A conjecture of De Giorgi on the squared distance function
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Abstract

We prove a conjecture of De Giorgi on the regularity of the squared distance function
from manifolds of arbitrary codimension in RV .

1 Introduction

In [7] De Giorgi made the following conjecture.
Let E CRY be a set and Q be an open subset of RN, such that ENQ = ENQ. Define

1., 1,
mp(a) = 5 [dist(@, B)?) = 5 imf |y —of’, @ €RY, (L1)

and assume that ng, € C¥(Q) (respectively C*°(Q?)). Then

N
E= U Ey,
h=0

where Ej, € V,C¥(Q) (respectively Ep, € V,C®(Q)) and E;NEj; =0 fori and j € {0,...,N},
iF 7.

The symbol C¥(€2) denotes the class of real analytic functions in €, and V,C%(£2) stands
for the class of h-dimensional real analytic manifolds without boundary in €2; an element
of VpC¥(€) consists of a discrete set of points which is locally finite in 2, and by definition
0 € VpC¥(2) for any h € {0,...,N}.

To understand the meaning of the conjecture some comments are in order.

(i) If we have given a compact h-dimensional manifold M of class C*° without boundary
embedded in RY, then the squared distance function 7,, from M is of class C* in a tubular
neighbourhood of M (see [1]). The conjecture is concerned with the opposite conclusion,
namely to infer the regularity properties of M once we know that 7,, is sufficiently smooth.
(i) If OA is a compact (N — 1)-dimensional manifold of class C¥, k > 2, then the signed
distance function from OA (and the squared distance function from 9A) is of class C¥ in a
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tubular neighbourhood of A, see for instance [13]. Conversely, if the signed distance function
from the compact 9A is of class C* in a suitable tubular neighbourhood of 0A, then 0A is of
class C*. Hence the conjecture becomes interesting for manifolds of codimension higher than
one.

(iii) As a consequence of the conjecture, there are no N-dimensional connected components
of F strictly contained in €2; in other words, if Ey is nonempty then it is composed of a union
of connected components of (2.

The aim of this short note is to prove the conjecture, and some slightly stronger versions
of it. The interest in the squared distance function and in its connections with the second
fundamental form of a manifold of arbitrary codimension was originated, as far as we know,
from the above mentioned paper of De Giorgi, and the more recent papers [8], [9]. Those
ideas were developed in [15], [3], [4] and [5] in connection with mean curvature flow in ar-
bitrary codimension. We also recall the papers [2], [14], [10] where it is possible to find a
rather complete description of the geometric meaning of the higher derivatives of the squared
distance function in terms of the second fundamental form and of its derivatives.

Finally, one of our motivations for proving such a kind of regularity result is that it can be
considered as a preliminary step toward an alternative proof of the local existence of a unique
smooth mean curvature flow in arbitrary codimension beside the one given in [12]. We recall
that the short time existence result for mean curvature flow in the one-codimensional case
using the signed-distance function was proved in [11].

2 Proof.

Given g € {1,..., N} we let Id, := diag(1,---,1,0,--- ,0) be the matrix having 1 (resp. 0)
repeated ¢ (resp. N — ¢) times. Given two n-dimensional symmetric matrices 77,75, when
we write T; > To we mean that T; — Tb is positive semidefinite. We set SV~ = {v € RV :
lv| = 1}, and for z € RY and p > 0 we let By(z) := {y € RN : |z — y| < p}; (-,-) denotes
the standard scalar product in RV, V (resp. V?) denotes the gradient (resp. the Hessian).
Given a closed set C and z € RV, we let

% (z) := {y € C: |y — z| = dist(z, C)}.
We begin with the following preliminary result (see [1] for related results).

Lemma 2.1. Let E be a closed subset of RY and let ng be defined as in (1.1). Then ng is
differentiable on E = {n, = 0}. In addition, at any point z € RN where Ny 15 differentiable,
we have

Vig(z)? = 2np(z) . (2.1)
In particular

Proof. Sia x € RY. Applying [6, Theorem 3.4.4] we have

Dtnp(z) = co({z —y:y e T"(z)}) ,



where D denotes the superdifferential and co(A) the convexified of the set A. Hence ify € E
we have
DFng(y) = {0} .

Again by [6, Theorem 3.4.4] it follows that the subdifferential D~ satisfies D7y, (y) = {0}.
Since 715 is semiconcave, it follows that 7y is differentiable at y € E and Vng(y) = 0.

Let now z € RY be a differentiability point of 7. If n5(z) > 0 then one verifies that also
dig = /2n is differentiable at x and Vng(z) = dg(x)Vdg(z), hence (2.1) follows from the
eikonal equation |Vdg(z)| = 1 satisfied by the distance function. If 7,(z) = 0 from the
previous arguments it follows V7 (z) = 0, hence (2.1) is satisfied. O

Remark 2.2. In general 7, is not of class C! on {n, = 0}, in the sense that there are no
open sets containing {n; = 0} where 7y is C'. Indeed if E := {(z1,72) € R? : 2120 = 0}
then 7 is not differentiable on {(z1,z2) € R? : 21 = z9}.

