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Abstract

We propose a level set method for systems of PDEs which is consistent with the
previous research pursued by Evans in [12] for the heat equation and by Giga and Sato
in [21] for Hamilton-Jacobi equations. Qur approach follows a geometric construction
related to the notion of barriers introduced by De Giorgi. The main idea is to force a
comparison principle between manifolds of different codimension and require each sub-
level of a solution of the level set equation to be a barrier for the graph of a solution of
the corresponding system. We apply the method to a class of systems of first order quasi-
linear equations. We compute the level set equation associated with suitable first order
systems of conservation laws, with the mean curvature flow of a manifold of arbitrary
codimension and with systems of reaction-diffusion equations. Finally, we provide a level
set equation associated with the parametric curvature flow of planar curves.
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1 Introduction

Let m,n > 1 and consider a smooth function u : [0,7] x R* — R™ which solves the system of partial
differential equations
u; + F(t,z,u, Vu, V?u) = 0. (1.1)

The graph T'y,.) = {(z,y) € R* x R™ : y = u(t,z)} of u(t,-) is a smooth m-codimensional manifold
embedded in R™™™ which smoothly evolves in time. System (1.1) can be expressed as a geometric
evolution law for the graph of u in the form

VJ'(SL",u(t,:L')) =y (1.2)

where V' denotes the normal velocity, and ¥ is an appropriate function of ¢, x, the tangent space to
Ty(t,) and the second fundamental form of T'y,.) at (z,u(t,z)). A first question is to ask whether
it is possible to look at ['y,.) as the zero-level set {(z,y) € R"™ : w(t,x,y) = 0} =: Ty, of a
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scalar function w(t,-) : R"t™ — R solving an appropriate partial differential equation (called level set
equation) of the form

wy(t,z,y) + F(t,z,y, Vu(t, z,y), Viw(t,z,y)) = 0. (1.3)

It is then natural to try to relate X, .) with the graph of an R™-valued function of n variables,

which could be interpreted as a solution of the original system (1.1). Note that if Fis geometric
(Proposition 3.6), then each level set of w evolves in time with a law depending only on the geometry
of that set, so that its evolution is unaffected by the neighboring level sets of w. There are several
problems that arise in implementing such a program, some of which have been already considered in
the literature. Even if m = 1, the level set equation can be strongly degenerate so that the available
theories of weak solutions (viscosity solutions, for instance) cannot be directly applied. Furthermore,
the zero-level set of w may develop overturning in finite time and cannot be written as the graph of
a real-valued function v on R™. This is the case of Burgers’ equation (n = 1)

us +uVu =0 u:[0,T]xR—=>R (1.4)
The corresponding level set equation is
wy +yw, =0 w:[0,T] xR - R, (1.5)

and it is well known that ¥, ,.) is not, in general, a graph [15]. Indeed, the most that one can hope
is that the graph of any reasonable solution to (1.1) is contained in (.. A further difficulty (and
this is our main motivation here) is that if m > 1, 'y(,.) has codimension higher than one. In spite of
these problems, there are reasons for which this program is of some interest: for instance, it may help
to understand for which degenerate equations a certain theory of weak solutions applies. In addition,
finding a solution of graph-type inside X, .y could be related to selection principles for problems of
the form (1.1) which do not have uniqueness. In these directions two main examples have already
been considered. In [12] Evans studied the case m = 1 and F(X) = —tr(X), X an (n x n) matrix, for
which (1.1) is the classical heat equation. In this case the author computed explicitly equation (1.3),
and the corresponding geometric evolution of ¥, .) which, in the case n = 1, reads as

K Vuw

P T

vt =

k the curvature of ¥,,(; .). The function F has a singularity of the type (wy)~2 near {w, = 0} where w,

stands for the vertical part of the gradient of w. Such a degeneration of F prevents, as far as we know,
a direct application of the theory of viscosity solutions, and a special regularization of the equation
is needed. In the case n = 1 the author proved that the level set of solutions of the approximating
equations suitably unfold multivalued initial data to become graphs and any limit of approximating
solutions can be viewed as solution of the heat equation.

The other example in which the program has been carried out is for m = 1 and for first order equations.
In particular, Giga and Sato in [21] considered Hamilton-Jacobi equations, for which (1.3) takes the
form

wo (t, 2, y)
wi(t,z,y) —w,F (t,z,y,———2) =0
t(a Jy) Y (7 'Y, wy(t,x,y) )
hence F is singular at w, = 0. Under a suitable monotonicity assumption on F' and on the initial
datum, the authors proved that it is possible to remove the singularity of F' and, using viscosity theory,
to obtain that X,y is the graph of a unique function u (called L-solution) which is consistent with
other notions of solution considered in the literature.



