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Abstract

We investigate the breaking and bending phenomena of a facet of a three dimensional
crystal which evolves under crystalline mean curvature flow. We give necessary and suffi-
cient conditions for a facet to be calibrable, i.e. not to break or bend under the evolution
process. We also give a criterion which allow to predict exactly where a subdivision of a
not calibrable facet takes place in the evolution process.

1 Introduction

Motion by crystalline mean curvature in three dimensions is an important example of geo-
metric evolution of solid sets. Besides its geometric interest, it finds applications in material
sciences and crystal growth, see for instance [6], [5], [15], [22]. Among the geometric flows
by anisotropic mean curvature, we say that the evolution is crystalline if the anisotropy ¢
is faceted, which means that ¢ is a piecewise linear convex function or, equivalently, that
the Wulff shape Wy := {¢ < 1} is a polytope. It has been recently shown [23], [3] that a
facet F' of a polyhedron FE evolving by crystalline mean curvature can subdivide into two or
more regions, or can even bend, creating a curved portion on the surface OF (see also [21] for
numerical computations). In this paper we investigate these phenomena for a generic nons-
mooth anisotropy (including the crystalline ones) and give necessary and sufficient conditions
for a facet not to break or bend during the evolution. Moreover, in case of convex facets, we
identify explicitly the velocity (denoted by ﬁg ), and therefore we are able to predict exactly
where a subdivision will take place. k¥ is obtained as the solution of a global variational
problem on the whole of OF [4], and is expected to coincide with the actual velocity of the



crystalline evolution. This conjecture is strongly supported by the expression of the first
variation of the surface energy computed in [4].

It is remarkable that the analysis of facet breaking/bending phenomena turns out to be
equivalent to the study of a variational problem on a given facet F' of 0FE: more precisely,
the sublevel sets of mf in F' are solutions of a prescribed anisotropic curvature problem with

respect to an anisotropy 5, which is a sort of two-dimensional restriction of the original
anisotropy ¢. Prescribed mean curvature problems in the euclidean case have been widely
studied (see for instance [16], [14], [12]) also because of their connections with capillarity
theory [8], [9], [7]. For the anisotropic case we refer to [17], [18], [19]. As a consequence
of these results and the results in [23], [20], it turns out that the connected components of
the level sets of m¢ lying inside F' are portions of the boundary of the corresponding two

dimensional Wulff shape {¢ < 1} . This fact is crucial in the present paper.

Let us describe more precisely the content of this article. In Section 2 we introduce some
notation. In Section 3 we collect some definitions and results from [4] which are necessary
in the sequel. In particular, we recall the notion of Lipschitz ¢-regular set (Definition 3.1):
a Lipschitz set £ C R? is said to be Lipschitz ¢-regular if OF admits a Lipschitz intrinsic
normal vector field ng. The ¢-mean curvature ﬁg is defined in (16), through a minimizer
Nmin of the variational problem (15) on vector fields on JF. This variational problem is
meaningful only for nonsmooth ¢’s. Indeed, when ¢ is smooth and strictly convex, /@f simply
reduces to divng; for a nonsmooth ¢, this is in general not the case, and the variational
problem (15) is necessary in order to naturally define mf . By the results of [4], it follows
that nf is bounded on JF and has bounded variation on the facets of 0F. In particular, it
is well defined the jump set of nf (on facets), which should identify the subdivision regions
in the geometric evolution problem. In Definition 3.12 we recall the notion of ¢-calibrable
facet, that is a facet F' C OF such that nq}f is constant on the interior of F'. Such facets
are expected not to break or bend during the evolution process. In Section 4 we localize the
variational problem (15) on a facet F', see Propositions 4.5, 4.6 and Corollary 4.7. At the basis
of the localization argument there is a trace property of the class of ¢-normal vector fields
having bounded divergence (the class H dlv°° (OF)). In order to prove that the normal trace
for such a nonsmooth ¢-normal vector ﬁeld N on OF from “both sides” of OF (with respect
to the Lipschitz manifold 0F) does not actually depend on N € H S;ZOO (OF) and coincide
with the function cp defined in (8), we need some assumptions on the shape of OF locally
around F: essentially we require that OF meets transversally the facet F', see Proposition
4.3. In Section 5 we introduce and study the anisotropic prescribed curvature problem on
F, see Theorem 5.2. A first characterization of ¢-calibrable facets is given in Theorem 6.1 of
Section 6; in the case of a crystalline and even ¢ this result has been obtained in [23]. Here
Theorem 6.1 is proved also in presence of a bounded forcing term g. In Section 7 we prove
that, under the assumption that F' is convex and that F is convex at F' (which means that,
locally around F, E lies on one side of the support plane Hp through F), then the sublevel
sets of /ﬁ:g (restricted to F') are convex. In Section 8 we prove one of the main results of
the paper, namely a characterization of convex ¢-calibrable facets which can be concretely
handled. More precisely (see Theorem 8.1) if E is convex at F' and F is convex, then F is
¢-calibrable if and only if the ¢-curvature of OF is bounded by the quotient of the anisotropic
¢-perimeter of F' with the measure of F' (this quotient is the mean value of Iig on F', see



(41)). In Section 9, under the assumptions that ¢ is crystalline, F' is convex, and F is convex
at F', we precisely identify the sublevel sets of nf as union of all the a—Wulﬁ’ shapes with a
given radius contained in F', see Theorem 9.1. As a consequence we localize the subdivision
region; moreover (see Corollary 9.5) we obtain that lﬁg is convex on F'. This is an indication
that convex sets remain convex under crystalline mean curvature flow. Finally, in Section
10 we apply the above results to an explicit example, partially discussed in [3]. This is an
example of convex polyhedral set (very close to the Wulff shape) which has a non ¢-calibrable
facet and does not remain polyhedral under crystalline mean curvature flow.

All results of Sections 5, 6, 7, 8 and 9 refer to a Lipschitz ¢-regular set (F,ng), to a facet
F' corresponding to a facet of the Wulff shape Wy, and under the assumption that any
N € Hii;‘” (OF) has normal trace on OF coinciding with the function c¢p. The extension of
the results of Sections 8 and 9 for nonconvex facets F' seems to be nontrivial, and deserves
further investigation.

2 Notation

In the following we denote by - the euclidean scalar product in R® and by | - | the euclidean
norm of R®. Given v € R}, weset vl :={w € R :w-v=0}. fp>0andz € R¥ k =2,3,
we set B,(z) :== {y € R¥ : |y — z| < p}.

Given two vectors v, w € R® we denote by [v, w] (resp. Jv, w|) the closed (resp. open) segment
joining v and w. With the notation A € B we mean that the set A is compactly contained
in B.

The symbol H* denotes the k-dimensional Hausdorff measure in R?, k € {1,2}. We often
use the symbol |B| to denote the 72-measure of B. When integrating on a plane of R?, we
will often use the notation dz in place of dH?(x) for the integration measure. All sets and
functions considered in this paper are Borel measurable.

If A C RE, k = 2,3, we denote by 14 the characteristic function of A and by 0 A the topological
boundary of A.

We say that A C RF, k = 2,3, is Lipschitz (or equivalently that A is Lipschitz) if, for any
x € 0A, there exists p > 0 such that B,(x) N 0A is the graph of a Lipschitz function f and
B,(z) N A is the subgraph of f (with respect to a suitable orthogonal coordinate system).
By Lip(0A) (resp. Lip(0A;R"), h = 2,3) we denote the class of all Lipschitz functions (resp.
vector fields with values in R") defined on 9A.

Let  C R? be a bounded open set. The space BV (Q) is defined as the set of all functions
u € LY(Q) whose distributional gradient Du is a Radon measure with bounded total variation
on Q, ie. [Dul[(Q) = [,|Du| < 400, see [13]. Q will play the role, in most cases, of the
interior of a facet F of a Lipschitz set £ C R3.

We say that a set B C  is of finite perimeter in Q if 15 € BV(Q). If B is of finite perimeter
in ©, 0* B denotes the reduced boundary of B; 0*B is rectifiable and can be endowed with a
generalized exterior euclidean unit normal 7.

We recall the following result, which is a particular case of a theorem proved in [2].



Theorem 2.1. Let Q C R? be a bounded open set. Let u € BV (Q) and X € L*®(;R?) with
divX € L?(Q). Then the linear functional

(X,Du):go—)—/u(p divX d:v—/uX-Vgo dz, w €CHN)
Q Q

defines a Radon measure (still denoted by (X, Du)) and satisfies

|(X; Du)[(B) < [|X||zoe (r2) | Dul(B)
for any Borel set B C Q. If in addition Q is Lipschitz, then there is a function [X - 7% €
L>(09) such that ||[X - 7%)|| e (a0 < 1 X || oo (2;m2), and

/u divX d$+/ (X, Du) d|Dul :/ (X - 7w dH? (1)
Q Q [219)

where 0(X, Du) € LTBU‘(Q) denotes the density of (X, Du) with respect to |Dul.