Theorem 2.3. Let M C RY be an embedded h-dimensional manifold without boundary of
class C¥, k > 2. Then for any y € M there exists an open set U of RN containing y such
that ny, € C¥Y(U) and 0y, (y + p) = 3|p|? for any p in the normal space Nu(y) to M at
y, with y +p € U. In particular the matriz V?n,,(y) represents the orthogonal projection on
Nu(y)-

Proof. The proof is the same as the one in [1], which is given under the additional assumptions
that M is compact and k = +oo0. O

As proved for instance in [13], if h = N — 1, then 7,, in Theorem 2.3 if of class C*(V').
The next theorem is the main result of the present paper.

Theorem 2.1. Let E C RY be a closed set, ng be defined as in (1.1), let k > 3 be an integer
and let Q CRY be an open set. Assume that

ng € CH(Q). (2.3)
Then any connected component of E N Q is a manifold of class C*~1(Q) without boundary.

Proof. From Lemma 2.1 we have

EnQ={yeQ:nuy) =0} ={y € Q: Vng(y) = 0}. (24)

For all y € ENQ we define the tangent cone Cr(y) to ENQ at y as

. Zn — Y
CE(y) o {Oﬂ/ e Z O, V= EﬂQSzligly,zn;éy |Zn - y| } )
Observe that Cg(y) = {0} if y is an isolated point of E N 2. We indicate with Tr(y) the
smallest vector subspace of RV containing Cg(y) and with Ng(y) the orthogonal complement
of TE(y) .
Since g is of class C*(Q2) and k > 3, we can consider the Hessian V%, on EN Q. In
particular, given y € ENQ and v € S"!, we can define

Ay (V) = (v, Vg (y)v).



We divide the proof into seven steps.
Step 1. We have
Viely) <ldy Vye ENQ. (2.5)

Let y € ENQ and v € SV, we expand ng at the point y + tv (for [t| positive and small
enough so that the segment which connects y with y + tv is contained in Q). From (2.3) and
(2.4) we obtain

1 1 1
S8 2 sy + 1) = 50, Vs + o) = 52,07 +olP) (2.6
Dividing by t and letting £ — 0 we conclude that
Ay(v) < 1. (2.7)

Since v € SV~ is arbitrary, (2.5) follows.
Step 2. We have
2 —

Let y € ENQ and v € S¥~L. Let |t| be small enough in such a way that y + tv € Q. Let
yr € ENQ be a point such that ng(y + tv) = £|y + tv — y|>. From (2.6) we have

) — 2
nwly +tv) = |22 v =0 0) + (1) (2.9

hence 9
lim Sy + ) = Xy (). (2.10)

Take now v € Cr(y) NS¥~! and choose a sequence {y,} C E NQ converging to y and with

‘Z::a — v as n — +oo. Setting ¢, := |y, — y|, from (2.9) and (2.10) it follows that

2 2
0 < Xy(v) = lim Y=V 1y < lim Y= 1yl =0,
n—00 n n—o0 n
Therefore A, (v) = 0 for all v € Cr(y) NSV~! and (2.8) follows.
Step 3. We have
My)=1 VyeENQ, VYveNg@y)ns¥-L (2.11)

Let y € ENQ and v € Ng(y) NSV~ By (2.9) it follows that |“5%|? is bounded for |¢|
small enough. Therefore, possibly passing to a (not relabelled) subsequence and recalling the
definition of T (y), we can suppose that 5% converges to a vector w € Tg(y) as t — 0.

It follows from (2.7), (2.9) and the orthogonality between v and w that

Y—Yt

- =+ =1+ >1,

2
IZAy(V):%i_I)%‘ +1/‘

and (2.11) follows.



Step 4. Assume that Q\ F # () and let z € Q \ E. Then
Vne(z) € Ng(y) \ {0} vy € TT¥(z). (2.12)

First we note that Vng(z) # 0 is a consequence of (2.2). Therefore, by steps 2 and 3, to
show (2.12) it is enough to prove that A\, (Vnge(z)/|Vne(z)|) = 1. Set z; := (1 —t)y + tz with
t € [0,1]. Note that there exists 6 € (0,1/2) such that z; €  for any ¢ € [0,6] U [1 — §,1].
Moreover y € I1€(z;) for any t € [0,1] and, by the triangular inequality, ng(2t) = 3|2 — y[%

Hence V(@) 2 2
NE\T 1 9 t

A _— = —— — = ——— =

y(\VnE(LEN) dt? 2|Zt vl =0 dt? 2 |1=0

Step 5. For all g € EN Q such that dimTg(y) = n < N there exist 0 > 0 and an embedded
manifold T'(7) of dimension n and of class C*~*(B, (7)) such that B,(g) C Q and

ENQN By(g) =T(7).
Let 7 be a point of EN and {7!,..., 7Y~} be an orthonormal basis of Ng (7). Define
Fi(y) == (Vng(y), 7", i=1,...,N—mn, y€Q,