In [17] Giga introduced the notion of proper viscosity solution for a class of equations (including
scalar conservation laws) the solutions of which may develop discontinuities in finite time, and proved
several comparison principles. In general, the graph of a proper viscosity solution does not represent
the zero-level set of a solution of the associated level set equation since the overturning phenomenon
may occur. In [18] Giga showed that (m = 1) the graph of a proper viscosity solution can be obtained
through the level set approach developed in [21] by adding the vertical singular diffusion term

wy —wy F (t,w,y, —%) = C|Vw| (&) . (1.6)
y

y [wy|

The author showed that there is a threshold of the value of C' > 0 that prevents overturning of the
zero-level set. In the case of Burgers’ equation the solution of (1.6) does not depend on C for C' large
enough, and its zero-level set is the graph of the proper viscosity solution, which is also the unique
entropy solution. Giga also extended the notion of proper viscosity solutions to a class of second order
problems and modified the level set method to have coincidence between the level set of solutions and
the graph of proper solutions.

Independently, Ambrosio and Soner [1], following a suggestion of De Giorgi [11], described the mean
curvature flow of a manifold of arbitrary codimension as the zero-level set of the viscosity solution of a
scalar equation whose level set X, .y evolves with normal velocity equal to the sum of the n smallest
principal curvatures.

What we describe here is a temptative extension to systems of the viscosity theory for solutions of
partial differential equations. The level set method we propose follows a geometric approach based
on the idea of barriers introduced by De Giorgi in [11]. More precisely, to find the expression of
the level set equation for w, we force a comparison principle between evolving manifolds of different
codimension and require each sub-level set of w to be a barrier for the solutions of the corresponding
system. The velocity w; shall be equal to the minimum of the projections on Vw of the velocities
(0,u;) of all smooth graphs (z,u(t,z)) evolving according to (1.1), which are locally tangent from
one side to the level set. We remark that, when m = 1, the level set equation of w is such that the
geometric evolution law (1.2) of T'y(,.) coincides with the one of X, .y, provided that (1.2) verifies
the comparison principle. We also recall that the idea of a comparison principle between evolving
manifolds of different codimension appeared, for instance, in [4].

One of the advantages of this approach relies on the fact that, in general, equations may be easier
to solve and study than systems, both theoretically and numerically. On the other hand, there are
serious limitations which do not arise in the usual viscosity theory. For instance, even if system (1.1)
is well-posed and the function F is smooth, the corresponding level set equation can be strongly
undefined, i.e. F' can assume the value +oo in large regions. However, there are few cases of first
order systems where (1.3) is well defined and the usual theory can be applied (see Section 4).

The paper is organized as follows. In Section 2 we fix the notation and recall some preliminaries
of differential geometry. In Section 3 we present the general procedure to devise the level set equa-
tion (3.3) associated with system (1.1). We illustrate the geometric idea underlying this approach
and we list the main properties of F. In Example 3.4 we compare the method with some results
known in the literature, when (1.1) is a scalar equation, in particular for the heat equation [12] and
the Hamilton-Jacobi equation [21]. In Section 4 we compute the level set equation associated with a
system of first order PDEs and we prove the consistency of the method under suitable assumption on
F (Proposition 4.2). In Section 4.1 we show that in the case of quasi-linear first order systems (1.1)
where F is of the form

F(t7x7y7p) = Pf(tJ 'Z-J y) - g(tJ 'Z-J y) E Rm? (t,.Z',y,P) e [07 +w) X Rn X Rm X men?

with f: [0,4+00) x R* x R™ — R”, g :[0,400) x R* x R™ — R™, the level set equation (3.3) is a
transport equation, i.e. wy + f(¢,z,y) - w, + g(t,z,y) - w, = 0 and admits a unique viscosity solution



Figure 1: n =1, m = 2.

provided that the initial data are sufficiently smooth. We also investigate systems of quasilinear
equations of the form

F(t,.’E,y,P) = ZBJ(tamay)Pej - g(t7$7y) € Rm, (t,m,y,P) € [O,T] x R™ x R™ x men)
j=1

with B : [0,4+00) x R* x R™ — M™*™, g:[0,400) x R* x R™ — R™ and {es,...,e,} the canonical
basis of R™. The associated level set equation (3.3) assumes the value +oco in large regions; for
instance in Example 4.8 concerning the wave equation, ﬁ’(q), q € R x (R? \ {0}), is finite only in two
hyperplanes of R x (R? \ {0}).

In Section 5.1 we show that the method is consistent with the mean curvature flow of a graph in
arbitrary codimension. Systems of reaction-diffusion equations

u — Au+f(u) =0, (t,z) € [0,400) x R*

are considered in Section 5.3. In particular, when f is Lipschitz, classical sub- and supersolutions for
the associated level set equation are detected. Finally, we deal with 1-dimensional (n = 1) systems of
quasi-linear equations in Section 5.2 and we produce a level set equation associated with the parametric
curvature flow of a planar curve.