The last part of Theorem 2.1 is still valid when 2 is a bounded open set which is locally
Lipschitz continuous up to a finite set of points in 0f2.

Finsler metrics and duality mappings. We indicate by ¢ : R® — [0, +oo[ a Finsler metric on
R3, i.e. a convex function satisfying the properties

$(€) > Mg, pag) =ad(6), E€R’, a0, (2)
for a suitable constant A € ]0, +oo[. The function ¢° : R® — [0, +o00[ is defined as
¢°(€7) :==sup{&" - & : B(§) <1}, (3)

and is the dual of ¢. We set

Wi = {" eR:¢°(6") <1}, Wy = {£ R : ¢(¢) <1}

By a facet of 0OW, (or of BW(‘;) we always mean a two-dimensional facet.

We say that ¢ is crystalline if W, is a (convex) polytope. If ¢ is crystalline, then also Wg is
a (convex) polytope. W¢ is sometimes called the Frank diagram and W, the Wulff shape.
By T and T° we denote the possibly multivalued duality mappings defined by

T(E) = 3D (GO EeR, (@
o) = SDUPE), € ER

where D~ denotes the subdifferential.

¢-distance function. Given a nonempty set £ C R® and z € R?, we set

disty(z, B) == inf gz —y),  disty(E, ) := inf §(y — ),

dg (z) = distg(z, E) — disty(R® \ B, z).
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If E C R® is Lipschitz, for H2-almost every z € OFE we denote by v¥(z) the outward
unit euclidean normal to OF at z. At each point x where dg is differentiable, there holds

Vdg(x) € OWg; we set 1/¢E(x) = Vdf(w) at those points © € 0E. We have I/f(:v) ng)))
If E C R? is Lipschitz we define
Norg(OE) :={N : 0E — R’ : N(z) € T°(v (z)) for H? — a.e. z € OE}, (5)

Lip,, ,(0F) :=Lip(0E; R*) N Norg(0F).

Note that if N1, Ny € Nory(0F), then Ny — Nj is tangent, since Ny - vy = 1 = No - vy.
We also set dP, be the measure supported on OF with density ¢°(vF), i.e.

dPy(B / ¢°(v®) dH?, B C OE.

If E is Lipschitz and ¢ € Lip(0F) we denote by V% the euclidean tangential gradient of 1)
on JF and, if v € Lip(0F;R?), we denote by div,v the euclidean tangential divergence of v.
In the following, whenever there is no risk of confusion, we do not indicate the dependence

on E of the unit normals v* and Vf, i.e. we set v:=v¥ and Vg 1= l/f.

Definition 2.2. We say that F is a facet of OF if F' is the closure of a connected component
of the relative interior of OF NTLO0F for some © € OF such that the tangent plane T,OF to
OF at x exists.

If F is a facet of OF, we denote by OF (resp. int(F')) the relative boundary (resp. the relative
interior) of F. Let F be a facet of OE; we define v(F') to be the outer unit normal to int(F)

(i.e. v(F):=vE(z) for any = € int(F) C OF), we set vy(F) := %, and

W = T°(vy(F)).

We denote by Hf the affine plane spanned by the facet F'. Whenever necessary, we identify
Hp with the plane parallel to Hr and passing through the origin, and F' with its orthogonal
projection on this latter plane. s _

Fixy € int(Wf) and let Tny = W(f —y. Let ¢, : Hp — [0, 400 be the Finsler metric on
Hp such that {¢, < 1} = Tny . Define also sym(¢,) as the Finsler metric on Hp such that

{sym(gzNSy) <1} = —Tny . The classes of Lipschitz qNSy—regular sets and Lipschitz sym(qNSy)—
regular sets do not depend on the choice of y. We will accordingly often omit to specify the
point y (thus addressing, for instance, qSy -regularity as ¢- regularity).

We denote by 4° the dual of ¢. The maps T,T° are defined as in (4) with é in place of ¢
and Hp in place of R3.

Ify:Hp — [0 +oo[ is a Finsler metric on Hp and B is a finite perimeter subset of H F, we

denote by v, 1/ the normalized outward unit normal =%—- to d*B. We use the symbol v 1/

(~B)

place of v: 1/(»5. If there is no risk of confusion, we do not indicate the dependence on B of »8

and 5.
@
If ¢ : Hp — [0,400] is a Finsler metric on Hr and B C Hp is Lipschitz, we set
Nory(@B) := {N:8B — Hp,N(z) € T°(Vy(z)) for H' — a.e. z € B}, (6)
Lipy ,(0B) := Lip(0B;Hp) N Nory(0B). (7)



3 Preliminaries

In this section we collect some definitions and results taken from [4] which will be useful in
the sequel.

3.1 Lipschitz ¢-regular sets

Definition 3.1. Let E C R3. We say that E is Lipschitz ¢-reqular if OF is compact and
Lipschitz continuous and there exists a vector field ng : OF — R® with ng € Lip, 4(0F).

ng is usually called a Cahn-Hoffman vector field; several different choices of ng are usually
allowed for the same set E, due to the nonsmoothness of ¢ (notice for instance that if ¢ is
crystalline then 7" and T are necessarily multivalued).

The standard example of Lipschitz ¢-regular set is (Wy, z).

Notation. Throughout all the paper, the symbols E or (E,ng4) will always denote a Lipschitz
¢-regular set; ng will be a given selection in Lip,, ,(90F) as in Definition 3.1. The symbol F

will always denote a facet of F such that Wf is a facet of W.

Definition 3.2. We say that E is convez (resp. concave) at F if there exists an open set
UCR? such that FCU and F=ENHrNU (resp. F=R3\ENHpNU).

Theorem 3.3. F is locally Lipschitz, out of a finite set of points in OF \ 0*F. Moreover, if
FE is convex or concave at F', then F is Lipschitz.

Definition 3.4. We define the trace function cp € L*°(9F) as
cr(7) == ny(z) - 7" (2) Vz € 9*F. (8)

The next result shows that cr is independent of the choice of ny € Lipu,(b(aE), but depends
only on F', on OF locally around F, and on the geometry of Wy. We say that OF is weakly
convex (resp. weakly concave) at x € 0*F if 7' (z) points outside (resp. inside) E.

Lemma 3.5. Let n € Lip, ,(0F). Then, for any v € 0"F we have

max {p-vF(z): p€ Wf} if OF is weakly convex at z,

n(z) - 7" (z) = cp(z) = { (9)

min {p- 7" (z): pe Wj'} if OF is weakly concave at .

Definition 3.6. Let ¢ : Hp — [0,4+00[ be a Finsler metric on Hrp. Let B C Hp. We say
that B is Lipschitz ¥-regular if 0B is compact and Lipschitz continuous and there ezists a
vector field in Lipy ,(0B).

In the following proposition, y is any point in the interior of Wf , see the discussion after
Definition 2.2.

Proposition 3.7. If E is convez at F then (F,ng—vy) is Lipschitz a—regular. If E is concave
at F, then (F,y — ng) is Lipschitz sym(¢y)-regular.

In the next definition we prefer to keep the notation f’(; instead of Pa.
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Definition 3.8. Let A be an open subset of Hp. For any B C F, we set

]3;(B,A) = sup {/ div,ndx: n€ CC1 (A;Tij)} , (10)
B

Py(B) := Py(B, Hp). (11)
Notice that 1?’;([4’) < 400 by Theorem 3.3.

3.2 ¢-tangential divergence

Let us introduce the ¢-tangential divergence for vector fields v € L?(0F;R?) as bounded
linear operator on Lip(OF). Recall that (E,ng) is Lipschitz ¢-regular.

Definition 3.9. Let v € L%(0E;R?). We define divgn,,r v : Lip(OE) — R as follows: for
any v € Lip(0F) we set

(div¢,n¢77 v, 1) = / P v vy diveng dPy —/ [Vﬂﬁ -V -ng V¢] v dPy. (12)
OF OF
Notice that, if X € L?(0F;R?) is a tangent vector field, then

(divgn, X, 9) =~ [ Vip-X dPs Vi € Lip(9E). (13)
oF

We say that dive,n, v is independent of the choice of ny if, given n € Lip, 4(0F) then
(divg,ng,,rv, %) = (dive,y,v,%) for any ¢ € Lip(OF). When divyp, ;v is independent of the
choice of ng, we simply set divy ;v := divgn, v. It turns out that if n € Lip, ,(OF) then
(divg ny,rm¥) = [y diven dPg for any ¢ € Lip(OFE). Moreover, if N € Norg(0F), then
divgp, N is independent of the choice of ny and, on int(F), divy, ;N coincides with div, N
(we will accordingly use the notation div, N in place of divg N on int(F)).