F:=(F,...,Fy_) : Q5 RV™

We observe that F € CF~1(Q; RV ") and the Jacobian of F at 7 coincides with the orthogonal
projection of V21z(7) on Ng(7). In addition {y € Q : Vg(y) =0} C {y € Q: F(y) = 0}.
Therefore from (2.4) we have

{yeQ:F(y) =0} D ENQ. (2.13)

We choose o > 0 so that the Jacobian of F' has constant rank on B, (7). This is possible
since, from steps 2 and 3, the rank of the (N x N)-matrix V27 (7) is N — n. Let us define

(@) :=B;(7)N{y € Q: Fy) =0}

The Implicit Function Theorem ensures that T'(7) is a submanifold of class C* (B, (7)) of
dimension n. Note that the (2.13) implies

L) 2 ENQNB,(y) and T (1) = Te(y)- (2.14)

We now prove that

I'g) CENQ. (2.15)
Let us consider the distance function dg = /2n; then dg € C*(Q\ E). Define, for £ > 0,
the sets

S = {y € Q:np(y) = £2/2} .

Since dg = ¢ > 0 and |Vdg| = 1 in %, by the Implicit Function Theorem we have that, if
Y. # 0, then ¥, is a (N — 1)-dimensional manifold of class C*.
By the regularity properties of Ir(y) (see Theorem 2.3), we have that () is of class at least C!
in a neighbourhood of 7; moreover for any & € Nr(y) (7) NS¥~1and e > 0 small enough, setting

5



72(7) = T+ €7, we have np, ) (22(7)) = e2/2. From (2.14) we have 1) (2(7)) < 1 (3.(7)),
and since 1 (7:(9)) < 3|z.(7) — J|> = £2/2, we conclude that 1y (z(7)) = £2/2. Therefore
ze(y) € Ze.

From step 4 we deduce that 7 and V7, (z.(7)) are parallel, more precisely v = Vdg(z.(7)),
and §y = z.(y) — Vdge(z:(y)). From (2.12) it also follows that Tr(y) C T, (z:(7)).

Take an orthonormal basis {7!,...,7"} of Tr(y) and let

L := span {?1, e, T Vdg(z:(9)) }
be the vector space generated by Tx(7) and by the normal to X, at z.(y). Define
A:=3%.N (L + .’L'g(y))

Then A is a n-dimensional manifold of class C* in a neighbourhood of z. (7).
Let us consider the map IT¥ between two n-dimensional manifolds of class C¥~! defined as

IF:VNA—-SNB,@@ CTH), 0P):=z— V=),
where V is a suitable neighbourhood of z. (7). Observe that
ne(x.) CEnQ. (2.16)

From step 2 we can assume that [(V2n,(z.(9))7i,7:)| < 1/2 for € > 0 sufficiently small and
for any i = 1,...,n. It follows that the (tangential) Jacobian of II” is nonvanishing at z. (%),
hence by the Implicit Function Theorem we have that IT¥ is a local diffeomorphism around
z: (7). This, together with (2.16), concludes the proof of step 5.

Step 6. Let ¥ be a connected component of ENS). Then there exists an integer g € {0,..., N}
such that
Vg Vo) = Id, WyexX.

Since the trace of V2ng(y) is a continuous function with respect to y and ¥ is connected,
from steps 2 and 3 we have that the dimensions of Ng(y) and Tr(y) are independent of the
choice of y € 3.

The following step, together with step 5, concludes the proof of the theorem.

Step 7. Let y € ENQ be such that dim(Tg(y)) = N. Then g belongs to the interior part of
ENQQ.

Assume by contradiction that 7 belongs to the boundary of £ N Q. Let p > 0 be sufficiently
small, z € B,(y) \ y, and write z; := t§ + (1 — t)z. Define t* := sup{t € [0,1] : =, €
EnQforall s € [0,7]}. Note that t* < 1. Moreover z;+ € ENQ, since E N Q is closed.
Denoting by 3 the connected component of £ N ) containing ¥, we point out that s € X for
any s € [0,¢*]. Let us pick a decresing sequence {s,} C (0,1) converging to t* as n — +oo
and such that z,, € B,(7) \ (E N Q) for any n € N. By our assumption, step 2 and step 6
we have V27, (t*) = 0. On the other hand, from step / it follows that 1 is an eigenvalue of
V2np(sn) for any n € N. We conclude that 7, is not of class C? at x4, a contradiction. [



Remark 2.2. From the proof of Theorem 2.3 it follows that:

(i) given a connected component ¥ of £ N there is an open set containing ¥ which does

not intersect any other connected component of £ N );

(ii) any connected component of £ N of dimension N is a connected component of €2;

(iii) the assumption k£ > 3 in Theorem 2.1 is used only in the proof of step 5, in order to

show that 7y, is of class C! in a neighbourhood of 7 and z.(7) € %.;

(iv) if in the statement we substitute k£ with co (resp. w) than the thesis holds with k& — 1

substituted by oo (resp. w); then the conjecture of De Giorgi follows.
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