2 Notation

In the following m and n denote positive integers, - is the Euclidean canonical inner product in R, and
‘H* the k-dimensional Hausdorff measure. Vectors will be always denoted by small letters, matrices
by capital letters, and higher order tensor sometimes by greek capital letters. We set Rd := R? \ {0}
and we denote by {e1, ..., en} the canonical basis of R*. Given two vectors a € R*, b € R™ we denote
by a ® b the (n x m) matrix (a ® b);; = a;b;; in particular, when n = m, a ® b is the tensor product
of a and b.

We denote by M™*™ (resp. Sym?) the vector space of real (m x n) matrices (resp. (d x d) symmetric

matrices) equipped with the norm |M| := 1/Zij(Mij)2‘ By A > B (resp. A> B), A,B € Sym?, we

mean that the quadratic form corresponding to A — B is nonnegative definite (resp. positive definite).
Given M € M™*™ (resp. ¢ € R?) we denote by M* (resp. ¢*) the transposed of M (resp. of q).



We denote by 7"*"X™ the space of tensors X = (X',...,X™), X € Sym”, i = 1,...,m. Given
X € TrxmX™ by tr(X) we mean (tr(X'),...,tr(X™)) € R™; in particular, when n = 1, tr(X) = X.
Given ¢ € R™, by ¢X we mean ) ;- ¢;X* € Sym”. Finally, we sometimes denote by Opn,xn (Tesp.
04) the (m x n) (resp. (d x d)) zero matrix, and by Id, the (d x d) identity matrix. For ¢ € Rd we let
M,:=Idi—q® q/|q|* be the orthogonal projection on the hyperplane ¢ orthogonal to ¢. If d = 1
then Hq . =0.
We identify M1*™ with R™; consequently P € M!*™ will be also denoted by p. Similarly we identify
Trxnxl (regp. T1*1Xm) with Sym™ (resp. R™). When we need to emphasize the splitting R*+™ =
R™ @ R™, a vector ¢ € R™™™ can be indicated as ¢ = (g, ¢,), ¢, the “horizontal” part and ¢, the
Myn My
My, M., > To
emphasize the vector character of a map, boldface symbols will be sometimes used.
Given a C? function f = (f1,..., f%) : (0,00) x R* = R?, we denote by f; € M'* the time derivative
of f, and by Vf € M%*" (resp. V2f* € Sym", a = 1,...,d) the gradient of f (resp. the hessian of
% a=1,...,d) with respect to z € R*. If z = (x,y) € R**! then by f, € M?** (resp. f2, € Sym")
we denote the gradient of f (resp. the hessian of f) with respect to x = (x1,...,2%). Coherently,
Vf =1, V2f*=f% and V2f =f,, € T"*¥*4_ Furthermore, by f., and f,, we mean respectively
(fz)y € MF*Uand (f,). € M!*k,
Given F : dom(F) C [0, +00) x RY x R, x R x Sym? — R, we recall that F is said to be degenerate

elliptic if

“vertical” part of ¢q. Similarly, a matrix M € M™*™ can be denoted by M = (

f(t7 x7 T7 q7 M) S f(t7 m? r? q7 N)
for a'll (tJ :E’ /rJ q7 M)’ (tﬂ x? T) q’ N) E dom(f)’ M t N‘

Lemma 2.1. Let A, B,G be (n X n) symmetric matrices with G = 0 and A = B. Then tr(GA) >
tr(GB).

Proof. Let /G = 0 be the unique (n x n) symmetric matrix such that G = vGv/G. Then
VG(A - B\WGE- £ = (A— B)WVGE-VGE > 0.
Since tr(GC) = tr(v'GCVG) for C € Sym™, the assertion follows. O

2.1 Preliminaries of differential geometry

Let U C R™ be open, ¢ : U — R*™™ be a smooth embedding, and I := ¢(U) be the smooth manifold
in R"*™ with codimension m parametrized by ¢. Given a vector v € R"™™ and z € I', we denote
with IIy_pv the orthogonal projection of v on the normal space N.I" to I at 2.

Given z € U, let g;;(2) := ¢z, (2) - ¢o, (2), and denote by (g% (z)) the inverse matrix of (g;;(z)). The
second fundamental form Bg(z) of T at ¢(z) is defined by

Bg(z)[¢zi (2), ¢, (z)] := HN¢(E)F(¢E1'Z]' (), 4,j=1,.,n. (2.1)

The mean curvature vector ng(m) of T at ¢(z) is defined by

n

"?g(z) = ZBf;(m)[Tm] = z g“(w)Bi(z)[%,- (33);%,- (z)]
=1

ij=1

My,.r | 2 97(@)¢ez, (@) | , (2.2)

ij=1



where {71, ...,7,} is an orthonormal basis of the tangent space TyyI" to T at ¢(x).
If {¢(t,-)}: is a smooth family of n-dimensional embeddings of U in R**™ | parametrized by time,

V= TNy 6(60) (1) (23)

is the normal velocity of {¢(t,-)}+.

