Approximation and comparison for non–smooth anisotropic motion by mean curvature in \mathbb{R}^N

G. Bellettini and M. Novaga

Abstract

Assuming the existence of a regular flow, we prove that a reaction-diffusion inclusion provide a sub-optimal approximation for anisotropic motion by mean curvature in the non-smooth case. The result is valid in any space dimension and with a time-dependent driving force. The crystalline case is included. As a by-product of our analysis, a comparison theorem between regular flows is obtained. This result implies uniqueness of the original flow.

1 Introduction

It is well known [1], [9], [10], [8], [12] that motion by mean curvature, and more generally anisotropic motion by mean curvature [6], [11] can be viewed as the limit of suitably scaled reaction-diffusion equations. These results are valid in the smooth case, that is when the anisotropy is described by a smooth Finsler metric $\phi: \mathbb{R}^N \to [0, +\infty[$. The non-smooth case corresponds to the situation in which the boundary of the convex set $\mathcal{W}_{\phi} := \{\xi : \phi(\xi) \leq 1\}$ has nondifferentiability points and flat portions; in particular, the crystalline case corresponds to a completely faceted \mathcal{W}_{ϕ} . As pointed out by Taylor (see for instance [18], [20], [21]), the non-smooth case has relevant applications, and presents interesting mathematical questions [19]. Here the situation becomes quite delicate and has been analyzed mostly for crystalline anisotropies in two dimensions. We refer, among others, to the papers [17], [16], [2], [13], [14] for results in this direction. In [3] it is proved that crystalline motion by curvature in N=2 dimensions can be approximated by a scaled reaction-diffusion inclusion, with a quasi-optimal error estimate of order $O(\varepsilon^2 |\log \varepsilon|^2)$. The aim of this note is to extend the analysis of [3] to arbitrary space dimensions and for general non-smooth anisotropies: in this framework we prove an approximation theorem for anisotropic motion by mean curvature with a sub-optimal error estimate of order $O(\varepsilon |\log \varepsilon|^2)$ (see Theorem 3.1). As a consequence, we obtain a comparison principle between limit evolutions (Theorem 3.2) which, in turn, provides uniqueness of the original flow. We thus extend to arbitrary

dimensions and anisotropies a theorem proved in [14] in the two-dimensional crystalline case, and in [15] in the three-dimensional crystalline case. In order to get the approximation result, we assume the existence of a regular flow (see Definition 2.2). To the best knowledge of the authors, the characterization of those sets which admit a local in time evolution in presence of a non-smooth anisotropy is an open problem, which deserves further investigation. In the two-dimensional crystalline case this problem is completely solved (except for the driven motion under a non-uniform force), see the papers [14], [2] and references therein. In the crystalline three-dimensional case the problem seems to be difficult, see the paper [15] for related results.

2 Setting

In what follows $\Omega \subset \mathbb{R}^N$ is a bounded convex open set with smooth boundary, $N \geq 2$. We denote by \cdot the euclidean scalar product in \mathbb{R}^N and by d_H the euclidean Hausdorff distance between subsets of \mathbb{R}^N . By ∇ and div we always mean the gradient and the divergence with respect to the space variables.

For any set $C \subset \mathbb{R}^N$, we define $C^* := \{x \in \mathbb{R}^N : \exists \rho > 0 : |B_{\rho}(x) \setminus C| = 0\}$, where $|\cdot|$ is the Lebesgue measure and $B_{\rho}(x)$ denotes the euclidean open ball of radius ρ centered at x.

We indicate by $\phi: \mathbb{R}^N \to [0, +\infty[$ a convex function satisfying the properties

$$\Lambda^{-1}|\xi| \le \phi(\xi) \le \Lambda|\xi|, \qquad \phi(a\xi) = a\phi(\xi), \qquad \xi \in \mathbb{R}^N, \ a \ge 0,$$
 (1)

for a suitable constant $\Lambda \in]0, +\infty[$, and by $\phi^o : \mathbb{R}^N \to [0, +\infty[$, $\phi^o(\xi^*) := \sup\{\xi^* \cdot \xi : \phi(\xi) \le 1\}$ the dual of ϕ . We set

$$\mathcal{F}_{\phi} := \{ \xi^* \in \mathbb{R}^N : \phi^o(\xi^*) \le 1 \}, \qquad \mathcal{W}_{\phi} := \{ \xi \in \mathbb{R}^N : \phi(\xi) \le 1 \}.$$

We are mainly interested in the case $N \geq 3$ and when $\partial \mathcal{F}_{\phi}$, $\partial \mathcal{W}_{\phi}$ contain nondifferentiability points and/or flat portions.

