Deterministic equivalent for the Allen-Cahn energy
of a scaling law in the Ising model

G. Bellettini * M.S. Gelli ' S. Luckhaus ¥ M. Novaga $

Abstract

For the Allen-Cahn functional we study the following problem: for
which prescribed amount m of volume is there the appearence of a
droplet of one phase inside the other? Under a suitable assumption on
the domain we show that the breaking of symmetry occurs at the same
value of m as for the limit of the sharp interface energy. We also prove
that there exists a threshold for m of order e+ so that either there
is the appearence of the droplet or there is no breaking of symmetry.

1 Introduction

In the papers [2] and [8] the following question was posed for the Ising model
in equilibrium and large finite volume: for which prescribed magnetization
m does one start to see the breaking of symmetry which is the origin of the
appearence of a droplet of one phase inside the other phase? We expect
that this is a question of surface energy, up to first order, and that it does
not depend on the particular functional (i.e. free energy) whose I'-limit is,
up to rescaling, the surface energy itself (see Theorem 2.3). In statistical
mechanics we could not prove such a statement, but to support our claim
we look at a particular functional, the phase field functional F. with the
parameter ¢ corresponding to the inverse linear size of the finite volume and
we show, under a suitable assumption on the domain, that the breaking
of symmetry occurs (up to first order) at the same value of m as for the
limit of the sharp interface energy P, ,, (see Theorem 2.4). We also prove in
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Theorem 2.1 that there exists a threshold for m of order e7+7 so that either
there is the appearence of the droplet or there is no breaking of symmetry.
Note that this is not a I'-limit result, as only the rescaled free energy has
a I'-limit. It is more in the spirit of a [-expansion, as recently investigated
in [3]. In Remark 2.5 we briefly discuss an extension of the result to arbitrary
(compact) Riemannian manifolds, covering in particular the periodic setting.

We want to stress that, whereas the upper estimate is obtained by an
explicit construction and requires some regularity assumptions for the do-
main € in which the problem is posed, the lower estimate (Theorem 3.2) is
completely general.

After this work was completed, we learned of a similar result proved
independently, in the periodic setting, in [4].

2 Statement of the main results

We denote by 2 a bounded open subset of R*, n > 2, with Lipschitz bound-
ary. We denote by B, (z) the ball of radius r > 0 centered at z € Q; if r =0
we set B, (z) = (). Given ¢ > 0 and a function u € H'({2), we define the free
energy F.(u) of u as

Fe(u) ::/Q (5@+1W(u)> dz,
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where W is a regular (i.e. of class C2) double-well potential. In the following,
we fix for simplicity W (t) = (1 — #2)?/2, noticing that all the results are
independent of the particular choice of the potential.

We shall use the following notation: oy, = f_ll V2W (s) ds; Cigo(R2) is
the constant in the relative isoperimetric inequality [5], which reads as

P(E;Q) > Ciso(2) (min{|E|, |2\ E|})HT_1 for any E C Q, (2.1)

where P(FE; Q) is the perimeter of E in (.
Given m € [0,1] we denote by . m € H'(2) NC*®(R) a solution to the
following minimum problem:

min {F.(u) : u € HL(Q)}, (2.2)

where

1
HL(Q):={uec H(Q): —/ u=m}
2] Jo
and |B| is the Lebesgue measure of any Borel set B C 2. We let

me :=sup{m € [0,1] : I Gy, solution of (2.2) with F, (U, m) < Fe(m)}.
(2.3)



For any set E C R" we define the functional

P, (E) = oy P(E;Q) + @W (m + 2%) , (2.4)

and we denote by E; ,, a solution to the minimum problem:
min{ P, ,,(F) : E C Q}. (2.5)
In order to study the functional P ,, we introduce the following function

defined for ¢ € [0,1] as

fa(d) = min{P(E; Q): ECQ, % = 6} .

The parameter ¢ represents the volume fraction |E|/|(Q| letting E varying
in all (measurable) subsets of Q.
Let 7 = 7(2) be the radius of a maximal open ball contained in €2, and

let B(©2) € (0,1) be such that (ﬂ(QQT)lm)l/” = 2, wy = |B1(0)]. Our first
result reads as follows.

