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Abstract

Assuming the existence of a regular flow, we prove that a reaction-
diffusion inclusion provide a sub-optimal approximation for anisotropic
motion by mean curvature in the non-smooth case. The result is valid
in any space dimension and with a time-dependent driving force. The
crystalline case is included. As a by-product of our analysis, a com-
parison theorem between regular flows is obtained. This result implies
uniqueness of the original flow.

1 Introduction

It is well known [1], [9], [10], [8], [12] that motion by mean curvature, and
more generally anisotropic motion by mean curvature [6], [11] can be viewed
as the limit of suitably scaled reaction-diffusion equations. These results are
valid in the smooth case, that is when the anisotropy is described by a smooth
Finsler metric ¢ : IRY — [0, +oco[. The non-smooth case corresponds to the
situation in which the boundary of the convex set W, := {£ : ¢(§) < 1} has
nondifferentiability points and flat portions; in particular, the crystalline case
corresponds to a completely faceted Wy. As pointed out by Taylor (see for
instance [18], [20], [21]), the non-smooth case has relevant applications, and
presents interesting mathematical questions [19]. Here the situation becomes
quite delicate and has been analyzed mostly for crystalline anisotropies in two
dimensions. We refer, among others, to the papers [17], [16], [2], [13], [14] for
results in this direction. In [3] it is proved that crystalline motion by curva-
ture in N = 2 dimensions can be approximated by a scaled reaction-diffusion
inclusion, with a quasi-optimal error estimate of order O(g?|loge|?). The aim
of this note is to extend the analysis of [3] to arbitrary space dimensions and
for general non-smooth anisotropies: in this framework we prove an approxi-
mation theorem for anisotropic motion by mean curvature with a sub-optimal
error estimate of order O(g|loge|?) (see Theorem 3.1). As a consequence, we
obtain a comparison principle between limit evolutions (Theorem 3.2) which,
in turn, provides uniqueness of the original flow. We thus extend to arbitrary



dimensions and anisotropies a theorem proved in [14] in the two-dimensional
crystalline case, and in [15] in the three-dimensional crystalline case. In order
to get the approximation result, we assume the existence of a regular flow (see
Definition 2.2). To the best knowledge of the authors, the characterization of
those sets which admit a local in time evolution in presence of a non-smooth
anisotropy is an open problem, which deserves further investigation. In the
two-dimensional crystalline case this problem is completely solved (except for
the driven motion under a non-uniform force), see the papers [14], [2] and ref-
erences therein. In the crystalline three-dimensional case the problem seems
to be difficult, see the paper [15] for related results.

2 Setting

In what follows Q C IR" is a bounded convex open set with smooth boundary,
N > 2. We denote by - the euclidean scalar product in IR and by dg the
euclidean Hausdorff distance between subsets of IR"Y. By V and div we always
mean the gradient and the divergence with respect to the space variables.
For any set C C R", we define C* := {x € R" : 3p > 0 : |B,(z) \ C| = 0},
where | - | is the Lebesgue measure and B,(z) denotes the euclidean open ball
of radius p centered at x.

We indicate by ¢ : IR — [0, +00[ a convex function satisfying the properties

ATHEI < o) <AL dag) =a(§), E€RY, a20, (1)

for a suitable constant A € ]0,+oo[, and by ¢° : RN — [0, +oo[, ¢°(£*) :=
sup {€*- € : ¢(§) < 1} the dual of ¢p. We set

Fo={€ eRY 1 °(€") <1}, W,:={€ € RY 1 4(6) < 1}.

We are mainly interested in the case N > 3 and when 0F,, 0W, contain
nondifferentiability points and/or flat portions.
Let 7° : RY — P(IRY) be the duality mapping defined by

T(E) = A E), € ERY,

where P(IR") is the class of all subsets of IR and @ denotes the subdifferential
in the sense of convex analysis. T is a possibly multivalued maximal monotone

operator, and
T°(a&™) = aT°(£Y), a>0. (2)

One can show that

£-E=¢°(6) =96 & eRY, £€T°(¢), (3)



Given E ¢ RY and z € Q, we set

disty(x, E) := inf ¢(z — y), disty(E, z) := inf ¢(y — ),

yekE yeE

dj (z) := disty(z, E) — disty(IRV \ E, z).

At each point where djj is differentiable one can prove [7] that
¢°(Vdg) = 1. (4)
If t € [0,7] = E(t) c RY is a parametrized family of subsets of IR, we let

dy " (z) = disty(z, B(t)) — dists(RY \ E(2), 2).
Whenever no confusion is possible, we set dy(z,t) := df(t) (x). From now on,
the symbols E, E(t) will denote subsets of IR whose boundary is contained
in (2.