Let $T^o: \mathbb{R}^N \to \mathcal{P}(\mathbb{R}^N)$ be the duality mapping defined by

$$T^{o}(\xi^{*}) := \frac{1}{2}\partial(\phi^{o}(\xi^{*}))^{2}, \qquad \xi^{*} \in \mathbb{R}^{N},$$

where $\mathcal{P}(\mathbb{R}^N)$ is the class of all subsets of \mathbb{R}^N and ∂ denotes the subdifferential in the sense of convex analysis. T^o is a possibly multivalued maximal monotone operator, and

$$T^{o}(a\xi^{*}) = aT^{o}(\xi^{*}), \qquad a \ge 0.$$
 (2)

One can show that

$$\xi^* \cdot \xi = \phi^o(\xi^*)^2 = \phi(\xi)^2, \qquad \xi^* \in \mathbb{R}^N, \ \xi \in T^o(\xi^*).$$
 (3)

Given $E \subset \mathbb{R}^N$ and $x \in \Omega$, we set

$$\operatorname{dist}_{\phi}(x, E) := \inf_{y \in E} \phi(x - y), \qquad \operatorname{dist}_{\phi}(E, x) := \inf_{y \in E} \phi(y - x),$$

$$d_{\phi}^{E}(x) := \operatorname{dist}_{\phi}(x, E) - \operatorname{dist}_{\phi}(\mathbb{R}^{N} \setminus E, x).$$

At each point where d_{ϕ}^{E} is differentiable one can prove [7] that

$$\phi^o(\nabla d^E_\phi) = 1. \tag{4}$$

If $t \in [0,T] \to E(t) \subset \mathbb{R}^N$ is a parametrized family of subsets of \mathbb{R}^N , we let

$$d_{\phi}^{E(t)}(x) := \operatorname{dist}_{\phi}(x, E(t)) - \operatorname{dist}_{\phi}(\mathbb{R}^{N} \setminus E(t), x).$$

Whenever no confusion is possible, we set $d_{\phi}(x,t) := d_{\phi}^{E(t)}(x)$. From now on, the symbols E, E(t) will denote subsets of \mathbb{R}^N whose boundary is contained in Ω .

The following definition closely follows an idea of M. Paolini.

Definition 2.1. We say that the pair (E, n_{ϕ}) is ϕ -regular if

- (i) ∂E is a Lipschitz hypersurface;
- (ii) there exists an open set $A \supset \partial E$ such that $n_{\phi}: A \to {\rm I\!R}^N$ and

$$n_{\phi} \in L^{\infty}(A; \mathbb{R}^{N}), \quad \text{div } n_{\phi} \in L^{\infty}(A),$$

 $\phi(n_{\phi}(x)) = 1, \quad n_{\phi}(x) \in T^{o}\left(\nabla d_{\phi}^{E}(x)\right) \quad a.e. \ x \in A.$

The above definition imposes a sort of regularity of ∂E in a very weak sense. For technical reasons, we find more convenient to require the existence of a "normal" vector field n_{ϕ} in a tubular neighbourhood of ∂E (the set A), rather than on ∂E . In the smooth situation, n_{ϕ} is the Cahn-Hoffmann vector field and div n_{ϕ} is the correct notion of mean curvature depending on ϕ , see [7]. In the two-dimensional crystalline case one can easily construct ϕ -regular pairs, see [21], [14], [3]. In the three-dimensional crystalline case the situation is much more complicated, see [15].

Notice that, if (E, n_{ϕ}) is ϕ -regular, then

$$\nabla d_{\phi}^{E} \cdot n_{\phi} = 1 \quad \text{a.e. on } A.$$
 (5)

We now define a ϕ -regular flow as an evolution of ϕ -regular pairs moving with velocity, in the n_{ϕ} -direction, equals $-(\text{div }n_{\phi}+g)$, where $g \in W^{1,\infty}([0,+\infty[)$ is given, and stands for the driving force of the flow.

Definition 2.2. Let T > 0. A ϕ -regular flow on [0,T] is a family of pairs $(E(t), n_{\phi}(\cdot, t)), t \in [0,T]$ such that

- (i) for any $t \in [0, T]$ the pair $(E(t), n_{\phi}(\cdot, t))$ is ϕ -regular with the set A of Definition 2.1 independent of $t \in [0, T]$;
- (ii) $d_{\phi} \in Lip(A \times [0, T])$ and

$$\frac{\partial d_{\phi}}{\partial t}(x,t) = \operatorname{div} \ n_{\phi}(x,t) + g(t) + O(d_{\phi}(x,t)) \qquad a.e. \ (x,t) \in A \times [0,T].$$

As in Definition 2.1, we prefer to let evolve a tubular neighbourhood of the front, rather than the front itself. In the smooth case, the term $O(d_{\phi}(x,t))$ arises from the expansion of the differential of the Cahn-Hoffmann vector field near the front.

As a consequence of Theorem 3.2 below, it follows that a ϕ -regular flow depends only on E(0), i.e., it does not depend on n_{ϕ} . The problem of characterizing those sets E and anisotropies ϕ such that there exists a ϕ -regular flow starting from E seems to be open.

Let us now introduce the relaxed evolution law. The double well potential $\Psi : \mathbb{R} \to [0, +\infty[$ is an even function of class \mathcal{C}^2 having only two zeroes at $\{-1, 1\}$, say $\Psi(s) = (1 - s^2)^2$. We set $\psi := \Psi'/2$.

We denote by γ the unique smooth strictly increasing function exponentially asymptotic, at $\pm \infty$, to the two stable zeroes ± 1 of ψ , satisfying

$$-\gamma'' + \psi(\gamma) = 0, \qquad \gamma(0) = 0. \tag{6}$$

We set $c_0 := \int_{\mathbb{R}} (\gamma')^2 dy$. We denote [5] by $\eta \in H^2_{loc}(\mathbb{R})$ the unique solution of the problem

$$-\eta'' + \psi'(\gamma)\eta = -\gamma' + \frac{c_0}{2}, \qquad \eta(0) = 0,$$

in the class of all functions in $H^2_{loc}(\mathbb{R})$ with polynomial growth at infinity. η is even, $\lim_{y\to\pm\infty}\eta(y)=c_0/(2\psi'(1))=:\eta_\infty$, and

$$|\eta - \eta_{\infty}|, |\eta'| \le C(1 + |y|)\gamma', \qquad y \in \mathbb{R},$$
 (7)

where C is a positive constant.