Let u: [0,00) x R® = R™ be a C? function. Then the graph of u(t,-),

Cug, = {(z,u(t,z)) : z e R*}
is a C? manifold in R™™ with codimension m. Letting ¢(t,z) := (z,u(t,)) in (2.1) and (2.2), the
second fundamental form of Ty .) at (x,u(t,z)) is given by

TCuge,- ..
B(z,(u’(z,w))[(ﬁwi (tJm)Jd)zj (t,.CL')] = HN(z,u(t,z))I‘u(t,_)(Oauwiw;‘ (tax))a %] = 17---7n7 (2-4)

and the mean curvature vector of T'y,.y at (z,u(t,z)) by

Tuge,- - 17
K/(t’;;) : = HN(z,u(t,m))Fu(t,-) Z g ](t7 x)(07 u-’timj (t7 x)) ° (2'5)

1,j=1

The mean curvature flow equation of I'y,,.) reads as

n
VJ_ = HN(m,u(t,m))Fu(t,-) (0’ ut) = HN(z,u(t,m))Fu(t,-) Z gZ] (05 u(l?iZj) ’ (2'6)

1,j=1

where u;, g%/, u,,,, are all evaluated at (¢, ).

When m = 1, we denote u by w; let v,(t,-) = % be the unit normal vector to the

hypersurface I'y(;,.), with positive last component. Then

kv = div <L> vy = —div (V) Va, (2.7)

V14 |Vul?

and (2.6) becomes
Ut . Vu
—— =div | ——— | . 2.8
V1+|Vul? (,/1+|Vu|2> 28)
When n = 1, let 7(t,-) be the unit tangent vector to the curve I'y,.) defined as

) e LV
T T+ |Vt z)?

Then gi1(t,z) =1 + |[Vu(t,z)|?, ¢*(t,z) = (1 + |Vu(t,z)?) L. Equation (2.5) reads as

=: (7s,7y) € R x R™. (2.9)

1 T
Taty = — __(—Vu-V?u, (1 +|Vu/?)V2u—-Vu-VuVu)=——, 2.10
K = e ( (L+[vul) )= @10
and therefore system (2.6) becomes
P s S (2.11)
I e '
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Let w: (0,00) x R*™™ — R be a C? function with w? 4+ |Vw|? # 0 and define
Zw(t") = {(may) € Rn—i—m : UJ(t,.Z',y) = 0}

Setting v := Vw/|Vw| we have

I, VZuwll
BYw) = — (Tt vt 2.12
( [Vl ) (212
I, V2wl
Do) = oy [ xt T wd X 2.13
" (o) =

The normal velocity of ¥, ,.) is &”—;ﬂ‘ and the mean curvature flow equation of X, ) reads as

Wi II LV21UH n
— = —t —r- v . 2.14
P~ ( wul )Y 214

3 The general procedure F — F

Let n,m > 1 and F : [0, +00) x R} x R* x Mp™"™ x Tp*"*™ — R™ be continuous. Consider a system
of partial differential equations of the form

w; + F(t,z,u, Vu, VZu) = 0, (3.1)

for a C? vector-valued function u : (0,T) x R} — K. When m = 1 the function F will be denoted
by F. We now introduce the scalar level set equation associated with (3.1).

Definition 3.1. We define the function F as
dom(F) :=[0,+00) x R} x Ry x R x (R \ {0}) x Sym}; ™,

~

F(t,z,y,q,M) = — inf  F(t,z,y,P,X) - q,, 3.2
(t,2,y,q9, M) oo (t,z,y )-q (3.2)

where

" R My, Miy nem
4= (an-q,) € " x Ry, M=(M§: M‘v‘v)esym+,

A(g, M) := {(P,X) € M™*" 5 TmXnxm . g 4 g P =,

Mhpn + My P + (Mypy P)* + P*My P + q,X < O,}.
The scalar partial differential equation
wi(t,z,y) + F(t,z,y, Vw(t, z,y), Vw(t, z,y)) =0, (3.3)
for w:(0,T) x R™™ — R, is called the level set equation associated with system (3.1).
Remark 3.2. Note that F : dom(ﬁ) — (=00, +00] and g, is not allowed to vanish.

Let us explain the geometric meaning of Definition 3.1.



Remark 3.3. Equation (3.3) says that w; equals the minimum of the projections on Vw of the
velocities (0,u;) € R} x R of all regular evolutions (z,u(t, z)) of graph-type, with u solution of (3.1),
which are tangent (first constraint in A(g, M)) to the zero-level set of w(t,-) from one side (second
constraint in A(g, M) involving the second fundamental forms of ¥,,(;,.y and of I'y(,.)). This can be
obtained by formally differentiating the equation w(t,z,u(t,z)) = 0 as follows.