Theorem 2.1. There exist constants Co > C1 > 0 and gy > 0, depending
on Q and W, such that for any € € (0,eq) the following assertions hold.

(i) If m € [1 - ClanLJrl, 1] then any U, ., is constantly equal to m in Q.

(ii) If m € [1 - B(92),1 - C’gsn%l] then any U, is not constant in €.
Notice that, in particular, from Theorem 2.1 it follows
me € [1 — CQS”L'H, 1-— 018#] . (26)

Under the following additional assumption (H) on 2, we can prove a
stronger statement (see Theorem 2.4).

(H) There exists a point 2o € I such that

(i) there exist the limit

r—0t  nwprtl r0t  wpr™

CQ (27)

(ii) there exists the limit

lim P(By(z0); )

5 Tal1B, (o) n O/




Remark 2.2. Since 2 has Lipschitz boundary, we have cq € (0,1) in as-
sumption (H), and cq = 1/2 if 9 is of class C'. We also observe that (H)
is always satisfied whenever (2 is convex or 0f2 is Lipschitz and piecewise of
class C'.

Theorem 2.3. Assume that Q0 has the regularity property (H). Let C > 0
and m € [1 — Cen+1,1]. Then

min  F.(u) = min P, ,,(E) + o (62711)

ueHL () ECQ
. n—1 (2'8)
= min P, (B (20)) + 0 (gn+1) .
r>0
Theorem 2.4. Suppose that 2 satisfies assumption (H). Then
1
1—m DT n+1 P
lim L2 _ o (RE D cg o T (2.9)
0 e 217 (2w (1))

Remark 2.5. Theorems 2.1 and 2.4 can be extended, with the obvious
modifications, to functionals F, defined on H!(M), M a smooth compact
Riemannian manifold with smooth boundary. Note that, if M # @, then M
satisfies assumption (H), with ¢q = 1/2. On the other hand, if M = 0, it
has been shown in [1, Appendix C] that M satisfies an assumption analogous
to (H), with co = 1 and with z( any point of M. In particular, when M is the
n-dimensional torus, T", it covers the case of periodic boundary conditions
in problem (2.2).

3 Estimate from below

We first set some notation used in the paper. If A\,3,0 € R, A < 3, and
u:Q >R weset {A\ <u<pf}:={zre: X <ulz) < p} and
Yo(u) := {u < o}. In the sequel C will denote a generic positive constant
that may vary from line to line and even in the same line. Throughout
the paper we often use the following quadratic estimates on W: there exist
constants ¢, ¢’ > 0 such that

W) >d1-t)2 V>0 (3.1)
W) <d'1-t)? Vtelo,2]. (3.2)

A symmetric statement holds for ¢ < 0 by replacing 1 with —1.
We start with the following preliminary lemma.

Lemma 3.1. There ezist two constants m € (0,1) and ¢ € (0, 2=, de-
pending only on W, such that for any m € (m,1) and for all u € H} (),
with [o, W(u) dz < |QW (m), we have

Z,(w)] < 1Ql/2,  Vs<1-¢&l—m). (3.3)



Proof. Set

5:=1—-7¢(1 —m), (3.4)

for a suitable constant ¢ € (0, ﬁ) that will be defined later, independently

of m, together with m. Let u € H}(Q) with [, W(u) dz < |Q|W (m) be
fixed. It is enough to show (3.3) for s = 3. Let us define

A

B

={z€Q:||u(@) - 1] >1-35},
={z e Q:|u(z)+1 <1-3s}

Wl

|

Clearly ¥5(u) C Az U Bs, hence
|s(u)] < [As| + |Bs|. (3.5)

Since W (u(z)) > W (s) for any z € As, using the assumption [, W (u) dz <
|Q2|W (m) and (3.2) we find

AW < [ W ds < [ W) do < 0w (m) < 1QIC0-m) (36)
A Q
Using (3.1), from (3.6) and (3.4) we obtain

2
44 < |0IC (1—"‘) Y.