Let $\delta \geq 3$ be a fixed natural number such that, if for any $\varepsilon \in]0,1]$ we let $z_{\varepsilon} := \delta |\log \varepsilon|$, then $\gamma(\pm z_{\varepsilon}) = \pm 1 + O(\varepsilon^{2\delta})$, $\gamma'(\pm z_{\varepsilon}) = O(\varepsilon^{2\delta})$, and

$$|\eta(\pm z_{\varepsilon}) - \eta_{\infty}|, |\eta'(\pm z_{\varepsilon})| = O(\varepsilon^{2\delta - 1}).$$

We construct [5] two functions γ_{ϵ} , $\eta_{\epsilon} \in \mathcal{C}^{1,1}(\mathbb{R}) \cap \mathcal{C}^{\infty}(\mathbb{R} \setminus \{\pm z_{\varepsilon}, \pm 2z_{\varepsilon}\})$ which coincide, respectively, with γ, η on $[-z_{\varepsilon}, z_{\varepsilon}]$ and assume the corresponding

asymptotic values ± 1 , η_{∞} outside the interval $]-2z_{\varepsilon}$, $2z_{\varepsilon}[$. We can also assume that γ_{ϵ} and η_{ϵ} satisfy (7), and that γ_{ϵ} is strictly increasing on $]-2z_{\varepsilon}$, $2z_{\varepsilon}[$ (provided ε is small enough).

Let us now introduce the relaxed evolution problem. Let $\varepsilon > 0$, T > 0, and $u_0 \in H^1(\Omega)$ be such that $\mathcal{E}_{\phi}(u_0) := \int_{\Omega} \phi^o(\nabla u_0)^2 + \Psi(u_0) dx < +\infty$ and $\frac{\partial u_0}{\partial \nu_{\Omega}} = 0$, where ν_{Ω} is the outward unit normal to $\partial \Omega$. Let us consider the problem

$$\varepsilon u_t - \varepsilon \operatorname{div}(T^o(\nabla u)) + \frac{1}{\varepsilon} \psi(u) \ni \frac{c_0}{2} g \quad \text{in } Q, u(\cdot, 0) = u_0(\cdot) \text{in } \Omega, \frac{\partial u}{\partial \nu_{\Omega}} = 0 \quad \text{in } \partial \Omega \times]0, T[, u(\cdot, 0)] = u_0(\cdot) \text{in } \Omega, \frac{\partial u}{\partial \nu_{\Omega}} = 0 \quad \text{in } \partial \Omega \times]0, T[, u(\cdot, 0)] = u_0(\cdot) \text{in } \Omega, \frac{\partial u}{\partial \nu_{\Omega}} = 0 \quad \text{in } \partial \Omega \times]0, T[, u(\cdot, 0)] = u_0(\cdot) \text{in } \Omega, \frac{\partial u}{\partial \nu_{\Omega}} = 0 \quad \text{in } \partial \Omega \times]0, T[, u(\cdot, 0)] = u_0(\cdot) \text{in } \Omega, \frac{\partial u}{\partial \nu_{\Omega}} = 0 \quad \text{in } \partial \Omega \times]0, T[, u(\cdot, 0)] = u_0(\cdot) \text{in } \Omega, \frac{\partial u}{\partial \nu_{\Omega}} = 0 \quad \text{in } \partial \Omega \times]0, T[, u(\cdot, 0)] = u_0(\cdot) \text{in } \Omega, \frac{\partial u}{\partial \nu_{\Omega}} = 0 \quad \text{in } \partial \Omega \times]0, T[, u(\cdot, 0)] = u_0(\cdot) \text{in } \Omega, \frac{\partial u}{\partial \nu_{\Omega}} = 0 \quad \text{in } \partial \Omega \times]0, T[, u(\cdot, 0)] = u_0(\cdot) \text{in } \Omega, \frac{\partial u}{\partial \nu_{\Omega}} = 0 \quad \text{in } \partial \Omega \times]0, T[, u(\cdot, 0)] = u_0(\cdot) \text{in } \Omega, \frac{\partial u}{\partial \nu_{\Omega}} = 0 \quad \text{in } \partial \Omega \times]0, T[, u(\cdot, 0)] = u_0(\cdot) \text{in } \Omega, \frac{\partial u}{\partial \nu_{\Omega}} = 0 \quad \text{in } \partial \Omega \times]0, T[, u(\cdot, 0)] = u_0(\cdot) \text{in } \Omega, \frac{\partial u}{\partial \nu_{\Omega}} = 0 \quad \text{in } \partial \Omega \times]0, T[, u(\cdot, 0)] = u_0(\cdot) \text{in } \Omega, \frac{\partial u}{\partial \nu_{\Omega}} = 0 \quad \text{in } \partial \Omega \times]0, T[, u(\cdot, 0)] = u_0(\cdot) \text{in } \Omega, \frac{\partial u}{\partial \nu_{\Omega}} = 0 \quad \text{in } \partial \Omega \times]0, T[, u(\cdot, 0)] = u_0(\cdot) \text{in } \Omega, \frac{\partial u}{\partial \nu_{\Omega}} = 0 \quad \text{in } \partial \Omega \times]0, T[, u(\cdot, 0)] = u_0(\cdot) \text{in } \Omega, \frac{\partial u}{\partial \nu_{\Omega}} = 0 \quad \text{in } \partial \Omega \times]0, T[, u(\cdot, 0)] = u_0(\cdot) \text{in } \Omega, \frac{\partial u}{\partial \nu_{\Omega}} = 0 \quad \text{in } \partial \Omega \times]0, T[, u(\cdot, 0)] = u_0(\cdot) \text{in } \Omega, \frac{\partial u}{\partial \nu_{\Omega}} = 0 \quad \text{in } \partial \Omega \times]0, T[, u(\cdot, 0)] = u_0(\cdot) \text{in } \Omega, \frac{\partial u}{\partial \nu_{\Omega}} = 0 \quad \text{in } \partial \Omega \times]0, T[, u(\cdot, 0)] = u_0(\cdot) \text{in } \Omega, \frac{\partial u}{\partial \nu_{\Omega}} = 0 \quad \text{in } \partial \Omega \times]0, T[, u(\cdot, 0)] = u_0(\cdot) \text{in } \Omega, \frac{\partial u}{\partial \nu_{\Omega}} = 0 \quad \text{in } \partial \Omega \times]0, T[, u(\cdot, 0)] = u_0(\cdot) \text{in } \Omega, \frac{\partial u}{\partial \nu_{\Omega}} = 0 \quad \text{in } \partial \Omega \times]0, T[, u(\cdot, 0)] = u_0(\cdot) \text{in } \Omega, \frac{\partial u}{\partial \nu_{\Omega}} = 0 \quad \text{in } \partial \Omega \times]0, T[, u(\cdot, 0)] = u_0(\cdot) \text{in } \Omega, \frac{\partial u}{\partial \nu_{\Omega}} = 0 \quad \text{in } \partial \Omega \times]0, T[, u(\cdot, 0)] = u_0(\cdot) \text{in } \Omega, \frac{\partial u}{\partial \nu_{\Omega}} = 0 \quad \text{in } \partial \Omega \times]0, T[, u(\cdot, 0)] = u_0(\cdot) \text{in } \Omega, \frac{\partial u}{\partial \nu_{\Omega}} = 0 \quad \text{in } \partial \Omega \times]0, T[, u(\cdot, 0)] = u_0(\cdot) \text{in } \Omega, \frac{\partial u}{\partial \nu_{\Omega}} = 0 \quad \text{in } \Omega \times]0, T[, u(\cdot, 0)] = u_0(\cdot) \text{in } \Omega, \frac{\partial u}{\partial \nu_{\Omega}} = 0 \quad \text{in } \Omega \times]$$