The following definition closely follows an idea of M. Paolini.

Definition 2.1. We say that the pair (E,ng) is ¢-regular if
(i) OF is a Lipschitz hypersurface;
(ii) there exists an open set A D OF such that ng : A — RN and

ng € L*(A;RY), div ngy € L*(A),
d(ne(z)) =1, ng(x) € T° (Vdy (z)) a.e. T € A.

The above definition imposes a sort of regularity of OF in a very weak sense.
For technical reasons, we find more convenient to require the existence of a
“normal” vector field ny in a tubular neighbourhood of OF (the set A), rather
than on OF. In the smooth situation, n, is the Cahn-Hoffmann vector field
and div n, is the correct notion of mean curvature depending on ¢, see [7].
In the two-dimensional crystalline case one can easily construct ¢-regular pairs,
see [21], [14], [3]. In the three-dimensional crystalline case the situation is much
more complicated, see [15].

Notice that, if (E,ngy) is ¢-regular, then

Vdf ‘ng =1 a.e. on A. (5)

We now define a ¢-regular flow as an evolution of ¢-regular pairs moving with
velocity, in the ny-direction, equals —(div ng + g), where g € WhH*([0, +00|)
is given, and stands for the driving force of the flow.
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Definition 2.2. Let T > 0. A ¢-regular flow on [0,T)] is a family of pairs
(E(t),ne(-,t)), t € [0,T] such that

(i) for any t € [0,T] the pair (E(t),ns(-,t)) is ¢-regular with the set A of
Definition 2.1 independent of t € [0,T];

(it) dg € Lip(A x [0,T]) and

od,

5 (z,t) = div ng(z,t) + g(t) + O(dy(z, 1)) a.e. (x,t) € Ax|0,T].

As in Definition 2.1, we prefer to let evolve a tubular neighbourhood of the
front, rather than the front itself. In the smooth case, the term O(dy(z,1))
arises from the expansion of the differential of the Cahn-Hoffmann vector field
near the front.

As a consequence of Theorem 3.2 below, it follows that a ¢-regular low depends
only on E(0), i.e., it does not depend on ny. The problem of characterizing
those sets E and anisotropies ¢ such that there exists a ¢-regular flow starting
from F seems to be open.

Let us now introduce the relaxed evolution law. The double well potential
¥ : IR — [0,+00[ is an even function of class C? having only two zeroes at
{—1,1}, say ¥(s) = (1 — s?)%. We set ¢ :== ¥'/2.

We denote by 7 the unique smooth strictly increasing function exponentially
asymptotic, at +00, to the two stable zeroes +1 of 1, satisfying

=" +4() =0,  ~(0)=0 (6)

We set co := [;(7')?* dy. We denote [5] by n € H,

i (IR) the unique solution of
the problem

C
—" ' (= +—=,  1(0)=0,

2
in the class of all functions in HZ_(IR) with polynomial growth at infinity. 7

is even, lim 7(y) = co/(2¢'(1)) =: Neo, and
y—=to0

m =), M < CA+ 1Y)y, yeR, (7)

where C' is a positive constant.
Let 6 > 3 be a fixed natural number such that, if for any ¢ € |0, 1] we let
2z := 6| loge|, then y(£z.) = £1 + O(e%), 7/(£z.) = O(¥), and

[1(£26) = Mol 10 (£2:)| = O(E* 7).

We construct [5] two functions 7., 7. € CH'(IR) N C®(IR \ {*2., +22.}) which
coincide, respectively, with ,n on [—z., 2] and assume the corresponding
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asymptotic values +1, 7., outside the interval | — 2z., 2z.[. We can also assume
that . and 7, satisfy (7), and that 7. is strictly increasing on | — 2z, 2z.|
(provided ¢ is small enough).

Let us now introduce the relaxed evolution problem. Let ¢ > 0, T" > 0, and
uo € H'(Q) be such that Ey(uo) := [, ¢°(Vue)>+¥ (ug) dz < +o0 and gyig =0,
where vg is the outward unit normal to 0€). Let us consider the problem

ou

6ut—5div(T”(Vu))+éw(u) 3 %g in @, u(-,0) = ug(-)in 2, 5
0

0 in 0Qx]0, 77,
(8)

where @ := Qx ]0,T[. The notion of variational sub- and supersolution of (8)
reads as follows [3].