1-3 2

We now estimate
1
/ udz < / (C+W (u))dz < C(|A§|+|Q|(1—m)2) < ClQ| <6_2 +(1- m)2) .
Az Ag

Therefore, since u(z) < —3 for any z € Bg, we have

|Qm = /ud:z::/ udw-l—/ uda:-i—/ u dz
Q As By Q\(A5UBs)

8

010l (5 + (- m)?) ~5[Bel + (2~ 5)( - s - |4)

IN

= C|Q (%2 +(1- m)2) + (2 —-39)|9| — 2|Bs| + (5 — 2)| A5

IN

offe] (%2 +(1- m)2) +(2—-73)|Q| — 2|Bs|.

Recalling (3.5), we deduce

Zalw)] < |4l + 185 < EZE2IR g (c% +{ ‘"”2)
. a +e)(12— )| +O|Q|(1_m)2+|6ﬂ’ (3.7)



W)

Figure 1: The double-well potential W and its convex modification W, in Theo-
rem 3.2.

where we have chosen € such that @ > 6C. In order to conclude the proof
of (3.3) it is enough to choose m in such a way that 1 —m < & ! and

(1+72)(1 —m)

5 +C(1-m)?<

Wl

O

Lemma 3.1, together with the isoperimetric inequality, allows us to esti-
mate the volume of sublevel sets of a given u € H} () the energy of which
is lower than the energy of the constant m.

The following estimate from below is the crucial result of this section.

Theorem 3.2. There ezist two constants m,C > 0, depending only on W,
such that for any m € (m,1) and any u € Héz(ﬂ) satisfying F(u) < Fe(m)
it is possible to find t};, € [-14+Cv/1 —m,1-Cv/1 —m] such that Xyx (u) # 0

and

Fe(u) > (aW + C(1 —m)log(1l — m))P(Et;n (u); Q)
(3.8)

+@W (<m+ 2%) A 1) - %(1 —m)?| Sy, (u)].

Proof. Let m € (m, 1) with 7m a fixed constant greater than m in Lemma
3.1 to be chosen later. Fix also u € H\ (Q) satisfying F.(u) < F.(m).

In order to get the estimate we introduce the following convex modifica-
tion W, of the potential W (see Figure 1)

W(t) fort >m
Wp(t) := < W(m)+ W'(m)(t —m) for t € (—1,m)
max{W (t), W(m) + W'(m)(t —m)} fort¢t< —1.

6



Let us define
tm = —sup{t > —1: W,,,(t) > W(t)}. (3.9)

It can be checked that ¢, — 1 as m — 1; more precisely, from the equality
W(—tm) = Wp(—tm) we get that |t, — 1] < Cyv1—m for some C > 0
depending only on W. Set

Q,, = {x €0 Wux) < Wm(u(x))}.

Then, by (3.9),

0, C {:1: €Q: |u(z)+1] < c’ﬂ} , (3.10)
for some C' > 0. Thus F.(u) can be rewritten in terms of Wy, and Q,, as
Fo(u) = /Q (5@ + %(W(u) - Wm(u))+> dz (3.11)
% W de+ % o, Wonlt)da =t T+ 114 111

We will estimate separately the three terms on the right hand side of (3.11).
The set Q \ Q,, contains the leading contribution to the energy. Indeed,
applying the Coarea formula to the first term we obtain

bm |Vu| | W (t) — Wi(t) n—1
re [0 </{u:t} (55 + o) ) &
> [ O W@ P w9 i (312)
tm

> <0W _c (1 S /tm I’/V—% dt)) o nf P(iw)i).

Since
tm Wm
/_tm i dt < ~O(1 — m)log(1 — m),

we get

I> (o +C(1—m)log(l—m)) inf P(5(u);Q). (3.13)

By Jensen’s inequality and (3.1) we also have

1 1 2
ell > |Q,|W (— U dx) > C|Qp]| (— (u+1) d:v) ,
|Qm| Qm |Qm‘ Qm
and
1
elll > |Q\ Qpu|Wo | ———— udz | . 3.14
> 10\ Ol (m\% o ) (3.14)

7



Set

1
T, = ————
ST\ Ol Jova,,

Possibly choosing 7 sufficiently close to one, we have that T, > m. Moreover

u dx.