3.3 The minimum problem on 0F

We define .
H3Y(OE) := {N € Norg(0E) : divy N € L*(0E)},

H%>(0B) := {N € Nory(0E) : divy N € L®(9E)}.
Let F : HS};(@E) — [0, +00[ be the functional defined as

F(N) = / (divg, N)® dPy. (14)
oF
The minimum problem
inf {]—'(N) . N € H3Y (aE)} (15)

admits a solution and, if Ny and Ny are two minimizers, then divg, Ni(z) = divy , Na(x)
for H2-almost every = € OF.
Except for Section 6, in the following we denote by Npi, a solution of (15), and we set

kY = divg rNmin € L*(OF). (16)

Iﬁ)g is the natural definition of ¢-mean curvature of E. The following regularity results hold.
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Theorem 3.10. h)g € L*(0F). Moreover h)g € BV (int(F)).
We set
Kmin(F') := essinf /ﬂf, Kmax(F') := esssup /ﬂf,
F F
and for any A € R we define
O ={zeint(F): s} <A},  Of :={zcint(F):x} <A}

Theorem 3.11. For every A € R the set Qf is a solution of the following variational prob-
lem:

inf {13;(3, int(F)) — A|B| : (B\ QF) U (QF \ B) € int(F)}. (17)

Moreover, if X # 0, every connected component of int(F) N 8Q§ is contained in a translated
of %8Wf, and has extrema on OF. Same assertions hold for the sets 65.

Definition 3.12. We say that F is ¢-calibrable if fcf is constant on int(F).
The following technical result will be very useful in the sequel.

Theorem 3.13. For any A € R we have
—G(Nmin,Dlgf)(x) = max{ p- o™ (z):pe€ W(f} H' —a.e. z € int(F) NI*QF,
—9(Nmin,D1@§)(x) = max{ p- % (z):pe W(f} H! — a.e. z € int(F) N 9*OL,

where 6(Nin, *) s given by Theorem 2.1.
We conclude this section with the following definition.

Definition 3.14. If P C Hp is Lipschitz a—regular, we denote by T{f; the a—curvature of P,
obtained by taking the divergence of a minimizer of a functional as in (14) with P in place
of E and ¢ in place of ¢.

4 Normal traces on 0F. Localized minimum problem on facets

The aim of this section is to extend the validity of the first equality in (9) under weaker
regularity assumptions on 7. In doing this, we however strength the regularity assumptions
of OF locally around F. We miss the proof of the first equality of (9) for a facet F of a
generic (Lipschitz ¢-regular) set and a generic N € HS};)"X’(BE). We recall that, thanks to
Theorems 2.1 and 3.3, any N € HS}(;'“ (OE) admits a normal trace [N - vF] € L®(9F).

We begin with the simplest case, where we assume that JF is locally the intersection of two
half-planes. This situation covers the case when F is polyhedron.

Proposition 4.1. Let N € Hii(;’”(aE). Assume that there exist T € OF and p > 0 such
that B,(T) N OF is the union of B,(T) N F and B,(Z) N Fy, where F; C R® is a half plane
nonparallel to Hp. Then

[IN- 7] =cp  H'—ae. on B,(T)NOF. (18)



Figure 1: Case (i) of Proposition 4.1 (Fy := F)

Proof. Let N € H Sj{;’“ (OF) and let x be the tangent vector field defined by x := N —ng. Let
z € B,(T)NOF be a Lebesgue point of [x-7¥]. Set Fy := F. Let [ be a fixed positive number
small enough, and let 0 < € << I. Let R, := R! U R? C B,(Z) be the set “centered” at = as
in Figure 1, where we identify the rectangle R? (resp. the rectangle R!) with [—¢,0] x [, 1]
(resp.[0, €] x [—1,1]). We also sometimes identify the edges of the rectangles with their lengths.
To prove the assertion, it is enough to show that

/ [ - 7] dH = 0. (19)
(O} (L]

Indeed, since (19) holds for any I small enough we deduce [x - 7'](z) = 0, and (18) follows
recalling (8).

Let § be a positive number with § << e. For any y € 0F define 9(y) := dist(y, 0E\ Rc) A L.
Then 1 € Lip(0F) and spt(¢y) C R,.

Recalling that divy rx is a bounded function on OF, it is immediate to check that

; ¢ divg 7 x d’P¢‘ =10(e), . ¢ divyx dPy| =10(e), i=1,2. (20)
We also claim that
. V- x dPy = 10(e) + O(e), i=1,2. (21)
Indeed, from (20) we get
- /Rg Vip - x dPy = 10(e) + /R% Vi) - x dPg. (22)

By general properties of Lipschitz ¢-regular sets (see [4], Lemma 8.1 and Theorem 8.4) it

follows that, if z € B,(Z) N F1 N Fy, then ny(z) € Wfl N sz, and v (z) belongs to the
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outward normal cone to 8%5 “ at ng(z). Therefore
7i(2) - (p—ng(2)) <0 forany pe W', i=1,2 (23)

Given y € R, we denote by m;(y) € [~[,I] the point of minimal distance of y from [—1,1].
Clearly |y — mi(y)| = O(e). Since ng is Lipschitz continuous on OF and N(y) € W(f 2 (resp.

N(y) € Wfl) for H2-almost every y € Fy (resp. for H2?-almost every y € F; N OE), using
(23) we have, for i = 1,2 and y € Fj,

v (@) - x(y) = 71(@) - (N(y) = ng(mi(y))) + 77 (@) - (ng(mi(y)) — ng(y)) (24)
=" (mi(y)) - (N(y) — ng(mi(y)) + 77 (@) - (ng(mily)) —ng(y)))
< (@) - (ng(mi(y)) —ng(y)) = Ofe).
Recalling the definition of 1) and the properties of the distance function, we have
1 ~ 1 ~
—/ VH/PX(Z’P¢=—/ VF2(E)-Xd’P¢+—/ vP - x dPy, (25)
R? 0 J a, 0 J B,
where As := [—€, —€+ 6] x [-1,1], Bs := {y € R?\ A; : dist(y, 0F \ R,) < 4}, and P denotes
the outward unit normal to the level sets of 4. A similar formula holds when R? is replaced
by R!. Therefore, using (24) and (25), we get
— | Vi x dPs <10(e) + O(e),  i=1,2. (26)
R

From (26) and (22) we deduce
10(e) + O(e) / Viip - x dPg = 10(e) / Viip - x dPy > 10(€) + O(e),

which proves claim (21).
Using (20) and (1) we have

10() = [ 4 divyy dPs = —/ V.- x dPy +/ Wb [x - 7] dP,. (27)
R! R! OR}

Observe that 9 vanishes on R, and, when restricted to OR., is nonzero only on the segment
[-1,1], and is equal to one on [—] + §,] — §]. Hence

T aPa= [ [ Pyt 00). (28)
AR} [—146,l-4]

Inserting (28) into (27) and using (21) we have
/ [ - 7] dPy = 10(€) + Oe) + O(6).
[—14+6,l-4]
Letting first § — 07 and then ¢ — 01, we get (19), and the proposition is proved. O
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We now extend the class of sets E for which Proposition 4.1 is valid. For any = € 0F and
p>0welet Ey(z) := Ep_“”. Recall that (E,ng) is a Lipschitz ¢-regular set, and that vy = l/f.

We begin with the following lemma on the structure of the blow-up of 0F.

Lemma 4.2. Let x € OE. There exist a set By = Ey(z) C R® and a sequence (pp)n of
positive numbers converging to 0 such that

(a) 1g, (@) — 1E, weakly in BVioc(R?);
(b) OEy is an entire Lipschitz graph and ng(z) € TO(VfO (y)) for H2-almost every y € OE.

(¢) Ey minimizes Py between all subsets of R3 of finite perimeter which coincide with Eq
out of some ball.

In contrast with the euclidean case, in general Ej is not a cone over z.

Proof. Point (a) is standard in the theory of finite perimeter sets. Let us prove (b). Let
x = 0 for simplicity. Let II C R? be a plane and f : II — R be a Lipschitz function such that

OF coincide with the graph of f in a neighbourhood of 0. Then 0F, can be written (locally

around 0) as the graph of the Lipschitz function f,(y) := @. Since f, are equilipschitz on
any bounded set, using Ascoli-Arzeld Theorem, f, converges uniformly on compact subsets
of II (possibly passing to a subsequence) to a Lipschitz function fy whose subgraph is Ej.
We can also assume that f, converges to fo weakly in Hl (II). By [4], Lemma 8.2, we have

loc
that for any R >0

lim  sup  dist(vy’ (y), T(ny(0))) = 0. (29)
p—=0% ye BR(0)NO*E,

Since T'(ng(0)) is a convex set and Vf”(- + f,(-)v) converges to l/fo(- + fo(-)v") weakly in
L2 (1), from (29) it follows

loc

,,(1;30 (y) € T(ny(0)) for H? — a.e. y € OF.

It follows To(z/fo(y)) D T°(int(T'(ny(0)))) 2 ne(0), and (b) is proved (note therefore that
O0F, admits a constant ¢-normal vector field n4(0)).