Definition 2.3. A couple (u,() is a subsolution of (8) if, for any T > 0, the
following properties hold:

(i) uw e L0, T; H}(Q)) N H*(0,T; L*(Q)) and ¢ € (LA(Q))Y;
(ii) for any o € H'(Q;[0,+00]) and a.e. t € ]0,T| there holds

[ (eup+2¢- 96+ 2oy - 2g¢) do <0 )
Q 9 2

(iii) for a.e. x € Q there holds u(x,0) < ug(x);
(iv) for a.e. (x,t) € Q there holds
((z,t) € T*(Vu(z,1)). (10)

The couple (u,() is a supersolution of (8) if (i) and (iv) hold, and conditions
(11) and (i) hold with > in place of <. The couple (u,() is a solution of (8)
if it is both a subsolution and a supersolution.

Notice that by (i), (iv) and (1), we have ¢ € L=(0,T; (L?())V).

The following elementary comparison lemma, proved in [3], is crucial in order
to get the main results.

Lemma 2.4. Let (u=,(7) and (u™,(") be respectively a subsolution and a
supersolution of (8). Then v~ < ut a.e. in Q.

Following [22] we then have

Theorem 2.5. Problem (8) admits a solution (u,(). Moreover, if (u1,(1) and
(ug, () are two solutions of (8), then uy = us a.e. in Q.

One can prove [22] that, if there exists {; € T°(Vuy) such that div(, € L?*(Q),
then the solution (u,() to (8) is such that u € WH(0,T; L*(2)) and Ey(u) €
W1(0,T). Moreover, if u is bounded on @, then div { € L*(0,T; L*(Q2)).
We do not know wether the smoothness of uy on € (even in the case N = 2,
g = 0, ¢ crystalline) implies the continuity of u on Q.
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3 Approximation and comparison principle

The main results of the paper are the following two theorems.

Theorem 3.1. Let (E(t),ny(+, 1)) be a p—regular flow on [0,T]. For anye >0
let u. be the solution of problem (8) with initial datum

w(o0) = ib(o) = (2D ) e (22D ) g0

Let ¥.(t) denote the complement in Q2 of the set {x : uc(x,t) > 0} U{z :
ue(x,t) < 0}*. Then there exist e € |0,1] and a constant C depending on
(E(t))teio,r); g, and independent of € € |0,|, such that for all ¢ € 0, 0| there
holds

sup dp(3.(t),0E(t)) < Ce|loge|?. (12)
t€[0,T]
Theorem 3.2. Let (El(t),né,l)(-,t)), (Eg(t),n((f)(-,t)) be two ¢-regular flows
on [0, T]. Then

Proof of Theorem 3.1. For any t € [0,7T] set
d
y=1y(z,t) = @ Ye = ye(z, 1) == y(z, 1) — 0(t)| loge?,  (14)
0(t) := cexp (K1), t €10,7], (15)

where ¢ and K are two positive constants to be defined later on independently
of €. Let also

T(t) ={z€Q:|y(a,t) <2z}, To:= | Te(t) x {t},
T () = {z € Q: ye(a,1) < —22.}, 7;+(t)t;€[:’ {]3: € Q:y(n,t) > 22},

te[0,T7]
tained in Q, 7; is contained in the set A of Definition 2.2, and —v” + 9 (7.) =
_772, + 1/}/(76)776 - %Og + 72 = 0(625_3) in ] - 225, 225[
We define v7 : 2 x [0,7] — R and ¢ : Q x [0,7] — IR" as follows:

v, (7,1) = 7e(y:) + ene(y=)g(t) — Oe?|loge?,
zeT(t) =
G =g (ye) + 0l (ye) g (t)]ng(z, 1),

v7 (2,t) := £1 + eng(t) — Oc?|logel?,
reTE(E) =
¢ (z,t) =0,



where © > 0 is a constant to be defined later on independently of ¢. Notice that
vo € L>®(0,T; H'(Q)) N H'(0,T; L*(Q)) N C*(Q x [0,T]) and ¢ € (L*(Q))".
In a similar fashion we can define (v, (1) by changing the sign in front of 6(t)
in (14) and in front of © in (16).

We want to show that (v,() (resp. (vf,()) is a subsolution (resp. super-
solution) of (8). We shall focus our attention on (v_, ().

A direct computation, using (2) and the inclusion ny(z,t) € T°(Vdy(z,1)),
yields

T(Vo;) = T°([7(we) + 7Ly (1) Vo (2 ) )
= (00 + ML (w9 (O]T*(Vy(z,1)) > ¢ (2.1).

Hence ( (z,t) € T°(Vv (z,t)) for a.e. (z,t) € Q (condition (10)).
Moreover one can prove [5] that there exist a real number © > 0, independent
of &, and g9 > 0 such that v_ (-,0) < ¥%(:) in Q, for any 0 < £ < &.