T, <14+ C(1—m). (3.15)

Indeed, using Jensen’s inequality and the hypothesis F.(u) < F.(m), we

have
1

W(Ty) = Wn(Ty) < i6va—
) = W) < o aul Jona,

W (u) dx

. (3.16)

[ —
Since, by definition of Q,, T, < 1+ ¢y/1 — m, we can use (3.1) to get from
(3.16) that (1 — T3,)? < C(1 — m)?, which implies (3.15).
From (3.14) and (3.15) we obtain

W(u) dz < C(1 —m)?.

Let us now show that ]
=<1 —m). (3.18)
12|

From (3.15) we deduce
/ u dz < |Q| — Q| + C|Q|(1 — m).
A\,
Hence
mm|:/ udm—}—/ ud:cg/ w dz + 9] — Q] + C|O|(1 — m)
Qm, O\ Qpm
< =Qnl + CV1 = m|Qp| + Q] — Q] + C|Q(L —m).
We can rewrite the above inequality as
(2 = CV1—m)[Qn| < (C+1)[Q|(1 —m),

which implies (3.18).
Let us now define
Q| 1 /
—_— = (u+1) dz.
Q19 Ja,,

Recalling (3.10) and (3.18), and choosing 1 — m small enough, we get

M, :=m+2

Q
mSMugm—{—C%gl—}—C(l—m)

8



and

Q
M, —T, = %(1 )+ 0 (|21 - m))
Thus, we obtain
w (Tu) >W (Mu) - C|Qm|(1 - m)Q' (3'19)

Hence, using (3.17), (3.14) yields
elIl > QW (M,) — C|Qp|(1 —m)?

|Qm| ! 2
> QW (m+2W) -W (m)/m(u+1) dz — C|Qp|(1 — m)*.

Finally, it follows

Q
eIl + eIl > |Q|W<m+2%> (3.20)

2
+|Qm|(0 (ﬁ [ w) dm) _ o1 —m)?

1
W' (m)—— (u+1)dz].
|Qm| Qm
Note that, if ﬁ Jo, (u+1) d:v‘ < C(1 —m), from (3.20) we get
Qm
elIl + eIl > |QW (m+2%) — C|Qn|(1 — m)2. (3.21)

On the other hand, there exists a constant C' > 0, depending only on W,
such that if ‘m Jo, (u+1) d:v‘ > C(1 —m) then the last term in the right

hand side of (3.20) is positive. It follows that (3.21) always holds.

The level ¢}, can be chosen as a quasi-minizing level for P(3:(u); ), pos-
sibly adjusting the constant C. The inequality (3.8) now follows by plug-
ging (3.21) and (3.12) in (3.11), recalling that |, < |Z4 (u)| and using
also the monotonicity of W.

The fact that 3y (u) # 0 follows at once, since otherwise (3.8) would imply
Fe(u) > Fe(m), leading to a contradiction. O

Remark 3.3. Notice that, from (3.8) and the isoperimetric inequality, we
get
n—1 (1 — m)2

=4, 7 < CP(Sy,;0) < CIQY (3.22)



Corollary 3.4. Under the same assumptions of Theorem 3.2 we have
Ciso() + C(1 = m) log(1 — m)
—2W!'(m) + C(1 — m)?
UWCiSO(Q) + C(l - m) log(l - m) € (3 23)
- 2W"(1) + C(1 —m) 1-m
Proof. Notice that, if we apply the isoperimetric inequality after the sec-
ond inequality in (3.12), recalling Lemma 3.1, using the fact that |Q,,| <

|24, (u)] < |Z¢(u)| for any ¢t € [—tm,tn], and taking into account (3.21),
we get

1 1 g
S @ > [l > W

n—1 Q Qm
1-— 2 e
_Cmm‘% + C|Q| " (1 = m) log(1 —m),
which gives (3.23). .

4 Proof of the main results
This section is devoted to the proof of Theorems 2.1, 2.3 and 2.4.

4.1 Proof of Theorem 2.1

Let us prove assertion (). We can suppose m < 1, since the thesis is trivial
for m = 1. Assume by contradiction that for any C1 and any ¢y there exist
e € (0,60), m € (1 — Cye™+1,1) and u € HL () such that F.(u) < F.(m).
From (3.22) and (3.23) (recall (3.9)) it follows

(<2Wf/?1v)ViiSé((f12)_ - + Clog(1l — m)l_m> ﬁ)n—l

(1—m)*

(4.1)
n—1
<|By, (W] <C

It follows o

coy " VeiH < CC2enT. (4.2)

Then we are lead to a contradiction, since if Cy > 0 is small enough, then
there cannot be any m € [1 — Cien+1,1] for which (4.2) holds. This proves
assertion ().

