz = —2div ¢ =
ba, that is —Adivz = b = f. Since [pn(2,D0) = 0 = [pn [DO|, it follows that u = 0 solves (98).
The converse statement follows by substituting f = bu and v = aw into (98).

The last assertion follows from Theorem 6 and the first part of the proof. O
Let us prove an extension of the above result.

Proposition 8. Let (2 be a bounded set of finite perimeter which consists of a finite number C1, ..., Cy,
of connected components. Let b; € IR for i = 1,...,m. Assume that the function @ := Y ;" A¢;xc;
solves (4). Let A > 0 and a; = sign(b;)(|bi| — A\)T. Then the function u := Y ;" ai ¢, Xc; s the
solution of the variational problem (7) with f =3 1" biAc;xc;. The converse statement holds if a;, b;
are such that b; —a; = X\, or b —a; = =X, foralli=1,...,m.

Proof. As in the proof of Proposition 7, we have to prove that u is the solution of (98). We observe
that this is obviously true if b; > A, or b; < —A, for all ¢ = 1,...,m. In the general case, let
Iy:={ie{l,....,m}:|bi| > A}, Jn:={i €{1,...,m} : |bi] < A}. Since, in this case,

f —u=A Z Slgn(bZ)ACZXCZ + Z bi)\cq;XCia
ST N 1€J)y

to prove that u is a solution of (98) we have to construct a vector field £ € L (IR?; IR?) with ||¢|le < 1,
such that

. . b
—divé = sign(bi)Acixe; + Y XZ)\C’,-XCZ- (99)
i€l 1€y

and (¢, Du) = |Du|. Let F € L?(IR?) denote the right-hand side of (99), and let F* = sup(F,0),
F~ =sup(—F,0). Let (@, &;) be a solution of (4). Let D C IR? be a set of finite perimeter. Multiplying
the equation —div&; = @ by xp and integrating in IR? we have that

P(D) > —/ divéuxp do = > e, / xcxp s = > AelCin D. (100)

=1

This inequality implies that ||F||, < 1. Indeed, let v € BV (IR?). Since

/]R Fla)ola) da < /m (Frot 4 F o) do
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and [ |Dv| = [fpo |Dvt| + [ge [Dv|, the inequality [, F(z)v(z)dz < [p, |Dv| follows if we prove

that
FryTdz < / |Dv*|  and / F v dzx < / |Dv™|.
IR? R? IR? R?

Thus, without loss of generality, we may assume that F > 0 and v € BV (IR?), v > 0. Then, using
that % <1 for any ¢ € Jy, we have that

/ F2)0(z) do = / ” / Fy(oss) dz dt

= Z’\C/ / XCiX{osty dzdt+ > Ac/ / XCi X {v>t) dz di

1€l 1€y
o0
< ZACZ./ |cm{vzt}\dxdtg/ P([vzt])dt:/ Dvl.
i 0 0 R

Therefore |F||, < 1. By Lemma 1, there is a vector field ¢ € L®°(IR?; IR?) such that ||¢]joc < 1,
satisfying (99). Since a; = 0 for all ¢ € J), it follows

/1R2 |Du| = Z\achP Zaz)\c/ —divé)xc, dx

ieIA 1€Ty
- Zazxc | €pxe)= [ (€0

which, in turn implies that (£, Du) = |Dul, since ||{||oo]| < 1.

The converse statement is obvious. O

Proposition 8 proves that a; is a soft thresholding of b; with threshold A. This is in coincidence with
the soft thresholding rule used in the wavelet shrinkage method for denoising [37],[23],[22],[24],[30].
As proved by Meyer in [30], a soft thresholding applied to the the wavelet coefficients of the function
f € L2(IR?) gives a quasi-optimal solution of the denoising problem (7). Let us also mention that it
has been proved recently that the wavelet coefficients of a BV function are somewhere between ¢! and
weak £ [20],[19],[32],[30].

Finally, that a solution of (7) when 2 is a ball was given by the above formula was already observed
by Meyer in [30] and Strong-Chan in [34].

11 Some examples

In order to clarify the conditions given in Sections 8 and 9, we shall discuss some explicit examples.

Example 1. Let Q C IR? be the set of Figure 1. It is easy to check that Q satisfies the assumptions
of Theorem 4, since () is a convex set with C'»! boundary and there holds

1 2mr+2L  P(Q)

essf;,%”a”(p)zi 2 +2rL  [Q

(101)

Moreover, since the inequality in (101) is always strict, the solution of (1) starting from y¢ remains
a characteristic function for any convex set Q' of class C*! close enough to Q in the C'!-norm.

Example 2. Let Q C IR? be the union of two disjoint balls of radius r, whose centers are at distance
L (see Figure 2). Then condition (88) of Theorem 6 reads as

L > 7r.

Under this condition the solution of (1) and (2) with ug = xqo remains a characteristic function.
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Figure 1: a bean—shaped set as initial datum for the solution

Figure 2: two balls as initial datum for the solution

Example 3. Consider now three disjoint balls of radius r, whose centers are on the vertices of an
equilateral triangle with edges of length 1 (see Figure 3). In this case, condition (88) reads as

r < i
= A’
Notice that this condition is more restrictive than the condition holding for two balls, which has been
discussed in Example 1 and gives r < % This implies that it is not enough to consider only pairs of
sets in condition (v) of Theorem 6.