Let w: (0,T) x R™™ — R be a smooth function with w? + |Vw|?> > 0 and suppose that the zero-level
set X (t,.) of w(t,-) is locally represented as the smooth graph in the y-directions as

y=u(t,r), t>0,zeR", yeR",

with u solution of (3.1). Differentiating, we have

0= %w(t,w, u(t,z)) = wi + wy - uy (3.4)
0= (w(t,z,u(t,z))) =ws+w,Vu (3.5)
On = (w(t, z,u(t, 1)), = Wae + Way VU + (w2 VU)* + Vu*wy, Vu + w, Vu, (3.6)

where the right hand sides are evaluated at (¢, z,u(t, z)).

Condition (3.5) (compare the equality in the Definition of A(g, M)) implies that the tangent space (of
dimension (n +m — 1)) to X, contains the tangent space (of dimension n) to Ty, ..

Condition (3.6) (compare the inequality in the Definition of A(g, M)) is equivalent to the following
equality between the second fundamental form of ¥, .) at (z,u(t,z)), and the second fundamental
form of T,y at (z,u(t,z)). Setting é(t,z) := (2, u(t,z)), we have

w(t, 1 * *
(z; Nepair ba,] - v(t,2,y) = al (Wez + Way VU + (Wey V)™ + Vuwy, Vu),;

—V(t,.'L',y) ) ((O,ll(t, .73)))

TiT;j

= (il‘:(l.tl(t z))[¢wn¢m]] : V(t,.’L',y),

where v(t,z,y), being normal to X,,.), is one of the normal vectors to 'y, at (z,u(t,z)), and
the quantities on the right hand side in the first equality involving w (resp. u) must be evaluated at
(t,,y) (resp. at (t,2)).

Notice that if m = 1 then v = v, and

-Viu 0O,
m,. ( o o )HVL
u(t z;) P 'I/t,.’II, = - z z; > P,
(zu(tz) [¢z d’]] ( y) W [¢1 ¢_7]

= —1 ¢ ( Vz Onxl )(ZS
S O 0 )0

Example 3.4 (The codimension 1 case: consistency with [12] and [21]). Let m = 1. The
constraint ¢, +¢, P = 0 in A(g, M) can be solved for P = —=1 € M'*"_ If in addition F is degenerate

q

elliptic then

M MV‘P MVP* P*Mva
qu(t,a:,y,—Z—h,X)quF(tmy,_q_h hh + My P + (My P)* + )

’

qy a4
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Therefore,

ﬁ(trzayaan) = - inf qu (taxaya_q_ha‘;k')
XlMhh*2th®%+Mvv%®%+qVXS0 9y
— _F (t,w,y, _I _ 9" Mo = g, M ®3‘Ih + (g, ® Qh)> .3
4y qy

If F(X) = —tr(X), X € T"*"*1 then (3.3) is the level set heat equation studied by Evans [12] (see
Corollary 5.4 (i) with f = 0). If F does not depend on V?u then (3.7) coincides essentially with the
level set equation studied by Giga and Sato [21], i.e.

~

F(t,z,y,9) = —¢.F(t,2,y,—q,/q,), ¢ #0.

Remark 3.5. In Definition 3.1 we assume that the domain of F is the whole of [0, +00) X R™ x
R™ x R” x R x Sym™*™. In Section 5.4 we will consider a system of PDEs corresponding to the
parametric curvature flow of planar curves (n=1, m=2), for which F is undefined at P = 0.

Proposition 3.6. The function F defined in (3.2) verifies the following properties:

(i) F is geometric, i.e.
F(t,z,y, \q, AM + 0q ® q) = AF(t,2,y,q, M), (3.8)

for all X >0, 0 >0, (t,z,y,q,M) € dom(ﬁ');
(%) F is degenerate elliptic.
Proof. (i) follows from Definition 3.1. (i) holds since
My + My P + (My, P)* + P*M,, P = (1d,, P*)M (Id,,, P*)*,

and
(Id,, P*)M(I1d,, P*)* = O, whenever M = Opqp, P € M™X™,

Therefore
A(g, M) C A(g, N) whenever M — N = Opqm.

O

Remark 3.7. It is not difficult to show that Fin general is not upper semicontinuous. In many cases
F fails to be bounded on bounded sets, and in general does not satisfy any continuity condition at

(qa M) = (07 On-i-m)
4 First order systems
Let u:[0,7] x R* — R™ be a C! solution of
u +F(t,z,u,Vu) =0 in (0,7] x R", (4.1)

with F : [0,T] x R* x R™ x M™*"™ =: D — R™ continuous and Lipschitz in (z,u). Then the function
F:[0,T]xR* x R™ x R* x RI* =: D — (—00, +c] is given by

~

F(t7$7y7q) = —1nf{F(t,:L',y,P) 4y :Pe menaqh + qu = 0}



We assume that F is real valued and can be extended in a continuous way on the whole of [0,T] x
R™ x R™ x R™ x R™. Let us further assume that there exists a modulus of continuity 71 such that

~ ~

|F(t,z,y,9) = F(t,2",y', @)l <ma((lz — 2| + |y — y'[) (1 + |a])),
and that for every C > 0 there exists a modulus m¢ such that

|F(t,z,y,q) — F(t,z,y,¢')| <mc(lg—¢'|),  for|ql,|¢'| < C.