To prove assertion (ii), let us denote by v : R — (—1,1) the (smooth
strictly increasing) absolute minimizer of the problem

inf{ / (%K'IQ + W(C)) dy : ¢ € Hie(R),((0) =0, lim ((y) = il} :
R y—+oo

(4.3)
Recall that —y"” + W'(y) = 0, which gives 7/ = \/2W ().
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Lemma 4.1. Let m € [1 — 5(R),1 — 028#1] for some constant Cy > 0.
Then there exists € > 0 such that

L7101 — o
Fe(em) < opnwy (M) (14 O(ellogel)) Ve € (0,¢).
(4.4)
Proof. Let z € Q be such that Bz(z) C Q. Let r(m) € (0,7/2) and take € >

0 small enough such that ¢|loge| < r(m) (which implies B, (;;)4¢|10g¢| (%) C
Br(z) C Q). Define

75(@) if r(m) —elloge| < |z — x| < r(m) + ¢|loge|
Uem(z) =4 —1 if 0 < |z —z| <r(m) —e|loge|
1 otherwise,
(4.5)
where v, joins smoothly v with its asymptotic values £1, so that

|log €] 1., ) )
[ GO+ W) ds = oy + O
~[loge]

and . (£|loge|) = £1. We now fix 7(m) in such a way that [, e, do =
|2|m. Note that

2wpr(m)"

1
9]

€ (m — Cel|loge|, m + Ce|loge|) (4.6)

for some contant C' > 0. A direct computation gives

Fe(uen) = Feluem;{r(m) —elloge| < |z — Z| <r(m) + €|logel})

e|loge| 1 ¢ 1 ;

- dt/ (—W )P4 =W (’y - )) dH™ 1
|log ¢ 1

= / dH"‘l/ (—( ;)2+W(fye)> ds
aBr(m)(O) —‘10g5| 2
= opnwer(m)" ' + O(e|log e])

R (%)_ (14 Ofel logel)),

where the last equality is a consequence of (4.6). Then (4.4) follows from
fs(ﬂs,m) < fs(us,n)- ]

Let us now prove assertion (ii). Assume

m € [1 —B(Q),1 — CpeniT] (4.7)

11



where (9 is a positive constant large enough that will be chosen later on
independently of €. It is sufficient to prove that the function %, ,, changes
sign for any £ > 0 small enough.

Assume by contradiction that min, , > 0. By (3.1), we have

Q
e (Te ) > /Wugm dm>—/ 2 dx >CL |(1—m)2, (4.8)

where the last inequality follows from Jensen’s inequality. On the other
hand, by Lemma, 4.1

(1—m)™ "% Fu(lem) < C|Q"T Ve € (0,6). (4.9)

Combining (4.7), (4.8) and (4.9) we obtain

n+1l n n—
Co,m e < (1—m) :1:(1_m)2— -
C (3 n—1 C
< —F.(u 1—-m) " » <
—= ‘Q' €(u5,m)( m) = |Q|% g,
which gives a contradiction if Co > c . O
| »+T

4.2 Proof of Theorem 2.3

Let us first show that
n—1
uEIIIJI%I%Q)]: c(u) > Jgncln P.n(E)+o (5n+1> . (4.10)

Indeed, if F.(m) = min,ep () Fe(u), then (4.10) is satisfied by choosing

E =0, since F.(m) = LW (m) = P, ;n(0) > mingcq P (E).