Example 4. We give now an example of an explicit solution, which is also a solution of (1) which is
not among the solutions considered in Sections 8, 9. Let Q := Bg(0) \ B, (0) be the set of Figure 4. In
this case Q does not satisfy assumption (i) of Theorem 4, i.e.,  is not convex. However is it possible
to compute explicitly the solution of (1) and (2) with ug = xq. Indeed, let & : IR? — IR? be the vector

field defined as
for z € B,(0),

28

£(z) = ¢ (fj—r; - 1) —— forz € Bg(0) \ B, (0),

R -
—W.’E fOI'l'ERQ\BR(O)

\

— on Bg(0) \ B;(0), divé =0 on IR?\ Bg(0), and
¢80 =1 0n 8B,(0), £ - vPr(®) = _1 on OBR(0). Therefore, one can check that the solution u of

2 2 — —_—
Then ||¢]|co < 1, divé = S on B,(0), div¢ = 7
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Figure 4: an explicit solution starting from a ring

(1) and (2) with ug = xq is given by

r(R—r)

2t
— ]_ —_ JR—
u(t,r) = (1 — Aat) xa(z) + —XB,(0) () te [0, o7

],wERQ.

For ¢t > % the solution u is equal to the solution starting from (1 — }%) XBg(0) (at time M)

and it is one of the solutions described in Sections 8, 9. o
Example 5. Let 0 = Ry < R; < ... < Ry < Ryy1 = +00, so that Bg,(0) = 0, Bg,,,(0) = IR?. Set
for simplicity B; := Bg,(0), for i = 0,...,p+ 1. Let Q; := B;\ B;_1,i=1,....,p + 1. Let a1,...,ap11
be real numbers such that a; # a;_1, a; # ait1, i = 2,...,p, and apy1 = 0. Let w := P a;xo;-
We claim that choosing a; appropriately we have that u is a solution of (4). To be more precise, we
say that we have specified a qualitative ordering of ay, ..., ap41 if we have said if a; is above ay (i.e.,
ai; > ay) or below ay (i.e., a; < ag), ay is above or below as, ..., a, is above or below a,1;. Then, for
each qualitative ordering of a1, ...,ap41, the values of ay,...,a,11 can be uniquely specified so that u
is a solution of (4). This will be a consequence of the following observations.

If (u,z), with w= Y2 , a;xq,, is a solution of (4), then integrating divz in B; we get

/ 2 VB 4N = 6 P(B) (102)
0B;
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where €; := sign(a;1+1 — a;). Now, integrating (4) in €; and using (102) we obtain

Ez'—lp(Bi—l) — GZP(BZ)
a; = 103
= 1Bl B o)

where P(By) =0 and |By| = 0.
If Br := Bg(0), we recall that the vector fields {(z) := % and z(z) := Rﬁ satisfy

P(Br)

—div¢ = Bl

. T
m BRa €|GBR = ma
respectively,

—divz =0 in ]RQ\FR, Z|aBR=|$—|.
T

The following lemma, follows by a simple computation and we shall omit its proof.

Lemma 9. Let 0 < r < R. The vector field ¢ (x) = —(1+ ﬁ%) L satisfies

Rtr

. P(BR)-PB) . . . - . "
— = Br\B S S
lef |BR| _ |Br| m R\ Ty §|6BR |.’L‘|’ 5'837« |.’L‘|

The vector field &£ 1 (z) := (% — 1) 3% satisfies

P(BR) +P(Br)

—dive ot =
¢ Bl — |B,]

. — X X
mn BR\B'M 5'333 = _ma £|6BT = m

The vector field £ (z) == (1 — %)% satisfies

P(BR) +P(BT) f|aB - _T
’ el

_d' +,— [
e B — |B]

. - M
in BR\ Br, ¢&loB, = Tl

The vector field 0% (z) = (1 + %)RL_H satisfies

P(BR) — P(Br)

_d +,+ —
e Bl 1B,

. — M X
in Br\ By, &lopg = Tl €lop, = Tl

In all cases ||€5%F |0 < 1.

Finally, let us check that given a qualitative ordering of a1, ..., a,41 there is a corresponding solution
of (4) of the form @ = Zle a;xq;- First we observe that once we have specified €;, the value of a;
is given by a1 = —¢; ngl). Thus, it will be sufficient to check that given three consecutive values
a;i—1,a;,a;1+1 with their qualitative ordering, we can uniquely determine the value of a;. For simplicity
let us a call these values a1, a2,a3. Let us prove the compatibility of the values of a1, a2, a3 given by
(103) with its qualitative ordering, if this is specified in advance. There are four cases to be considered:

(1) ag < ag, a1 < ag, (i) az < a9, a1 > ag, (i4i) ag > ag, a1 > ag, (iv) az > ag, a1 < as.

Assume that we are in case (i). Then ¢ =1 and e, = —1. Then, by Lemma 9, we have
ap = GOP(B()) - P(Bl) ag = P(BQ) + P(Bl) a3 = —P(BQ) - 63P(Bg)
|Bi| —|Bo| |Bo| — |B1| |Bs| — | Be|

Independently of the values of €y, e3 € {+1,—1} we have

P(By) — P(B) —P(B) + P(Bs)
a; < < a9, a3z <
"= Bl - Bl 2 ? |Bs| — [Ba

< as.
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Thus, the value of as is consistent with the qualitative ordering specified in advance. The other three
cases can be checked in a similar way. Thus, having specified the qualitative ordering of a1, ...,ap11,
the values of ¢; are given, and formula (103) gives the corresponding value of a;. We have checked
the consistency of this choice. In that case, u = > ¢ a;xo; is a solution of (4) and, by Proposition
7, u = au is a solution of (7) with f = bu, and a = sign(b)(|b|] — A\)™. The same result, with a similar
proof, can be proved in IR". This result has already been observed by Strong-Chan in [34].
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