Let us prove (c). Let A C R3 be a set of finite perimeter such that (Ey \ A) U (4 \ Ep) €
Bpg := Bgr(0) for some R > 0. From the Gauss-Green Theorem we get

0 = 5 le’)’L¢(O) (1E0 — 1A) dr = (DlEo(BR) — DlA(BR)) - n¢(0)

(D1g,(Br)) - n4(0) — Py(A, Br),

v

where the last inequality follows from the inequality v -n4(0) < ¢°(v4). Since uf" ng(0) =1
on 0*Ey, we obtain Py(A, Br) > Py(Ey, Br), and (c) is proved.
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Proposition 4.3. Assume that for H'-almost any z € 0*F the boundary OEy(x) of the blow-
up set Ey(x) defined in Lemma 4.2 is the union of two closed nonparallel half-planes Py, Py,
with Py parallel to F. Assume also that the Lipschitz functions f, in the proof of Lemma 4.2,

(1), and that ‘Dlu‘ (K) — |D1p,|(K) for any compact set
p .
K contained in the plane spanned by Py. Then, for any N € HS’I;'“ (OF) we have

converge to fy strongly in HlloC

[N -] =cp H' — a.e. on OF. (30)

Proof. Fix T € 0*F and assume for simplicity Z = 0. In a neighbourhood V of T = 0, the set
FE coincides with the subgraph of a Lipschitz function f : I — R Up to a translation, we
can assume that 0 € IT and £(0) = 0. Let also U := VNIl and 7 : R® — II be the orthogonal
projection such that w(y, f(y)) = y for y € II. For p > 0 we let U, := U/p, and we define
N, € L®(U,; R?), n, € Lip(U,; R?) and &, € L®(U,; R?) as

Np(y) == N(p(y, f(),  mp(y) :==ne(p(y, f(¥))), &) :==8°(=Vfp(y), ) (Ny(y) — np(z(/;)la)

where y € U,. We divide the proof into four steps.
Step 1. We have div £, € L*®(U,).
Indeed, for any function ¢ € C}(U,) we have, setting 9 := 1) o ,

/é“p(y)-VTﬁ(y) dy = /(Np(y)—np(y))-V¢(y)¢°(—pr(y)a1) dy
U, U,

= / (N, —n,) - Vi dPy
8E,N(V/p)

- (N(z) — ng()) - (V) (z/p) dPy
P~ JoENV

1

- /a (@) = ng(@) - Vb(a/p) dPy.

Since N —ngy € HS};"X’ (OF) is a tangent vector field, from the previous equality we deduce
o) Ve dy s = | 1italo) dPs = Coldluom, < Collluw,

for some positive constant C, C independent of p. This proves step 1.

Step 2. Definition of &g.
Letting p — 0, up to a subsequence, we can assume that, for all n € N, §, weakly* converges,
in Hd“"’o (Br(0) NII) to a divergence free vector field & € Hd“'°° (IT), that f, converge to

fo € Llp(H) uniformly on compact subsets of II, strongly in H1 (I1) (by assumption) and
Vf, = V fo almost everywhere in II.

Step 8. We have

&o(y) € Coly) = |T° WS (1)) = np(0)] #°(~Vfoly), 1)  forae. y €L

12



Indeed
§o(y) € Cply) == [T°(ve(py, pf (v))) — no(py, pf ()] ¢°(=V fo(y),1)  for a.e. y € U,.

From the upper semicontinuity of 7 it follows that for almost every y € II

ﬂUC ) C Co(y)-

>0 p<e

Since Cp(y) is a convex set and £, — & weakly in L2 (II), it follows &y(y) € Co(y) for almost
every y € IL.

Step 4. Definition of Nj.
For #H2-almost every = € OE let us define

§o(m(z))
¢°(=V fo(m(z)),1)’

Clearly, Ny € To(z/fo); we now prove that Ny € Hii;”(an). Indeed, since &) € Hl‘j,iq‘j""’ (II)
and div&y = 0, for any 1 € Lip(0E)) with compact support, we have

No(z) :=n4(0) +

/ (No — ns(0)) - Vb d7’¢=/fo-V(¢°7T1) dy =0,
OEy II

which implies N € Hgi;w (0E) and divy, Ny = 0.

We now conclude the proof of the proposition. Assume that T € 9*F is a Lebesgue point for
[N -7¥] on OF. For simplicity we let Z = 0. Recalling that 7" = ¥ (0), by Proposition 4.1
we have

[No - 772] = cp(0),  H'—ae. on PiNP.
To conclude it is enough to show
[No -7 = [N -77)(0), H'—ae onP NP, (32)

Let 9 € C1(R?), 0 < % < 1 be a radially simmetric function such that ¢ = 1 in B;(0) and
spty C B2(0). We have

ot = lim ! - ap(x !
NN = fim e | NP ite/p) aH
= lm; ;F T 1

= lim

p—0 (W
/ N - Voh(x/p) de)

/ div, Np(z/p) de

p? faF/¢dH
1
— lim———— [ N, V,pda
=0 fop, ¥ dM Sy g
1
= | No-Vipdz =[Ny,
faP?lwdHl P, 0 ¢ [ 0 ]

13



where, in the first equality of the last line, we used the convergence assumption on 0F/p.
The proof of (32) is complete. O

Remark 4.4. Notice that any convexr set E such that OF \ F intersects F transversally
verifies the assumptions of Proposition 4.3.

Assumption: in what follows, we will always assume that £ and F are such that any vector
field N € Hil(;’w (OE) verifies [N - '] = cp on OF (see the hypotheses in Propositions 4.1
and 4.3).

We let

HIY(F) := {N € Nory(F) : div,N € L*(F), [N - 9F] = cp},

v,

HYY=(F) := {N € Nory(F) : div,N € L®(F), [N -#"] = ¢5},

where Nory(F) is as in (5) with OF replaced by F, and we define the functional F(-, F) :
HYY(F) = [0,400[ as

F(N,F) := / (div, N)? dPy = ¢°(v(F)) / (div, N)? da. (33)
F F
Proposition 4.5. The minimum problem
inf {J:(N, F):N e HYY (F)} (34)

admits a solution. Moreover, if N1 and Ny are two minimizers, then div, Ny(z) = div, No(z)
for H2-almost every = € int(F).

Proof. Let C :={div,N : N € HS:;(F), [N-7¥] = cp}. Then C is a convex subset of L2(F).
Let us prove that C is closed in L?(F). Let fj := div, Ny € C be such that fy — f in L(F)
as k — oo. We have to prove that f € C. Localizing the arguments of Proposition 6.1 in [4]
to the facet F, one can prove that f = div, N, for some N € L?(F;R3). It remains to check
that [N - 7¥] = cp. Let u € C}(F); since [Ny, - v¥'] = cp for any k, we have

/ udiv, Ny dz +/ Ny -Vudzr = / cru dH!, keN.
F F AF

Noticing that supy, || Ni||zee(ry < +00, we may, possibly extracting a subsequence, pass to the
limit as k — oo, and we get

/udivTN d:v+/N-Vu dw:/ cpu dH'.
F F oOF

As u € C}(F) is arbitrary, we obtain that [N - 7¥'] = cp. The existence of a (unique in the
divergence) minimizer of (34) is a standard consequence of minimization on convex sets of
convex functionals on Hilbert spaces. O

The following proposition, based on the trace property discussed in Propositions 4.1 and 4.3,
shows that the divergence of a solution to (34) is the divergence of Ny, restricted to F.
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Proposition 4.6. Npinp is a solution of (34).

Proof. By our assumptions on F and F' we have that [Npin - ﬁF | = c¢r on OF. Assume by
contradiction that Nminr is not a solution of (34). Let n € Hi‘;w (F) be a solution of (34),

and define
__n on int(F),
T\ Nin  on 9E\ F.

To reach a contradiction, it is enough to show that

div, int(F),
divy, 7 — %V 7 on int(F') (35)
’ d1V¢,TNmin on OF \ F,

since this implies that F(7) < F(Nmin), thus violating the minimality of Nyi,. Relation (35)
is equivalent to show that

(divg 7, %) = / W div,n dPy + / % divy;Nmin dPs V4 € Lip(OE). (36)
F dE\F

We first observe that [ - 7] = ¢ on OF, hence

| wltn=ne) -5 an o (37)
OF

As 1 —ngy is a tangent vector field, (37) implies that

/ W divs () — ng) dPs = / Vot - () — ng) dPs. (38)
F F

Equality (38) holds also with Npin in place of 7; since moreover by (13)

¥ vy (Naia — 1) 0Py == | V- (Noin = 1) P
oF oF

we deduce

[ v N =) Py = = [ Vo (N — ) Py, (30)
OE\F OE\F

To conclude the proof, it is now enough to observe that (36) is equivalent to the sum of (38)
and (39) (recall that Npin - vy = 1 - vy = 1). O

The following result is a consequence of Propositions 4.5, 4.6 and Theorem 3.10.

Corollary 4.7. If N is a solution of (34) then div;N coincides with /sg restricted to F,
hence belongs to L*°(F) N BV (int(F)).
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5 Prescribed anisotropic curvature problem on convex facets

The following result will be useful in the sequel.