Assume now that there exists a function v € H},(Q) such that F.(u) <
Fe(m). Then m < 1, since for m = 1 the unique minimizer of F; is u = m.
Let Eg,m be a minimizer of

sin {ow P00 + 2 ((m 22) 1)}

From (3.8) and (3.22) it follows

) 12| | S (u)] n—1
7w P (e, (03 9) + W ( (m 250 ) A1) o (s +1)
o P(Bem:; ) + MW ((m + 2|E|8’|”|> A 1) +o (52—11}4.11)

Recall that, as in Remark (3.3), we have

Fe(u)

Y

v

|Eeml < ClQfem. (4.12)

12



To conclude it remains to prove that

Egm 1—m
| |Q| | < 5 || + o(1 — m). (4.13)

Indeed, assume by contradiction that |E5,m\ > C(1—m)|Q|, with C > 1/2.
Then, by definition of E ,,, we have

~ E 1—
P(E. ;) < P(E;Q)  VE such that H = Tm (4.14)

The estimate (4.13) follows from (4.12) and (4.14) recalling that, by assump-
tion (H), it holds

L (BN not
P(E, Q) = ’)’I,(Can)n @ +0(5n+1) )
for all E C Q such that |E| < C|Qen+1. The inequality (4.10) now follows
from (4.13) and (4.11).
Notice that, by assumption (H), there exists r¢ ,, > 0 such that

n—1
i 13 > PEm BT n+l
1y o) 2 P (B (0) 4 (657

and ) )
cp €t <o < ey ERHLL (4.15)

To prove the opposite inequality in (4.10), we first notice that, fixed any
E. ;, minimizer of P, ,, among all E C 2, we have

< C|QfenT.
(4.16)

1 1 1—m)?
P(Ee,m;Q) < —Ps,m(Es,m) < —Pe,m((b) < C|Q|Q
oW Ty €
In addition, from the inequality P; ,(E; ) < Pem(0), it follows
|Bem| < CIOJ(1—m) < C|QlensT.

Let us first assume .,
| Bz zo(enTl), (4.17)

then

Eem|\ _ 20
W(m+2 Q —W(m)-i-o(e +1),

which implies, using the isoperimetric inequality and the equality P ,,,(0) =
Fe(m),

P.n(Ben) = Pon(0) + 0 (751 ) = Fo(m) + o (751 ),

13



which gives

n—1
min P.. (E) > min F.(u +0(6"_+1).
ECQ e (B) u€HL(Q =(u)

If (4.17) is not satisfied, we can assume that |E., | > ce;*', for some
¢ > 0 and some sequence ¢, — 0 (for simplicity we shall drop the explicit
dependence on k). By assumption (H) and (4.16) there exists 2o € 92 and

re > 0 such that
n—1
(Begnl = B, (20) N9, Pen(Bem) = Peyn(Br,(z0)) +0(e751) . (4.18)

Let us now consider the function w. € H'(Q) defined as

d x E
we(z) := min {fys (%0)()) ,m +2| |Br|nl +cs}, Ve (4.19)

where dp,_(s,) is the signed distance from 0B;_(z¢), ¢ is as in Lemma 4.1,
andc. =0 (6#1) is chosen in such a way that ﬁ fQ w, dx = m. Reasoning
as in the proof of Theorem 2.1 (ii) and using (4.13), (4.18) , we then get

n—1

n—1
Fo(we) = Pen(Br.(20)) +0 (£751) < Pen(Buim) +0 (751

which gives (2.8). O
We conclude this section with the following result.

Proposition 4.2. Let € € (0,e9) and let M. be defined as in (2.3). Then
there exists a solution Tem, of (2.2) such that G.m, # ™.. Moreover, if Q
has the regularity property (H) we also have

Folegn,) = Folie) = Pom, (B, (50) Q) +0 (6571, (4:20)

where Te 7, is as in (4.15).
Proof. Let us prove the first equality in (4.20), namely

F.(m;) = min F.(v).
vEHL (Q)

Assume by contradiction there exists § > 0 such that

Fe(@em.) = min Fe(v) = Fe(me) — 6.
vEH, ()
Recall that @, 7, € C*°(£2) and
—e2 Aty + W' (U ) = %/ W' (. m) dz in Q. (4.21)
Q
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Therefore W' (maxqU.m) < [o W' (Uem) do < W'(Uem), which in par-
ticular implies that |g.m.| < C where C is independent of €. Therefore
Fe(@em, + ) < Fe(Uem.) + CA.