Let wg : R"*™ — R be uniformly continuous and w : [0,7] x R**™ — R be the unique uniformly
continuous viscosity solution [9] of

we + F(t,z,y, Vw) =0  in (0,T] x R+m
(4.2)
w(0,z,y) = wo(z,y) (z,y) € R**+™.
Remark 4.1. Let n = 1. Then

(1) F(t,$7y7qh,qv) = —inf{F(t,.’I},y,—qu#qv +PI) “qy : P! € Qd_};

(i) if F(¢,2,y,P) = a(t,z,y, P)P + b(t,z,y, P), with a € L®(D), b € L*°(D;R™), then F is
bounded;

(iii) let A € M™>*™ be a diagonal matrix which is not a multiple of the identity, and set F(P) = AP.
Then F is not real valued (cfr. Example 4.8).

Proposition 4.2. Let uy € C1(R",R™) satisfying Ty, C Su,- Assume thatu: (0,T)xR* — R™ is a
C! solution of (4.1) with u(0,-) = ug(-). Assume further that F(t,z,y,0,0) =0 and y — F(t,z,y,q)
is L-Lipschitz. Then Ty.y C Ly, for any t € [0,T).

Proof. Let us prove that the function z(t,z,y) := el*|y — u(t,z)| is a supersolution of (4.2), with
wo(z,y) = |y —ug(z)|. If this is true, being 0 a solution, we have 0 < w(z,y,t) < z(x,y,t) by the
maximum principle, and the assertion follows. We have

Lt y ll(t,ﬂ'f)
7 + Vu=0. 4.
| ( ’ )|, R Zy u 0 ( 3)

zZy=e€
Hence, using the Definition of }A?’,
2z =Lz + z,F(t,z,u,Vu) > Lz — ﬁ(t, Ty, Zg, Zy) > —ﬁ'(t, T, Y, Zay Zy)-
O

Remark 4.3. Let n = 1 and 7 be defined as in (2.9). If the function u satisfies (4.1), then T'y,.
evolves with the following geometric law:

VJ'(t,.CL',y) = _HNru(t’_)(z,y)(OaF(taxayaTn/TS))a te [0,+OO), (-’E,y) € Fu(i&,-)-

4.1 The quasi-linear case

Let f:[0,+00) x R x R™ — R™ and g : [0, +00) X R™ x R™ — R™ be continuous and Lipschitz in
(z,y). Consider system (4.1) with

F(t,:c,y,P) = Pf(t,.’lf,y) - g(tamay) € Rm: (t,.fL',y,P) €D. (44)

10



Then

~

F(t,w,y,q) = f(t,.fl?,y) “gn + g(t7$7y) 4y, (taway7q) € D7 (45)

so that the associated level set equation is the linear transport equation
we +£(t,z,y) - we + gt z,y) -wy =0. (4.6)

Let wo : R” x R™ — R be bounded and uniformly continuous. Then there exists a unique bounded
and uniformly continuous viscosity solution of (4.6) with w(0,-) = wo().

Proposition 4.4. In the same hypotheses of Proposition 4.2 on ug, u, and assuming u € Lip([0, T] x
R*,R™) and g =0, we get
Ew(t,~) = Fu(t,-); t e [O,T].

Proof. Let z(z,y,t) := e Ltly — u(t,z)|. We claim that z is a subsolution of (3.3) for some L > 0.
Indeed, recalling (4.3), we have

~

2zt = —Lz+ z,Vuf(t,z,u) = —Lz — z,f(t,z,u) < —2,.£(t,z,y) = —F(t, 2,9, 22, 2y),

for some L > 0 depending on ||Vul|, on (0,T) and on the Lipschitz constant of f. As a consequence
we get z < w. The thesis now follows from Proposition 4.2. O

Using the method of characteristics we get the following representation of solutions.
Proposition 4.5. Assume that g =0 and £ = f(t,y) € C1([0,T] x R™,R"™); moreover assume that
wo(z,y) = ¢(y —uo(z)), =z €R",y € R™,

with ¢ € C2(R™), ¢=1(0) = {0} and ug € C*>(R™,R™). Then

¢<y—u0 <x—/0tf(s,y)ds)>. (4.7)

w(t,z,y)

In particular if £ = £(y) then

Tue,y = {(=,y) 1y —uo(z —£(y)t) =0}
= |J (z+tf(uo(2)), u0(2))

is a m-codimensional manifold of class C% in R**™ for any t € [0,T).

Remark 4.6. Following the approach of [15], one may regularize equation (4.6) as follows

wy +£(t,z,y) - w, + g, z,y) - wy = C|Vw|divy <|Z—y|> , C>0. (4.8)
y

As in [15], it is reasonable to expect that the solution of (4.8) does not depend on C, for C large
enough, and that its zero-level set corresponds to the entropy solution of u; + Vu f(t,z,u) = g(t, z,u).