where $Q := \Omega \times]0, T[$. The notion of variational sub- and supersolution of (8) reads as follows [3].

Definition 2.3. A couple (u, ζ) is a subsolution of (8) if, for any T > 0, the following properties hold:

- (i) $u \in L^{\infty}(0, T; H^1(\Omega)) \cap H^1(0, T; L^2(\Omega))$ and $\zeta \in (L^2(Q))^N$;
- (ii) for any $\varphi \in H^1(\Omega; [0, +\infty[)])$ and a.e. $t \in [0, T[]$ there holds

$$\int_{\Omega} \left(\varepsilon u_t \varphi + \varepsilon \zeta \cdot \nabla \varphi + \frac{1}{\varepsilon} \psi(u) \varphi - \frac{c_0}{2} g \varphi \right) dx \le 0; \tag{9}$$

- (iii) for a.e. $x \in \Omega$ there holds $u(x, 0) \leq u_0(x)$;
- (iv) for a.e. $(x,t) \in Q$ there holds

$$\zeta(x,t) \in T^o(\nabla u(x,t)).$$
 (10)

The couple (u, ζ) is a supersolution of (8) if (i) and (iv) hold, and conditions (ii) and (iii) hold with \geq in place of \leq . The couple (u, ζ) is a solution of (8) if it is both a subsolution and a supersolution.

Notice that by (i), (iv) and (1), we have $\zeta \in L^{\infty}(0,T;(L^{2}(\Omega))^{N})$. The following elementary comparison lemma, proved in [3], is crucial in order to get the main results.

Lemma 2.4. Let (u^-, ζ^-) and (u^+, ζ^+) be respectively a subsolution and a supersolution of (8). Then $u^- \leq u^+$ a.e. in Q.

Following [22] we then have

Theorem 2.5. Problem (8) admits a solution (u, ζ) . Moreover, if (u_1, ζ_1) and (u_2, ζ_2) are two solutions of (8), then $u_1 = u_2$ a.e. in Q.

One can prove [22] that, if there exists $\zeta_0 \in T^o(\nabla u_0)$ such that $\operatorname{div}\zeta_0 \in L^2(\Omega)$, then the solution (u,ζ) to (8) is such that $u \in W^{1,\infty}(0,T;L^2(\Omega))$ and $\mathcal{E}_{\phi}(u) \in W^{1,\infty}(0,T)$. Moreover, if u is bounded on Q, then $\operatorname{div}\zeta \in L^\infty(0,T;L^2(\Omega))$. We do not know wether the smoothness of u_0 on Ω (even in the case N=2, g=0, ϕ crystalline) implies the continuity of u on Q.

3 Approximation and comparison principle

The main results of the paper are the following two theorems.