Proposition 5.1. Assume that E is convez at F. Then for any A € [Kmin(F'), Kmax(F)] we
have

E _ p.(OF E _ p.(aF
/Qf kg dz = Py(2y), /@f kg dz = Py(Oy). (40)
In particular
/ K,¢E> dzr = ]B;(F) (41)
F

Proof. Let A € [Kmin(F), Smax (F)]. We apply (1) with the choice  := int(F') (recall Theorem
3.3), X := Npjin, u = 195, so that, being [N, - 77'] = ¢ on OF,

/ Kp do = — / 0(Nmin, D1gr) dH' + [ [Nmin- 0" |1qr dH .
oF int(F)N9*Qf A oF A
Then the first equality in (40) follows, using a localization argument, from the definition of
]3(;, from Theorem 3.13 and from the expression of ¢p given by the second equality in (9) in
the weakly convex case (recall that, if F is convex at F, then OF is weakly convex at any
z € OF). The proof of the second equality in (40) follows in a similar way. O

The following result is crucial to characterize ¢-calibrable facets and extends the first assertion
of Theorem 3.11; it shows that the sets Qf solve a minimum problem which is the anisotropic
version of the so-called prescribed curvature problem, see for instance [8] and references
therein, [17], [18], [19].
Define .

GA(B) := Py(B) — \|B|, BCF.

Theorem 5.2. Assume that E is convex at F. Then for every A € [Kmin(F), Kmax(F)] the
sets Qf and @f are solutions of the following variational problem:

inf{g)\(B) B C F} (42)

In addition, if Q is a solution of (42) then

o cacef. (43)
Proof. For any B C F' it holds
6:(B) > [ (55 ) da. (44)
B
Since Qf = int(F) N {k} — XA < 0}, if follows that
/(/%ﬁJ —A) dz > / (ﬁg — ) dz. (45)
B of
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As F is convex at F', using Proposition 5.1, we get
[ 6E =) do = Po(f) - N (16)
QF

From (44), (45) and (46) it follows that Q% is a solution of (42). In a similar way one proves
that ©F is also a solution of (42).

Finally, let Q be another solution of (42). Then the equality must hold in (45) with B replaced
by Q. Similarly, the equality in (45) must hold with B replaced by Q and Q replaced by
©F. These observations imply (43). O

Remark 5.3. Assume that E is conver at F'. Then

™

|F|

(47)

Indeed, if X is such that Q¥ # @, then by the isoperimetric inequality (see for instance [10])
it follows Py(Q) > 24/7|QF|. Therefore by Theorem 5.2 we have

0= G\(0) > GA(QF) > 24/7|QF| — MO .

Hence
47
7> (051> 5. (48)

which implies (47). Notice that from (48) it follows that Gfmin(F) # 0, since OF ) =
n)\>nmin(F) Qf

6 Characterization of general ¢-calibrable facets

This is the only section of the paper where we will consider also the presence of a forcing
term g. We also do not assume here any convexity-type assumption on E and F'

Let g € L°(OFE); all results of Section 3.3 still hold [4] when the functional F in (14) is
replaced by

/{9 (ivg N =) 0Py, N € HI(0), (49)
provided we replace nf with dZ, — g, where d2, := divy ;Nmin, Nmin 2 minimizer of (49).

Accordingly, the functional F(-, F') in (33) must be modified into
/ (div,N —g)? dPy, N € HIY(F). (50)
F

Again (see Corollary 4.7) if N is a minimizer of the functional in (50), then div, N —g coincides
with dZ. — g restricted to F.
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For any B C F we set
_ 1 /
g == | gdx.
BBl Jp
We also define the constant Vy as follows:
1
|F'| Jor

Notice that by the results of Sections 4 and by (1) (we recall that by Theorem 3.3 F' is
Lipschitz up to a finite set of points) we have

Vi = cr dH! —Gp.

1
|F| Jor

If B has finite perimeter in Hp, for z € 0* B we define

Vi = Nuin - 75 dH —Gp = \FI/ df. —g . (51)

DBa):pe W)Y ifzed*B\OF
en(@) = max {p-7%(z):p € ¢} ifre . \ (52)
cp(z), otherwise.
A weaker form of the implication (i) = (i7) of the following result was proved in [4].
Theorem 6.1. The following two conditions are equivalent.
(i) F is ¢-calibrable (i.e. dZ. — g is constant on int(F));
(ii) for any B C F of finite perimeter in Hp there holds
! cg dH!' — gz > L cr dH! — 7 (53)
o B —9B 2 7 F —9gF-
1Bl Jo+B B \F| Jor "

Proof. (i) = (7). Suppose by contradiction that F' is not ¢-calibrable, i.e. dZ. — g is not
constantly equal to Vr on int(F'). It follows that QF = {d®

—g < Vp}nint(F') is nonempty.
By Corollary 4.7, we can find A < V such that Qf is a nonempty set of finite perimeter. Set

min

for simplicity @ := QI; . From (1) we have
/ dfmn dz = _/ O(NminaDlQ) dH1 +/ [Nrnin - ﬁF]lQ d?‘[l
Q int(F)no*Q oOF

= —/ Q(Nmin,DlQ) d’Hl —I—/ [Nmin . ﬁF] d%l.
int(F)No*Q OFNd*Q

Recalling Theorem 3.13 (which is still valid for Nmin [4]) and definition (52) of cg, we have
—0(Nmin, D1g) = cg on 8*QNint(F); moreover [Nmin-7¥'] = cr = cg on IFNJ*Q. Therefore
fQ dE. dz = fa*Q cq dH!. Tt follows, using (ii),

VF>)\>—/dfﬁn dr —gg = cq dH' —Gg > Vr, (54)

1
Q| Q| Jorq

which is a contradiction.
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(i) = (ii). Let B C F be a set of finite perimeter in Hp. If we integrate dZ. — g over B,
using (1) and (52), we get
1 1 .
Ve =— Ve de = —— Q(Nmin,DlB) dH
|B| /B |B| Jint(7)no~ B
1 1
+ — Cp'dﬁil ] f;-——-j/ CcB dHt —3dpB,
1B| Jornos 5= Bl Jon B
which is (ii). O

7 Convexity of the sets Qf and ©F

Our aim is to prove the following result.

Theorem 7.1. Assume that E is convexr at F' and that F is convex. Then Qf s convez for
any A > Emin(F), and @f is convex for any A > Kmin(F).

In Corollary 9.5 we will prove a stronger result, namely that Ng is (continuous and) convex
on F. We will prove Theorem 7.1 only for the sets 2 since the assertion on ©f follows from
the convexity of Qf and the equality

oy =2, YA tmin(F). (55)
p>A

To prove Theorem 7.1 we need some preliminary lemmas.

Lemma 7.2. Assume that E is convex at F' and that F is conver. Let X\ > Kmin(F). Then
int(Qf ) consists of a finite union of convex open sets whose closures are pairwise disjoint.

Proof. Since O} has finite perimeter, by [1] it follows that

mt(Qf) = J G, Ps(af) =Y Py(Cw), (56)

el el

where I is at most countable and C; are nonempty open connected sets, pairwise disjoint.
Observe that each C; is simply connected by Theorem 5.2, because filling the holes strictly
decreases the functional G, (we use here the property that, if F is convex at F', then A >
Kmin(F) > 0, see (47)). This fact, together with the property that 9C; has finite length,
implies that JC; is parametrizable in a Lipschitz way by a closed Jordan curve. Let us
show that C; is convex for any i € I. Let co(C;) be the (open) convex envelope of C;, and
assume by contradiction that co(C;) # C; for some i € I. It follows that the set A :=
Uier co(Ci) properly contains QF, hence |A| > |Q5]; moreover A is contained in F, since F is
convex. Parametrizing 0Cj;, we can use Jensen’s inequality to prove that 1?’;(01) > Isjb(co(Ci)).
Therefore, by (56)

Po(5) = Y By(Ci) 2 Y Pylco(Gi)) = Py(A).

i€l i€l
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Figure 2: Lemma 7.3: OF is locally graph of a function f, possibly discontinuous at one
extremum.

Hence Gy(A) < G5(2F), which contradicts Theorem 5.2. It follows that each C; is convex. In
view of the different scaling factors of 13;() and | - | it is easy to see that I is finite. Indeed,
eliminating the connected components with volume sufficiently small decreases the functional
Ga. It remains to prove that C;NC; = 0 for i # j. Assume by contradiction that C;NC; # 0.
By Jensen’s inequality it follows again that Gy strictly decreases by substituting C; U C; with
co(C; U Cj), thus contradicting Theorem 5.2. O

" a connected

In the following lemma we prove that the part of JF lying “above” or “below’
component of int(F) N QL can be written as a graph on a segment [z,y], with possibly a

“vertical” part at x or at y, but not at z and at y, see Figure 2.