We also investigate systems of quasilinear first-order partial differential equations of the form

F(t,iL‘,y,P) = ZBj(t7x7y)Pej - g(taxay) € Rma (t,x,y,P) € D7 (49)

Jj=1
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with B; : [0, +00) X R* x R™ — M™*™ (j =1,...,n) and g : [0, +00) x R* x R™ — R™ given.

From Definition 3.1 and writing P; := Pe; = —;Lf"zqv + 7, with r; € M™*L r; € ¢, we get
F(t7w7y5Q) = - inf Z(qu](tamay))P] —q,- g(tamay)
Pj e mel =
&, + ¢ P =0,
i=1..n
i ABULEIE | o )= it S0, B 62,07
|q|2 v PR mel' vV J
j=1 v 7j=1
T] € qv s
i=1,.
if ¢,Bj(t,z,y)-r=20
aBj(t,z,y)q; P
th, | B )% 4 g, - gt,2,0) Vreqgr
= av Vi=1,...n (4.10)
+00 otherwise

Remark 4.7. The level set equation associated with (4.9) has the form

" wy B;(t, z, y)w;
Wy + Z% 2 |u) E L+ wy - g(t,z,y) = 0. (4.11)

provided that w, is an eigenvector of B for all j =1,...,n
Example 4.8 (Wave equation). Let us consider the wave equation
Vit — Uge = 0 v:[0,T)xR—= R
By setting u! := v; and u? := v, it follows n = 1, m = 2, and
w,+F(Vu) =0, u:[0,7)xR—= R
where

0 -1

F(P) = AP, A::(_l 0

) P€M2X1.

Then (4.10) becomes

q,Aq;

q .
Flg = ™ g
+oo otherwise

. . — J_
if g A-r=0 Vreg; gERXR.

q,Aq;

2 = \. In addition
9y

The eigenvalues of A are —1, 1, and if ¢, # 0 is a A-eigenvector of A then

the condition g, A - r = 0 for any r € ¢ in (4.10) becomes

qv17‘2 + qv2rl = O’
dv1T1 + qyaT2 = 07

12



Y

Y, =9,

Y, =Y, Y

X

Figure 2: level set of a solution of (3.3) with F asin (4.12) (n =1, m = 2). The slices of the
level set, at fixed x, are rectangles with sides parallel to the vectors indicated at the origin.

the nonzero solutions of which are ¢,; = £¢,,. We conclude

—qh lf qvl = qvg N 5
Flg) =4 @ if ¢, = —q, q = (gy,q,) € dom(F) =R x R. (4.12)
400 otherwise,

Observe thit F is discontinuous where it is finite and F is lower semicontinuous. If w is a solution of
(3.3) with F" given in (4.12) then the normal velocity of ¥,,(,.) takes values only in two directions, as
shown in Figure 2.

5 Systems of second order PDEs

In this section we compute the level set equation associated with the mean curvature flow of a graph
in arbitrary codimension (Theorem 5.1), with a system of 1-dimensional quasi-linear equations, with
a system of reaction-diffusion equations (Theorem 5.3), and with the parametric curvature flow of a
planar curve (formula (5.25)).

5.1 Mean curvature flow in arbitrary codimension

Consider a graph T'y,.) of u: [0,00) x R* — R™ the normal velocity of which is equal to the mean
curvature vector, i.e. u solves (2.6). Then F reads as

F(P,X)=— ) §U(P)X;; €R™,  (P,X) € M™*" x Tmxmxm, (5.1)
ij=1
where g% (P) is the inverse matrix of §;;(P) := d;; + Pe; - Pe; for any P € M™*" and i,j = 1,...,n.
Notice that g% (t,z) = g (Vu(t,z)).
Theorem 5.1. Let F be defined as in (5.1). Then

F(g, M) ==Y N, MIL,.), (g, M)€R" x R} x Sym™*™, (5.2)
=1

where \q (qu Mqu) ces Angpmo1 (qu MHqL) are the eigenvalues of M, ,. in increasing order.
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Proof. From Definition 3.1 we have, for any (g, M) € R* x R x Sym™*™

n m

F(q, M) = X2).
(qJ ) (PX)EA(q, Z Z qha z])

_7 a=1
Applying Lemma 2.1 with A = —¢, X, B = Mun + Mw P + (M P)* + P*M, P and G = g (P),
yields

- — ~1] * * Pl...
FlgM)==- inf Zlg ) [Min + My P + (Myy P)* + P* M, P);
%,

Set vi(P) := (ex, Pey,) for any k = 1,...,n. Then, for any (¢, M) € R* x R* x Sym™"™

n

Fg,M) = - inf > §9(P)Muvi(P) - v;(P)
P :u(P)eqt =
Vk=1,...,n
E - inf Mn;(P) - n:(P)
{m, ..., yn} orthonormal ;
basis of g+
= =Y NI, ML)
i=1
O
Note that, in the case m = 1, equation (5.2) reads as
Flg, M) = —tr [qu anl] . g€R" xRy, M € Sym™!
whereas, in the case n = 1 we have
ﬁ(q,M):—min{)\l,...,)\m,l}, ¢ € RxRY, M € Sym'*
where Aj,...,Am_1 are the eigenvalues of M ,.. We remark that, following a suggestion of De

Giorgi [11], equation (5.2) has been considered in [1] in order to construct weak solutions of the mean
curvature flow in arbitrary codimension.