Theorem 3.1. Let $(E(t), n_{\phi}(\cdot, t))$ be a ϕ -regular flow on [0, T]. For any $\varepsilon > 0$ let u_{ε} be the solution of problem (8) with initial datum

$$u_{\varepsilon}(x,0) = u_{\varepsilon}^{0}(x) := \gamma_{\varepsilon} \left(\frac{d_{\phi}(x,0)}{\varepsilon} \right) + \varepsilon \eta_{\epsilon} \left(\frac{d_{\phi}(x,0)}{\varepsilon} \right) g(0). \tag{11}$$

Let $\Sigma_{\varepsilon}(t)$ denote the complement in Ω of the set $\{x: u_{\varepsilon}(x,t) > 0\}^* \cup \{x: u_{\varepsilon}(x,t) < 0\}^*$. Then there exist $\varepsilon_0 \in]0,1]$ and a constant C depending on $(E(t))_{t \in [0,T]}$, g, and independent of $\varepsilon \in]0,\varepsilon_0]$, such that for all $\varepsilon \in]0,\varepsilon_0]$ there holds

$$\sup_{t \in [0,T]} d_H(\Sigma_{\varepsilon}(t), \partial E(t)) \le C\varepsilon |\log \varepsilon|^2.$$
 (12)

Theorem 3.2. Let $(E_1(t), n_{\phi}^{(1)}(\cdot, t)), (E_2(t), n_{\phi}^{(2)}(\cdot, t))$ be two ϕ -regular flows on [0, T]. Then

$$E_1(0) \subseteq E_2(0) \Rightarrow E_1(t) \subseteq E_2(t), \qquad t \in [0, T].$$
 (13)

Proof of Theorem 3.1. For any $t \in [0, T]$ set

$$y = y(x,t) := \frac{d_{\phi}(x,t)}{\varepsilon}, \qquad y_{\epsilon} = y_{\epsilon}(x,t) := y(x,t) - \theta(t) |\log \varepsilon|^2,$$
 (14)

$$\theta(t) := c \exp(Kt), \qquad t \in [0, T], \tag{15}$$

where c and K are two positive constants to be defined later on independently of ε . Let also

$$\mathcal{T}_{\varepsilon}(t) := \{ x \in \Omega : |y_{\epsilon}(x,t)| < 2z_{\varepsilon} \}, \qquad \mathcal{T}_{\varepsilon} := \bigcup_{t \in [0,T]} \mathcal{T}_{\varepsilon}(t) \times \{t\},$$

$$\mathcal{T}_{\varepsilon}^{-}(t) := \{ x \in \Omega : y_{\epsilon}(x,t) \leq -2z_{\varepsilon} \}, \quad \mathcal{T}_{\varepsilon}^{+}(t) := \{ x \in \Omega : y_{\epsilon}(x,t) \geq 2z_{\varepsilon} \}.$$

We assume that ε is small enough such that the closure of $\bigcup_{t\in[0,T]}\mathcal{T}_{\varepsilon}(t)$ is con-

tained in Ω , $\mathcal{T}_{\varepsilon}$ is contained in the set A of Definition 2.2, and $-\gamma''_{\varepsilon} + \psi(\gamma_{\varepsilon}) = -\eta''_{\varepsilon} + \psi'(\gamma_{\varepsilon})\eta_{\varepsilon} - \frac{c_0}{2}g + \gamma'_{\varepsilon} = O(\varepsilon^{2\delta-3})$ in $] - 2z_{\varepsilon}, 2z_{\varepsilon}[$.

We define $v_{\varepsilon}^-: \Omega \times [0,T] \to \mathbb{R}$ and $\zeta_{\varepsilon}^-: \Omega \times [0,T] \to \mathbb{R}^N$ as follows:

$$x \in \mathcal{T}_{\varepsilon}(t) \Longrightarrow \begin{cases} v_{\varepsilon}^{-}(x,t) := \gamma_{\varepsilon}(y_{\varepsilon}) + \varepsilon \eta_{\varepsilon}(y_{\varepsilon})g(t) - \Theta \varepsilon^{2} |\log \varepsilon|^{2}, \\ \zeta_{\varepsilon}^{-} := [\varepsilon^{-1}\gamma_{\epsilon}'(y_{\epsilon}) + \eta_{\epsilon}'(y_{\epsilon})g(t)]n_{\phi}(x,t), \end{cases}$$

$$x \in \mathcal{T}_{\varepsilon}^{\pm}(t) \Longrightarrow \begin{cases} v_{\varepsilon}^{-}(x,t) := \pm 1 + \varepsilon \eta_{\infty}g(t) - \Theta \varepsilon^{2} |\log \varepsilon|^{2}, \\ \zeta_{\varepsilon}^{-}(x,t) := 0, \end{cases}$$

$$(16)$$

where $\Theta > 0$ is a constant to be defined later on independently of ε . Notice that $v_{\varepsilon}^- \in L^{\infty}(0,T;H^1(\Omega)) \cap H^1(0,T;L^2(\Omega)) \cap \mathcal{C}^0(\Omega \times [0,T])$ and $\zeta_{\varepsilon}^- \in (L^2(Q))^N$. In a similar fashion we can define $(v_{\varepsilon}^+,\zeta_{\varepsilon}^+)$ by changing the sign in front of $\theta(t)$ in (14) and in front of Θ in (16).