Lemma 7.3. Let F be conver. Let A > 0 be such that Q¥ ¢ {0,int(F)}. Denote by S the
closure of a connected component of int(F) N 9QY, and set {z,y} :== S NOF. Let v* be the
outward unit normal on [z,y] to the convez set bounded by ¥ and [z,y| (when ¥ = [z,y] we
set U 1= —D’Qf). Then there exist a vector v such that v - > < 0 and a convex function
[ [z,y] = Ru such that f(z)f(y) = 0, and graph(f) U [z,z + f(z)] U [y,y + f(y)] COF. A
similar statement holds for @f.

Proof. Let I := {w : (w — z)- ¥ < 0}. Let 74, 7, be the tangent unit vectors to F N1II at z
and y respectively, pointing inside IT (7, and 7, exist because F is convex). Let us prove that
7, and 7, are “weakly convergent”, i.e. (1, —7;) - (y — ) < 0. Assume by contradiction that
(Ty = Te) - (y—z) > 0. Choose v, |[v] =1, such that 7, - (y —z) >v-(y—z) > 7, - (y — ). Let
C be the (convex) connected component of Qf such that 0C D X. It is easy to realize that
we can slightly translate C' in the direction of ¥ still remaining inside F', and this translated
set does not intersect Qf \ C' (recall Lemma 7.2). Precisely, there exists € > 0 such that

sv+C C F, QY\C)N(st+C) =0, Vse]0,el (57)

Let us fix 0 < 51 < € and define Q := (QF\ C) U (519 + C). Then Q is a minimum of G,
which does not contain QF, contradicting (43).
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It follows that (7y —7;) - (y — ) < 0. This and the convexity of F' imply that there are a unit
vector v and a convex function f : [z,y] — Rv such that 0F NII = graph(f) U [z, z + f(z)]U
[y,y+ f(y)]- It remains to check that either f(z) = 0 or f(y) = 0. Indeed, if by contradiction
f(z)-v>0and f(y) -v > 0, then we can perform a slight translation of C in the direction
of v obtaining a contradiction, exactly as in the previous argument.

The assertion on ©4 follows from similar considerations. O

Remark 7.4. As ¥ C F and ¥ is contained in a translated of %W(f (Theorem 3.11), from
Lemma 7.3 it follows that ¥ can be written as a graph of a convez function o : [z,y] — Rv
such that o(z) = o(y) = 0.

We are now in the position to prove Theorem 7.1.

Proof. By Lemma 7.2, it is enough to show that Qf is connected. Assume by contradiction
that Qf has (at least) two connected components C, C' and let ¥ C 9C, z,y € 2, 74, Ty,
I, v, f be as in Lemma 7.3 and its proof. We can assume, without loss of generality, that
C' C (F\ C)NIIL In the same way, we can find X' C 9C', ',y € X', 7, 7y, II' such that
C cC (F\C')NII'. By Lemma 7.3 we have

(ry —Ta) - (y—2) <0,  (ry —72)- (¥ —a') 0. (58)
Since F is convex and C C (F'\ C") NI, from the first inequality in (58) it follows
(ry —7r) - (y' = 2) > 0.

Hence (7 —75/)-(y' —2') = 0. In the same way we obtain (7, —7;)-(y—z) = 0. It follows that
OF NTIINTI' is the union of two parallel segments, which implies f(z)-v > 0 and f(y)-v > 0,
contradicting Lemma, 7.3. O

8 Characterization of ¢-calibrable facets in the convex case

The aim of this section is to prove the following theorem, which is one of the main results of
this paper.

Theorem 8.1. Assume that E is conver at F' and that F is conver. Then F is ¢-calibrable
if and only if

~r _ Py(F)
F ¢
esssupry < . 59
SR S U] o)
Proof of the implication:
Py(F
ess sup Eg < 5(F) = F is ¢ — calibrable. (60)
oF |F|

We need the following local comparison lemma, whose proof (well-known in the crystalline
case [11]) is omitted. Recall that, if A > 0, the ¢-curvature of %Wf is constantly equal to A.
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Lemma 8.2. Let P C Hp be a closed convex Lipschitz a—regular set, let x € OP and A > 0.
Assume that there exist a neighbourhood N(z) of = and a translated B% of %Wf such that

:1:638%, and
PO N(z)NBi.

=

Then
ess inf 7{5 <A
OPNN(z)
Similarly, if
PNN(z) C B%,
then

ess sup KL >\
OPNN(z)

Assume by contradiction that (60) is false, i.e. F' is not ¢-calibrable. Since E is convex at
F, by (41) we have .
1 / E P ¢(F )
— | Ky dz = .
[F| Jp? |F|

Therefore we can pick A > 0 with the following properties:

Py(F)

A > ,
|F|

Qg ¢ {0,int(F)}, Qg of finite perimeter . (61)

Let ¥ C 895, z, Yy, v, Il be as in Lemma 7.3 and its proof. From Lemma 7.3 and Remark 7.4
it follows that there exist two convex functions f,o : [z,y] — Rv such that f-v > o - v,
¥ = graph(o) and II N OF = graph(f) U [z,z + f(z)] U [y,y + f(y)]. Let

M :={z€lz,y]: f(z) —o(z) = r[gij]c(f —o)}.

We divide the proof into two cases.

Case 1. Assume that MN |z,y[ # 0. _

Let z € MN]z,y[. Then F is a convex set which is Lipschitz ¢-regular by Proposition 3.7, and
is contained, locally in a neighbourhood of the point z + f(2z)v, in the set f(z)v + Qg . Recall
that, by Theorem 3.11, we know that ¥ is contained in a translated of %W)\f . Therefore,
using Lemma 8.2, it follows

€ss sup Eg > . (62)
oF
From (62) and the inequality in (61) it follows esssupyp %g > %, which contradicts (59).

Case 2. Assume that MN |z,y[ = 0.

In this case we can suppose M = {z}, since by Lemma 7.3 if z € M then f(z) # o(z) =0
and f(y) = o(y) = 0, which implies y ¢ M.

Define o(-) := o(- + €(y — z)) on I := [z — e(y — z),y — e(y — z)]. If € > 0 is sufficiently
small, the set M, := {z € I, : f(z) — 0(2) = maxy_(f — o)} cannot intersect 9I.. We now
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reason as in case I considering o, in place of o and taking a point 2’ € M, in place of z. The
proof of (60) is concluded.

Proof of the implication:
Py(F
F' is ¢ — calibrable = ess sup 'f%g < o(F) .
oF |F|

We need some preliminaries. The following lemma is a sort of converse of Lemma 8.2. It
concerns the existence of an “obsculating” Wulff shape. By definition, we set inf ) = +oo.

(63)

Lemma 8.3. Let P C Hp be a closed convex Lipschitz g—regular set. Let x € OP be a point
of differentiability of OP and where 75(1;(:1:) exists. Define O(x) as the set of all R > 0 such
that P is locally contained, in a neighbourhood of z, in a translated Br of RWQF with x € 0Bg;

define also I(x) as the set of all r > 0 such that a translated B, of T’Wj with © € 0B, is
locally contained, in a neighbourhood of =, in P. Then

%5 (z) = (supI(z))~" = (inf O(z))~".

Proof. The assertion is well-known when ¢ is smooth and strictly convex. Here, we shall
give the proof only in the crystalline case. Since P is Lipschitz ¢-regular, there exists ng €
Lip(OP; Hr) with ng(z) € T“(ﬁg(w)) for H!-almost every z € OP. As P is also convex and
¢ is crystalline, only two possibilities occur: either z is in the interior of an arc or of an edge
where 74 is constantly equal to a vertex of Wf or z is in the interior of an edge of L C 0P

parallel to some edge | C BWf . In the first case we have '/%5 (z) = 0, and since q? is crystalline
and OP is differentiable at z, it is immediate to check that O(z) = 0 and I(z) = ]0,+oc[. In
the second case we have %g(w) = L and I(z) =10,L/I[, O(z) = |L/l,+oo[, which gives the
assertion. O

The following lemma concerns minimizers of the functional G, computed on graphs of func-
tions u.

Lemma 8.4. Let a,b € R, a < b, A >0 and Gy : H}([a,b]) = R be defined as
Gr(w):= [ ¢°(=u'(5),1) — hu(s) dH'(s). (64)
[a.b]
Assume that there exists a function uy € H([a,b]) whose graph is contained in a translated

of %8W(f Then uy minimizes G in H}([a,b)).

Proof. Assume first that Wf is smooth and strictly convex, and let ao = {50(51,52), (&1,&9) €
R? ~ Hp. Then the Euler equation associated to G reads as:

o [09°, N
& (851 (—U (S)a 1)) - >‘,

which is equivalent to
9¢°
231

(—u'(s),1)) = As +c, for some c € R. (65)
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Since the functional G}, is strictly convex in H}([a,b]), if we prove that uy solves (65), then
uy minimizes G in H}([a,b]). By assumption, there exists a point z = (z,%) € R? such that
graph(uy) C z + §8W¢1f Letting 17(;\(3) = (—u)\(s),1)/¢°(—u)\(s),1) we have

V§° (—uh(s),1) = T°(7)(s)) = A(s, ur(s)) — 2 = (As — Z, Mua(s) — §)

which implies (65) with ¢ = —Z. Then u, minimizes G, on H{([a,b]).