Claim. There exist £g > 0 and positive real numbers ¢, K, O, independent of
g, such that for any ¢ € |0, & and ¢ € H'(€; [0, +oc[) there holds

1
/ (Eatv;go +e¢; -Vo+ g¢(v;)g0 - %Ogcp) dz <0, a.e. t € [0,7]. (17)
Q

Once (17) is proved, by Lemma 2.4 we get the crucial inequality vZ < u. (and
similarly u. < v7).

Let us prove the claim. For simplicity we use the notation (v, (.) in place of
(vo,¢. ). The left hand side of inequality (17) can be equivalently written as

1 1
/ <68tv5 —ediv( + —¢(ve) — C—Og>cpdx +/ (satvs + —(ve) — @g)godaz
Te(t) € 2 VAD € 2
+/ ep (v dHY ' = T, + T, + T3,
AT (%)

where v, denotes the a.e. defined euclidean outward unit normal to 07 (t),
and HY ! denotes the (N — 1)-dimensional Hausdorff measure.

Using (14), (ii) of Definition 2.2, and the fact that d, = f¢|loge|*+ O(e|logel)
in 7, direct computations yield, for a.e. (z,t) € T,

e0we = (7. + enLg)Oye + €°negr = (div ny + 9) (7. + enlg)
+ 7100 (g|loge|?) + O(e|loge|) — 0’| loge* (7. + enlg)
= (7. + enlg)div ng + 7Lg — 7.0'e|loge|* + 700 (e|loge|*) + O(e| logel).

Furthermore,
ediv (. = e(e™ 'Y + nlg)Vy. - ng +e(e™ 'y, + nlg)div ng.
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By (4) and (3) we have Vy. - ng = e 'Vdys - ny = ¢, hence
ediv { = 7' + g + (v; + enlg)div ny.
Expanding e~ '9(v:) = 7' (7e) + gned’ (ve) — O¢|logel*y' (ve) + O(e), we get

1
gatvs — ediv CE + gw(vs) - 6_209
-1 " " ! Co '
= (= + () + g (= + ¥ (Ine = 5 + L)

— Oc|loge[*/'(7.) — 7b'e|loge|” + 700 (| loge[*) + O(e|loge|)
= ie|loge[*(00(1) = ¢') — Ocloge*y'(7e) + O(e*~*) + O(e| loge])
= e loge[*(00(1) — ¢) — ©c[loge[*y'(7e) + O(e| loge]).

Recalling the definition of € in (15) we have 60(1) — ¢ < —0 < ¢ for K > 0
sufficiently large (independently of ¢), so that

1
e, — ediv(, + gw(vs) - 0—209 < —¢lloge[* (7. + O (7e)) + O(e| logel).

As oyl +1'(7,) is uniformly positive for a proper choice of the positive constant
o, we realize that, if ¢ and © are large enough (independently of ¢),

1
e, — ediv(, + gw(vg) - 0—209 <0 in 7.

We then have Z; < 0, and reasoning as in [3], also Z, < 0. Moreover, from the
definition of (. it follows that (.(x,t) = 0 hence Z; = 0.
The proof of the claim is concluded.

lo7z t)

Summing up, we have proved the following result: there exist g > 0, an expo-
nentially increasing continuous function 6 : [0, 7] — ]0, +oc[ and a real number
© > 0, both independent of ¢, such that, if u. denotes the solution of (8) with
initial datum (11), then v7 (x,t) < u.(z,t) < vt (x,t) for a.e. (z,t) € @ and
for ¢ € ]0,&¢[. Theorem 3.1 follows now arguing as in [6, Theorem 6.1]. o

Remark 3.3. A similar statement of Theorem 3.1 holds for the double obstacle
problem [3], where e|loge|? in (12) is replaced by .

Proof of Theorem 3.2. Let i € {1,2} and let u” be the function given by
Theorem 3.1, where the initial datum w® is fixed as in (11), with dy(z,0) =

£

dfi (x). Since for € > 0 small enough the function z — 7.(z) + €g9(0)n(2) is

strictly increasing on | — 2z, 22, from (11) we have that u®" > w2® in Q.
Hence, by Lemma 2.4, it follows that

ul > u? a.e. in Q. (18)
Applying (12) of Theorem 3.1, from (18) we get (13). O



Corollary 3.4. Let (E; (t),n((;)(-,t)), (Eg(t),n((;)(-,t)) be two ¢-regular flows
on [0, T]. Then

E1(0) = By(0) = Ey(t) = Ey(t),  telo,T]. (19)

Notice that, in view of Theorem 3.2, one can implement the barrier method of
De Giorgi (see [4]) to construct a unique global weak solution of anisotropic
motion by mean curvature in the non-smooth case.
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