We want to show that $(v_{\varepsilon}^-, \zeta_{\varepsilon}^-)$ (resp. $(v_{\varepsilon}^+, \zeta_{\varepsilon}^+)$) is a subsolution (resp. supersolution) of (8). We shall focus our attention on $(v_{\varepsilon}^-, \zeta_{\varepsilon}^-)$.

A direct computation, using (2) and the inclusion $n_{\phi}(x,t) \in T^{o}(\nabla d_{\phi}(x,t))$, yields

$$T^{o}(\nabla v_{\varepsilon}^{-}) = T^{o}\left(\left[\varepsilon^{-1}\gamma_{\epsilon}'(y_{\epsilon}) + \eta_{\epsilon}'(y_{\epsilon})g(t)\right]\nabla d_{\phi}(x,t)\right)$$
$$= \left[\varepsilon^{-1}\gamma_{\epsilon}'(y_{\epsilon}) + \eta_{\epsilon}'(y_{\epsilon})g(t)\right]T^{o}(\nabla d_{\phi}(x,t)) \ni \zeta_{\varepsilon}^{-}(x,t).$$

Hence $\zeta_{\varepsilon}^{-}(x,t) \in T^{o}(\nabla v_{\varepsilon}^{-}(x,t))$ for a.e. $(x,t) \in Q$ (condition (10)).

Moreover one can prove [5] that there exist a real number $\Theta > 0$, independent of ε , and $\varepsilon_0 > 0$ such that $v_{\varepsilon}^-(\cdot, 0) \leq u_{\varepsilon}^0(\cdot)$ in Ω , for any $0 < \varepsilon < \varepsilon_0$.

Claim. There exist $\varepsilon_0 > 0$ and positive real numbers c, K, Θ , independent of ε , such that for any $\varepsilon \in]0, \varepsilon_0[$ and $\varphi \in H^1(\Omega; [0, +\infty[)$ there holds

$$\int_{\Omega} \left(\varepsilon \partial_t v_{\varepsilon}^- \varphi + \varepsilon \zeta_{\varepsilon}^- \cdot \nabla \varphi + \frac{1}{\varepsilon} \psi(v_{\varepsilon}^-) \varphi - \frac{c_0}{2} g \varphi \right) dx \le 0, \quad \text{a.e. } t \in [0, T].$$
 (17)

Once (17) is proved, by Lemma 2.4 we get the crucial inequality $v_{\varepsilon}^{-} \leq u_{\varepsilon}$ (and similarly $u_{\varepsilon} \leq v_{\varepsilon}^{+}$).

Let us prove the claim. For simplicity we use the notation $(v_{\varepsilon}, \zeta_{\varepsilon})$ in place of $(v_{\varepsilon}^{-}, \zeta_{\varepsilon}^{-})$. The left hand side of inequality (17) can be equivalently written as

$$\int_{\mathcal{T}_{\varepsilon}(t)} \left(\varepsilon \partial_{t} v_{\varepsilon} - \varepsilon \operatorname{div} \zeta_{\varepsilon} + \frac{1}{\varepsilon} \psi(v_{\varepsilon}) - \frac{c_{0}}{2} g \right) \varphi \, dx + \int_{\Omega \setminus \mathcal{T}_{\varepsilon}(t)} \left(\varepsilon \partial_{t} v_{\varepsilon} + \frac{1}{\varepsilon} \psi(v_{\varepsilon}) - \frac{c_{0}}{2} g \right) \varphi \, dx \\
+ \int_{\partial \mathcal{T}_{\varepsilon}(t)} \varepsilon \varphi \, \zeta_{\varepsilon} \cdot \nu_{\varepsilon} \, d\mathcal{H}^{N-1} =: \mathcal{I}_{1} + \mathcal{I}_{2} + \mathcal{I}_{3},$$

where ν_{ε} denotes the a.e. defined euclidean outward unit normal to $\partial \mathcal{T}_{\varepsilon}(t)$, and \mathcal{H}^{N-1} denotes the (N-1)-dimensional Hausdorff measure.

Using (14), (ii) of Definition 2.2, and the fact that $d_{\phi} = \theta \varepsilon |\log \varepsilon|^2 + O(\varepsilon |\log \varepsilon|)$ in $\mathcal{T}_{\varepsilon}$, direct computations yield, for a.e. $(x, t) \in \mathcal{T}_{\varepsilon}$,

$$\varepsilon \partial_t v_{\varepsilon} = \varepsilon (\gamma_{\epsilon}' + \varepsilon \eta_{\epsilon}' g) \partial_t y_{\varepsilon} + \varepsilon^2 \eta_{\epsilon} g_t = (\operatorname{div} n_{\phi} + g) (\gamma_{\epsilon}' + \varepsilon \eta_{\epsilon}' g)
+ \gamma_{\epsilon}' \theta O(\varepsilon |\log \varepsilon|^2) + O(\varepsilon |\log \varepsilon|) - \theta' \varepsilon |\log \varepsilon|^2 (\gamma_{\epsilon}' + \varepsilon \eta_{\epsilon}' g)
= (\gamma_{\epsilon}' + \varepsilon \eta_{\epsilon}' g) \operatorname{div} n_{\phi} + \gamma_{\epsilon}' g - \gamma_{\epsilon}' \theta' \varepsilon |\log \varepsilon|^2 + \gamma_{\epsilon}' \theta O(\varepsilon |\log \varepsilon|^2) + O(\varepsilon |\log \varepsilon|).$$