Let us consider now a general Finsler metric ¢. Choose a sequence of functions ((;Sk) &, With
¢k > ¢0 which converges uniformly on compact subsets of R? to qSO and such that {c;Sk <1}
are smooth and strictly convex. Let Gy be defined as G with d)" replaced by ¢7. The
functionals G converge unlformly, as k — 400, to G on bounded subsets of H([a, b]). Since
qﬁk > ¢°, we can find functions uf € H([a, b]) whose graphs are contained in a translated of
ia{qﬁk < 1}. By the previous argument, u)\ minimizes Gy on H{([a,b]). Since u)\ — uy in
H}([a,b]) as k — +oc, we obtain that u), minimizes G). O

Let us now prove (63). Assume that F is ¢-calibrable, so that

int(F) =Qf VYA > kmin(F), (66)
and suppose by contradiction that (59) does not hold. Let z € OF be a point where F is
differentiable, where there exists 7-55 (z) and k’g () > Pf(lr) Choose

Py(F)
AE W, h)¢ (.Z') . (67)

By Lemma 8.3, there exist p > 0 and a translated B% of %Wf such that = € (“)B} and
FNB,(z) C B%.

We divide the proof into three cases.

Case 1. Assume that Tvo('ﬁg(x)) is a singleton.
In this case we have, for p > 0 sufficiently small,

OF N 85} N B,y(z) = {z}.

Choose a unit vector v and p > 0 small enough such that 0F N B,(z) and 88% N B,(x) are
both graphs of two convex functions of class H' along v, with F N B,(z) and B 1N B,(z) as
corresponding subgraphs. Let A; := B 1 —dv, for 6 > 0 sufficiently small. Let {y1,y2} := 0FN
0As. Denote by II the half plane containing v and with y;, y2 in its boundary. Then 0F N1I
and 0A; N II are both graphs of two convex functions on [y, y2] along v. Applying Lemma
8.4 (and a suitable change of coordinates) we have that, letting Hy := (F \ II) U (45 N II),
then G, (H,) < GA(F). By (66) we have G (F) = G,(QF). We deduce G»(H,) < G5(Q2}), and
this contradicts Theorem 5.2, since Hy does not contain Qf .

Case 2. Assume that To(ﬁg (z)) is not a singleton and that 8Wf can be written as the graph

of a convex function (with respect to some direction) in a neighbourhood of f”(ﬁg (z)).

24



Note that necessarily j:o(ﬁg (z)) is an edge of aﬁf . As F is a convex Lipschitz ¢-regular set,

we have that z belongs to of an edge L of OF. Since we may avoid subsets of OF with H!-zero
measure in the computation of the essential supremum, we can assume that x belongs to the
interior of an edge L of OF. Reasoning as in case 1, we can find a neighbourhood N (L) of L
and a translated B 1 of %8Wf such that = € 9B 1 and

FNN(L) C B
Possibly reducing N (L), we can also assume
aFﬂaB% NN(L) = L.

Noticing that OF can be written as a graph of a convex function in a neighbourhood of L,
we conclude as in case 1, making use of Lemma 8.4.

Case 3. Assume that T”(ﬁg (x)) is not a singleton and that aWj cannot be written as a

graph in a neighbourhood of To(ﬁg(a:)), see Figure 3.

Let L be the edge of OF containing x in its interior, and denote by z1, xo its extrema. We
often identify L with its length. We need the following lemma. We denote by y € int(W(f )

the point such that 5 = qNSy, see the comments after Definition 2.2.

Lemma 8.5. Let p > 0 and let C C Hp be an open cone centered at puy. Then
_ 2 —
Py(uW§,C) = Llon uWJl.

Proof. We take u = 1, the general case follows by rescaling. For x € OWf we have

ao(ﬁwf (z)) = s (z) - z, while for z € 9C \ {y} we have 7°(z) - = 0. Therefore

B(Wr.C) = / T (@) am' = / (@) -z an!
cnowf aCnwy)

= /~ dive dz = 2|C N W] |.
cow s

O

We now prove the assertion in case 3. Let € > 0; we denote by F, the set of all points of F
whose (euclidean) distance from the line passing through L is greater than ¢ > 0. We will
prove that, if € is small enough, then

Gr(Fe) < GA(F). (68)
Denote by [ the (length of the) edge of Wf corresponding to L. We claim that
Py(F) — Py(F.) = el + ofe). (69)

If € is small enough, we can assume that F', in a neighbourhood of L coincides with a
corresponding portion of w + %W(f for some w € Hp. Indeed, if we modify F locally
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Figure 3: Case 3 of the proof of (63): W(f is not locally graph around |.

around L into a new set F’ which coincides with a portion of a translated of %W(f , then

E,(F’) = Jg;(F) Let y1,y2 be the extrema of the edge of F, parallel to L, let z1, 22 be the
orthogonal projections of yi1, y2 onto the line passing through L and let ¢;, i € {1,2}, be
equal to 0 if the point z; belongs to L and equal to 1 otherwise (see Figure 3 where 01 = 1
and d3 = 0). Let O := w+ %y, where ¢ = ¢,. Finally let X, X5 be the intersection of F' with
the triangles with vertices O, z1, 21 and O, 9, 29 respectively, let Y7, Y5 be the intersection of
F with the triangles with vertices O, z1,y1 and O, 22, y2 respectively, and let Z1, Z5 be the
quadrilaterals with vertices O, x1, z1,y1 and O, 2, 29, Yo.

Notice that 2(|Y1| 4 |Y2|) = Le+ o(e) since |Y7|, |Y2| have a basis with length |y; — z;| = € and

the sum of their heights is |y; — y2| = L + O(e). Recalling the observation that F' coincides

L

with a portion of a translated of %Wf locally around L, we can apply Lemma 8.5 with p := 7

to the cones containing X; and Y;, 1 = 1,2 and we obtain
Py(F) - By(F) = (121] +12] — 611 - 8a1]) + 0(d
=2L(¥i] + %)) + ofe) = el +o(0),
where we have used the fact that the area of the triangles x11y121, Z2y229 is of order o(e). The

proof of (69) is complete.
Observe now that

|F| — |F¢| = €L + o(e). (70)

Moreover, by (67) we have that the gg curvature of L, which is %, is strictly larger than A,

26



hence AL — [ < 0. Using (69) and (70) we have

OA(Fe) = Py(F) — AIF]
—  Py(F) — el + o(€) — M(|F| — €L + o(e))
GrA(F)+€eMAL—1)4o0(e) <0

for € > 0 small enough. This gives (68). From (68) we deduce that F is not a minimizer
of G, and this fact, coupled with (66), contradicts Theorem 5.2. The proof of case 3, and
therefore the proof of the implication (63), is complete.

9 Characterization of the sets Qf and @f in the convex case

Given a set A C F and r > 0, we set

A = {z€F: dis’c(;(lR2 \4,z) >r}, Af={zeF: dist(;(x,A) <r},
A" = {z€eF: dist(;(]R2 \ 4,z) >r}, Al ={z € F: dist(;(:v,A) <r},
AT = (A L= (AL

Notice that
A = U{B’ : B, C int(A) is a translated of TW({}, (71)
AL = U{BT : B, C A is a translated of er}

Moreover AE C int(A), A%, C A, and r < p implies AF D A¥ and A%, D A. Note also that
O0AX NOF # () and A", NOF # 0.

The aim of this section is to prove the following result, which exactly identifies the sublevels
of /sg on int(F).

Theorem 9.1. Let ¢ be crystalline. Assume that E is convex at F and that F is convex.
Then
int(Q)) = FE  YA> kmn(F), (72)
A

1

OF = F}  YA> kmin(F). (73)

In general, it may happen that, for some A\ < Kkpin(F'), the sets Fic are nonempty, whereas
A

the sets Qf are obviously empty, see Section 10 for a concrete example of this phenomenon.
To prove Theorem 9.1 we need some preliminary lemmas.

Lemma 9.2. Let P C Hp be a Lipschitz g—regular closed conver set and let A > 0. Then

1
esssup?{g <A=P=P;.
oP
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Figure 4: The set B1 locally but not globally contained in P.
m

Proof. We divide the proof into two steps.

1
Step 1. Let us prove that P} # 0.
Fix g4 > X and let x € OP be a point where OP is differentiable and there exists 7{(1; (z) < p.

Since PY =, , PL, it is enough to show that B 1 is contained in P. Indeed, in this case

Pf # 0, and we conclude by compactness, letting yu — A, that Pf # 0.

By Lemma 8.3, there exist an open neighbourhood N(z) of z and a translated B 1 of %Wf
such that z € 9B1 and N(z) N B C P.

Assume by contr;diction that B ; is not contained in P. So B: is locally (around z) but
not globally contained in P. Th’é connected component I' of 873 \ int(B 1 ) containing z is

homeomorphic to the interval [0,1]. Then I'\ {z} = A; U Ay, where A; are two arcs, whose
interior parts are pairwise disjoint, having z as the common extremum. There are only two
possible cases.