Take 0 < XA < Ced/8 and let uy := U, m, + ﬁ, so that ﬁ fQ Uy =M+ A
for A > 0. Then

CA CA
Fe(u)\) < Fs(ﬂf,me) + ? < fs(ms) - T < Fs(me + )‘)a

which contradicts the fact (that follows from the definition of 7.) that

Fe(me+A) = min  Fc(v).
vEH L (D)

Let us now show that there exists a nonconstant solution of (2.2).

Let us take a sequence m; 1 M, for which there exist corresponding
nonconstant minimizers u; of (2.2) with F;(u;) < F.(m;). Note that there
exists a constant C(g) > 0 independent of j such that

1 W(m])
||l 1) < Efs(uj) < 2 < C(e).
It follows that the sequence (u;) is precompact in L?(Q2) hence, up to a
(not relabelled) subsequence, u; — u in L?(Q) for some u € H'(Q) as
j — +oo. By semicontinuity of F., we have F.(u) < liminf; F,(u;) <
lim inf; F, (m;) = F.(M.), and therefore u is a solution of (2.2). Moreover,
applying Corollary 3.4 to each u; we can find ¢,,; such that |E_tmj (uj)| >

cen+1 for some constant ¢ > 0 independent of j. Passing to a subsequence,
we can find ¢,, > 0 such that |X_; (u)| > centi. We then deduce that u is
not constant.

The last equality in (4.20) follows from Theorem 2.3, applied with m =
m;, passing to the limit as 7 — +oo. O
4.3 Proof of Theorem 2.4

From Theorem 2.1 it follows
. € [1 — Chenti, 1 — cle#] . (4.22)
By Theorem 2.3 we get
F.(m.) + o (gT) = min Pem, (By (20) N Q). (4.23)

Therefore, recalling that

n—1

Ay — )2 + 0 (en—ll) ,

= _W(ms) = %
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we obtain

N2 —

(1 m6> — 2.7:5(?715)”_1 +0(1)
oW (1)

_ 2 ming >0 P; m. (B (%0))

T o(1).
|QW(1)en+T

(4.24)

Recalling the expression of P, ,,, we define an approximation of it (thanks

to assumption (H) and using an expansion of W) as

2e

QW (1 2 2
B(r) == caopynw,r™ L + M (1 — T, — catn r”) , r >0,

€]

where cq is as in (2.7).
Observe that P, m_(0) = ¢(0) and

P (Br(20) = $(r) + o(e"T) V1 >0.

Notice also that r = 0 is always a local minimizer of ¢; in addition, it turns

1
out that ¢ has two other critical points 0 < 7, < 7. < Cen+1, which are a

local maximum and a local minimum respectively.

Recall that from (4.23) and Proposition 4.2 we know that P, 7. (B, (zo))
1

1
has at least another local minimizer r. > 0 such that cen»+t < r, < Cen+i,

We claim that
e > Pe.

Indeed, assuming by contradiction r. < 7¢, from the inequality
d(r) > ¢(0) +er™t Ve 0,7

it would follow ¢(r.) > #(0) + cen+1. On the other hand

1 1

$(re) = P, (By, (20)) + o(en1) = $(0) + o(en+1),

leading to a contradiction. From (4.25) and (4.26) it follows

-

n—

d’(fs) < d’(Ts) = 45(0) + 0(€m)'
Moreover

$(7e) = Pegm, (Br, (20)) + o(e"1) > $(0) + o(e 1),

which implies

which is equivalent to

coun P! noy, € _ ( L)
i ]_ — n+1 .
( o Tawra) ) 7 metole
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(4.27)



From the equality ¢'(7:) = 0 we also obtain

2
2W" (1) (1 T, — CI?ZTH fg) 7o = (n — Doye,

hence
(n=1)owe 2cown .,

AN AR

1 -, =

Recalling (4.27), we then get

. ow |9 ntl 1 ( ;)
— PES| ntl 4.2
Te (2canW”(1)> entl +ole ) (4.28)
which implies
1—m, :ngn%l —I—o(sﬁrl),

where K is defined in (2.9). O

Remark 4.3. Notice that from the equality ¢(r.) = ¢(7c) + 0(8%) it also
follows

1
Te — Te = 0(en+T),

hence (4.28) holds also for 7.
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