Furthermore.

$$\varepsilon \operatorname{div} \zeta_{\varepsilon} = \varepsilon (\varepsilon^{-1} \gamma_{\epsilon}'' + \eta_{\epsilon}'' g) \nabla y_{\varepsilon} \cdot n_{\phi} + \varepsilon (\varepsilon^{-1} \gamma_{\epsilon}' + \eta_{\epsilon}' g) \operatorname{div} n_{\phi}.$$

By (4) and (3) we have $\nabla y_{\varepsilon} \cdot n_{\phi} = \varepsilon^{-1} \nabla d_{\phi} \cdot n_{\phi} = \varepsilon^{-1}$, hence

$$\varepsilon \operatorname{div} \zeta_{\varepsilon} = \varepsilon^{-1} \gamma_{\epsilon}'' + \eta_{\epsilon}'' g + (\gamma_{\epsilon}' + \varepsilon \eta_{\epsilon}' g) \operatorname{div} n_{\phi}.$$

Expanding $\varepsilon^{-1}\psi(v_{\varepsilon}) = \varepsilon^{-1}\psi(\gamma_{\epsilon}) + g\eta_{\epsilon}\psi'(\gamma_{\epsilon}) - \Theta\varepsilon|\log\varepsilon|^2\psi'(\gamma_{\epsilon}) + O(\varepsilon)$, we get

$$\varepsilon \partial_{t} v_{\varepsilon} - \varepsilon \operatorname{div} \zeta_{\varepsilon} + \frac{1}{\varepsilon} \psi(v_{\varepsilon}) - \frac{c_{0}}{2} g
= \varepsilon^{-1} (-\gamma_{\epsilon}'' + \psi(\gamma_{\epsilon})) + g \left(-\eta_{\epsilon}'' + \psi'(\gamma_{\epsilon}) \eta_{\epsilon} - \frac{c_{0}}{2} + \gamma_{\epsilon}' \right)
- \Theta \varepsilon |\log \varepsilon|^{2} \psi'(\gamma_{\epsilon}) - \gamma_{\epsilon}' \theta' \varepsilon |\log \varepsilon|^{2} + \gamma_{\epsilon}' \theta O(\varepsilon |\log \varepsilon|^{2}) + O(\varepsilon |\log \varepsilon|)
= \gamma_{\epsilon}' \varepsilon |\log \varepsilon|^{2} (\theta O(1) - \theta') - \Theta \varepsilon |\log \varepsilon|^{2} \psi'(\gamma_{\epsilon}) + O(\varepsilon^{2\delta - 3}) + O(\varepsilon |\log \varepsilon|)
= \gamma_{\epsilon}' \varepsilon |\log \varepsilon|^{2} (\theta O(1) - \theta') - \Theta \varepsilon |\log \varepsilon|^{2} \psi'(\gamma_{\epsilon}) + O(\varepsilon |\log \varepsilon|).$$

Recalling the definition of θ in (15) we have $\theta O(1) - \theta' \le -\theta \le c$ for K > 0 sufficiently large (independently of ε), so that

$$\varepsilon \partial_t v_\varepsilon - \varepsilon \operatorname{div} \zeta_\varepsilon + \frac{1}{\varepsilon} \psi(v_\varepsilon) - \frac{c_0}{2} g \le -\varepsilon |\log \varepsilon|^2 (c \gamma_\varepsilon' + \Theta \psi'(\gamma_\varepsilon)) + O(\varepsilon |\log \varepsilon|).$$

As $\sigma \gamma'_{\epsilon} + \psi'(\gamma_{\epsilon})$ is uniformly positive for a proper choice of the positive constant σ , we realize that, if c and Θ are large enough (independently of ε),

$$\varepsilon \partial_t v_\varepsilon - \varepsilon \operatorname{div} \zeta_\varepsilon + \frac{1}{\varepsilon} \psi(v_\varepsilon) - \frac{c_0}{2} g \le 0$$
 in \mathcal{T}_ε .

We then have $\mathcal{I}_1 \leq 0$, and reasoning as in [3], also $\mathcal{I}_2 \leq 0$. Moreover, from the definition of ζ_{ε} it follows that $\zeta_{\varepsilon}(x,t)_{|_{\partial \mathcal{T}_{\varepsilon}(t)}} = 0$ hence $\mathcal{I}_3 = 0$. The proof of the claim is concluded.

Summing up, we have proved the following result: there exist $\varepsilon_0 > 0$, an exponentially increasing continuous function $\theta : [0,T] \to]0, +\infty[$ and a real number $\Theta > 0$, both independent of ε , such that, if u_{ε} denotes the solution of (8) with initial datum (11), then $v_{\varepsilon}^-(x,t) \leq u_{\varepsilon}(x,t) \leq v_{\varepsilon}^+(x,t)$ for a.e. $(x,t) \in Q$ and for $\varepsilon \in]0, \varepsilon_0[$. Theorem 3.1 follows now arguing as in [6, Theorem 6.1].

Remark 3.3. A similar statement of Theorem 3.1 holds for the double obstacle problem [3], where $\varepsilon |\log \varepsilon|^2$ in (12) is replaced by ε .