Case 1. One of these two arcs, say A, can be written as the union of a (possibly empty)
segment and the graph of a convex function with respect to a suitable orthogonal coordinate
system. Reasoning exactly as in the proof of (60) of Theorem 8.1 (with F replaced by P and
Qg replaced by B1) we deduce that there exists a point y € A; such that 'fég (y) > p > A,

m
which is a contradiction.

Case 2. Both A; and As are union of two segments and the graph of a convex function which

is not continuous at the extrema.

We are in the situation depicted in Figure 4, where 0P contains two parallel segments [1, [o,

and Bi is “tangent” to one of them, say [;, from inside, and int(B1) intersects lo. We now
w w

slightly translate B1 in the direction of 7¥'(z) (i.e. toward the left in Figure 4) in such a way

m
that the interior part of the new translated set intersects both [; and lo. Reasoning as in the
proof of (60) of Theorem 8.1, we conclude as in case 1. The proof of step 1 is complete.
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1
Step 2. Let us prove that P = P}.

1 1
Assume by contradiction that P} is strictly contained in P. This implies that P} is strictly
1

contained in P for some p > A. Let A be a connected component of int(P) \ P} and let

Y :=0AN 8PjE Recalling (71) with r = 1/4 and using the fact that Pi is convex, it follows
that ¥ is contained in a translated of %Wf . Recalling again (71) and the fact that F' is
convex, with similar arguments as in Lemma 7.3, it follows that both A \ ¥ and ¥ can be
written as graphs (in the same direction) of two convex functions f, o respectively, such that
f can be discontinuous in at most one of the extrema. We can reason again as in the proof
of (60) of Theorem 8.1 obtaining a contradiction as in step 1. O

The following lemma proves that there is a point z in the boundary of a convex not Lipschitz
¢-regular set P with the following property: P is, locally around x, contained in any (trans-
lated of the) ¢-Wulff shape with the proper radius and having z in its boundary. Heuristically,
the ¢-curvature of OP at z is +oo.

Lemma 9.3. Let qz be crystalline. Let P C Hp be a compact convez set which is not Lipschitz
¢-regular. Then we can find a point x € OP having the following property: for any A > 0
there exist p > 0 and a translated B% of %Wf such that = € [’)B} and PN B,(z) C B%.

Proof. Since P is convex and qb is crystalline, P is Lipschitz qﬁ regular if and only if any edge
of 8W¢ has a corresponding parallel edge of dP. Therefore, if P is not Lipschitz ¢-regular

there exist a point z € OP and a straight line s parallel to some edge of 8W¢ such that
sNOP = {x}. One can verify that x satisfies the thesis. O

Lemma 9.4. Let a be crystalline. Let A > Kpin(F). Then Qf 1s Lipschitz gz—regular and

F
€ss sup Ef;" <A\ (74)
oay

Similarly, if X\ > kmin(F), then ©F is Lipschitz ¢-regular and
F

ess sup '/%((2’\ <A (75)
ICHY

Proof. Let us prove that Qf verifies the assertions. Let A > kmin(F). By Theorem 7.1 we
know that Qf is a convex subset of F'. We argue by contradiction. If Qf is Lipschitz ¢-regular

F
and ess SupyoF Eg’\ > ), then by Lemma 8.3 there exist 7 € 092, a neighbourhood N(z) of
z and a translated B% of %Wf such that z € BB% and B% D N(z)n Qf We then reach a

contradiction reasoning as in the proof of (63) of Theorem 8.1.

Assume now that Qf is not Lipschitz ¢-regular. We apply Lemma 9.3 and we reach a
contradiction as in the previous case.

Finally, the assertions on ©% follow from the assertions on Q4 and (55).

29



We are now in the position to prove Theorem 9.1.

We will prove Theorem 9.1 only for the sets @f , since the assertion on Qf follows then from
the equality QF = Uu<r ef.

Fix A > Kmin(F). From Lemma 9.4 we have that @f is Lipschitz g-regular and (75) holds.

- 1 — 1
Therefore, from Lemma 9.2 we have ©F = (@f)i Since ©f C F we have @f C F}, which

proves that Fé is not empty.

Assume by contradiction that 9—1; is strictly contained in FE . Let X C 89—5, {z,y} = ENOF,
IT be as in Lemma 7.3 such that ¥ N int(FE) # (. By Lemma 9.2 and Lemma 9.4, there
exists a translated Bl% of %Wf such that Bli COfand = C 8[31%. Moreover, by definition
of Fi%, there exists a translated BZ% CF of %Wf such that Bé N(F\ G)—f) NII # (. Since F
is convex it must contain the convex combination of B} and B%, which implies that OF NI

A A
cannot be written as the graph of a (convex) function over [z,y], which is continuous at one
extreme, and this contradicts Lemma 7.3. The proof of Theorem 9.1 is concluded.

The following result suggests that, at least initially, convex sets remain convex during the
evolution by crystalline mean curvature.

Corollary 9.5. The function K,g s continuous and convez on F.

Proof. Thanks to Theorem 9.1, we have (int(F)NoQE) Nint(F) N oQL) = 0 for X # p,
which implies that ﬁf is continuous on F'.

Let us prove that mf is convex on F. Let z,y € F, and let \ := Hg(.’li), W= lﬁg(y). We
have to prove that m—;y € oFf +u- If A = p the assertion follows from the convexity of @f

2
Theorem 7.1), so we can assume A > p. Since z € O and y € ©F, by Theorem 9.1 there
A ]

exist zz,2, € F such that
1—p 1—p
szz—I—X[/V¢ C F, yEzy—l-pW¢ C F.

Using the convexity of F' we observe that

THY Zptzy AU p
W, CF.
7 €72 ° VA

Atp
zty M Gince <2 < Atu zty M _ oF
Therefore == € F/™ . Since 31 < 57, we have e F/™ =06 where the last

equality follows again by Theorem 9.1. O

The assumption that ¢ is crystalline in Theorem 9.1 is necessary because we apply Lemma
9.3, where it is required that ¢ is crystalline. We expect that Lemma 9.3 is still valid for a
generic ¢, and therefore that Theorem 9.1 is still valid for a generic anisotropy ¢.
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E

Figure 5: For e € ]0,€[ the frontal facet F. C OF is not ¢-calibrable. The dotted line I’
separates the region where lﬁ:g is constant from the region T' where lﬁg is continuous but not
constant.

10 An example of a convex set with non ¢-calibrable facets

We show an example of Lipschitz ¢-regular set, partially discussed in [3]. We justify the
computation of the “velocity” mf given in [3] and the subsequent crystalline mean curvature
evolution. This flow shows that the frontal facet F, of F, for € in a suitable range, bends
inside E at the initial time [21]. In this example we make use of both Theorems 6.1 and 8.1:
we could avoid the use of these two results together, but we find interesting to apply both of
them.

Let Wy C R3 be the prism with hexagonal basis in Figure 5; the apothem of the hexagon has
unit length. Let also E be the convex Lipschitz ¢-regular set as depicted in Figure 5. The
apothem of the frontal hexagonal facet Fe of E has unit length. Notice that E satisfies the
assumptions of Proposition 4.1.

Proposition 10.1. Let€:=7—+/42 € |0,1[. Then F is ¢—calibrable if and only if € € [€, 1].
Proof. Let us prove that if F, is ¢-calibrable, then € € [¢,1]. Given € € [0,1] we have

|F| = %(7 —€), Py(Fe) = [y cr. dH' = H'(9F) = %(7 —¢). Hence

Ve = P¢(F€) _ 2(7—¢)
Fe = TR 7— e

<2, Ve € [0,1]. (76)
The function € — Vp, is strictly convex on [0, 1], with Vi, = Vg, = 2, and attains its minimum
for € = €, with value Vi = (7 + v/42)/7 < 2. In particular

Vi < Vi and F: C F, Ve € 10, ¢[.

Hence, by Theorem 6.1 (here g = 0), the facet F, is not ¢—calibrable for any € € ]0, €.
Let us now prove that if € € [¢,1] then F¢ is ¢-calibrable. Thanks to Theorem 8.1 and (76),
it is enough to prove that

~ 2(7 —
esssup/ﬂgf < u

upry < Sy Veelll (77)
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Denote by [p, q] the shortest edge of OF, see Figure 5. Observe that the supremum of %gf is

VAol (recall that the length of the edges of Wje is %) In
7—

addition 2 — = 1. Since { < 279 for any € € [¢, 1], (77) follows. O

attained on [ and is equal to fQ

Proposition 10.1 identifies ﬁf on the frontal facet F, and on its opposite one. Since, by [3,

Lemma 5.1] all remaining facets of E are ¢-calibrable, we can compute explicitly mf on the

whole of OF.
We finally observe that, given e € ]0,€[, we have Kpyin(Fe) = 7"’—}/@, hence Qf = () for any

A < M, whereas F%E # () for any X € ]1, M]
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