Proof of Theorem 3.2. Let $i \in \{1,2\}$ and let $u_{\varepsilon}^{(i)}$ be the function given by Theorem 3.1, where the initial datum $u_{\varepsilon}^{0(i)}$ is fixed as in (11), with $d_{\phi}(x,0) = d_{\phi}^{E_{i}}(x)$. Since for $\varepsilon > 0$ small enough the function $z \to \gamma_{\epsilon}(z) + \varepsilon g(0)\eta_{\epsilon}(z)$ is strictly increasing on $] - 2z_{\varepsilon}, 2z_{\varepsilon}[$, from (11) we have that $u_{\varepsilon}^{0(1)} \ge u_{\varepsilon}^{0(2)}$ in Ω . Hence, by Lemma 2.4, it follows that

$$u_{\varepsilon}^{(1)} \ge u_{\varepsilon}^{(2)}$$
 a.e. in Q . (18)

Applying (12) of Theorem 3.1, from (18) we get (13).

Corollary 3.4. Let $(E_1(t), n_{\phi}^{(1)}(\cdot, t)), (E_2(t), n_{\phi}^{(2)}(\cdot, t))$ be two ϕ -regular flows on [0, T]. Then

$$E_1(0) = E_2(0) \Rightarrow E_1(t) = E_2(t), \qquad t \in [0, T].$$
 (19)

Notice that, in view of Theorem 3.2, one can implement the barrier method of De Giorgi (see [4]) to construct a unique global weak solution of anisotropic motion by mean curvature in the non-smooth case.

References

- [1] S.M. Allen and J.W.Cahn. A macroscopic theory for antiphase boundary motion and its application to antiphase domain coarsing. *Acta Metall.*, 27:1085–1095, 1979.
- [2] F.J. Almgren and J. Taylor. Flat flow is motion by crystalline curvature for curves with crystalline energies. J. Diff. Geom., 42:1–22, 1995.
- [3] G. Bellettini, R. Goglione, and M. Novaga. Approximation to driven motion by crystalline curvature in two dimensions. *Preprint Univ. di Pisa*, 1998.
- [4] G. Bellettini and M. Novaga. Minimal barriers for geometric evolutions. J. Differential Equations, 139:76–103, 1997.
- [5] G. Bellettini and M. Paolini. Quasi-optimal error estimates for the mean curvature flow with a forcing term. *Differential Integral Equations*, pages 735–752, 1995.
- [6] G. Bellettini and M. Paolini. Anisotropic motion by mean curvature in the context of Finsler geometry. *Hokkaido Math. J*, 25:537–566, 1996.
- [7] G. Bellettini, M. Paolini, and S. Venturini. Some results on surface measures in Calculus of Variations. *Ann.Mat.Pura Appl.*, 170:329–359, 1996.
- [8] X. Chen. Generation and propagation of interfaces by reaction-diffusion equations. J. Differential Equations, 96:116–141, 1992.
- [9] E. De Giorgi. New conjectures on flow by mean curvature. In *Methods of Real Analysis and Partial Differential Equations*, pages 120–127. Liguori, Napoli, 1990.
- [10] P. De Mottoni and M. Schatzman. Geometrical evolution of developed interfaces. Trans. Amer. Math. Soc., 347:1533–1589, 1995.

- [11] C.M. Elliott and R. Schätzle. The limit of the fully anisotropic double-obstacle Allen-Cahn equation in the non-smooth case. SIAM J. Math. Anal., 28:274–303, 1997.
- [12] L.C. Evans, H.-M. Soner, and P.E. Souganidis. Phase transitions and generalized motion by mean curvature. *Comm. Pure Appl. Math.*, 45:1097–1123, 1992.
- [13] M.-H. Giga and Y. Giga. A subdifferential interpretation of crystalline motion under nonuniform driving force. *Dynamical Systems and Differ*ential Equations, 1:276–287, 1998.
- [14] Y. Giga and M.E. Gurtin. A comparison theorem for crystalline evolutions in the plane. Quarterly of Applied Mathematics, LIV:727-737, 1996.
- [15] Y. Giga, M.E. Gurtin, and J. Matias. On the dynamics of crystalline motion. Japan Journal of Industrial and Applied Mathematics, 15:7–50, 1998.
- [16] P.M. Girao and R.V. Kohn. Convergence of a crystalline algorithm for the heat equation in one dimension and for the motion of a graph. *Numer. Math.*, 67:41–70, 1994.
- [17] P. Rybka. A crystalline motion: uniqueness and geometric properties. *Preprint*, 1994.
- [18] J.E. Taylor. Crystalline variational problems. Bull. Amer. Math. Soc. (N.S.), 84:568–588, 1978.
- [19] J.E. Taylor. Constructions and conjectures in crystalline nondifferential geometry. In: Differential Geometry (eds. B. Lawson and K. Tatnenblat), Pitman Monographs in Pure and Applied Math., 52:321–336, 1991.
- [20] J.E. Taylor. Mean curvature and weighted mean curvature ii. *Acta Metall. Mater.*, 40:1475–1485, 1992.
- [21] J.E. Taylor. Motion of curves by crystalline curvature, including triple junctions and boundary points. *Proc. of Symposia in Pure Math.*, 54:417–438, 1993.
- [22] A. Visintin. Models of Phase Transitions. Birkhäuser, Boston, 1996.

Dipartimento di Matematica Applicata "U. Dini", Università di Pisa via Bonanno 25 B, 56126 Pisa, Italy.

 $email:\ belletti@mail.dm.unipi.it$

Scuola Normale Superiore, Piazza dei Cavalieri 7, 56100 Pisa, Italy.

email: novaga@cibs.sns.it