5.2 The quasi-linear case in dimension n =1

Let us assume n =1, f:[0,00) x RxR™ xM™*1x T1X1Xm_4[() +00) Lipschitz in (z,y), and F in (1.1)
given by

F(tyxayapa X) = _f(tamyyaP)Xa (53)
for any (t,z,y, P,X) € [0,00) x R x R™ x M™*! x T1*1xm_From Definition 3.1 we get
F(t,z,y,q,M)=— inf f(t,3,y, P)(Mpy + 2Mu P + P* M, P).
(L}D*)EqL

The function F is linear in M and 0-homogeneous in ¢. Note that, if f satisfies

C
< < ——— >2 A4
0< S0, P) S Topm @22 0>0, (5.4)
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then F is bounded since

- , M(1,P*)*- (1, P*)
—F(t M) = f
(t,z,y,q,M) (1’1;9)6‘#{ 14D

1+ |P|2)f<t,x,y,P)} .

Systems of the form (5.4) have been considered by Slepcev in [28], in order to extend the result of
Ambrosio and Soner in the case n =1, m > 1.
5.3 Reaction-diffusion systems
Let u: R® — R™ be a solution of the system

u; — Au+f(u) =0, (t,z) € [0,400) x R", (5.5)
with a suitable smooth f : R™ — R™, see for instance [30]. Thus

F(y, X) = —tx(X) +£(y),  y€R™, X e Tmmxm, (5.6)

We want to compute the corresponding function F. To this purpose, for any y € R™ and (¢, M) €
(R™ x RP*) x Sym™™, set

Plg, M) = T, My II,. € Sym™,
1
Q(Qa M) = (th - W (qh X (Iv) MVV) Hq‘f € Mnxm’ (57)
2 1
Cly,q, M) = tr (Mhh - ——= M (¢, @ q,) + W(qh ®q,) My (g, ® qh)> +£f(y) - ¢, €R,

lg. I

where g C R™. Define also
7= {(q, M) € (R" x B") x Sym™*™ : P(g, M) > Orm, Ker(P(g, M)) C Ker(Q(q, M)) }.

Remark 5.2. If m = 1 then P(q, M) =0, Q(¢q, M) = O, x1, and hence
Z = (R™ x Ry) x Sym™*1.

m

If m > 1, Z is a proper subspace of (R* x RJ*) x Sym™™, and for any (¢, M) € Z, the matrix
P(q, M) is invertible on Im (Q*(g, M)) since Im (Q*(gq, M)) C (KerP(g, M))+. Accordingly, we will
write P(q, M)~1Q(q, M)*.

Theorem 5.3. Let F be defined as in (5.6). Then

R —C(y,q, M) + tr [Q(q, M)P(g, M)~ Q(q, M)*] if (y,q, M) e R™ x Z
F(y,q,M) = (5.8)
+00 otherwise.
Proof. According to Definition 3.1 we must solve the minimum problem
Fly,q,M) = — inf tree[—q, X°]+f(y)-
(quJ ) A(1£M) 'R [ qha ] + (y) qy
= - inf tr[Mnh + My P + (Muw P)* + P* My Pl + £(y) - q, (5.9)
P: qh+qVP:0
= —tr(Mpn) —£(y) - ¢, — inf tr[Myy P + (Myy P)* + P* M, P).
P:q,+q,P=0
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We now observe that

1
PGA(an) — P:_qu®qh+Pla Plemena quI:OIXm-

Hence (5.9) implies

~

F(y,q, M) = -C(y,q, M) — inf{h(q, M,P") : P'e M™*", ¢, P' = lem},

where

1
h(qg, M,P") := tr [2 (th - th ® quvv) P+ (P')*MWP'] )
qy

Now, if (¢, M) ¢ Z, the infimum of h is —oo, since it is achieved at any P’ consisting of n column
vectors all equal to £ € R™ which satisfies

1
q,-§=0, My&=0, (th - W‘Ih ® qVMVV> §F#0.
If (¢, M) € Z then

F(y,q,M) = =C(y,q, M) — inf {tr[2Q(g, M)P' + (P')*P(q, M)P'] : P' € M™*"},

and the conclusion follows since the minimum is achieved at P' = —P(q, M)~1Q(q, M)*. O

Corollary 5.4. (i) Let m =1 and F be defined as in (5.6). Then

9 2
~ q, tr Mun) — 2quvh - qy, t+|q M,y
Fly,q,M) = — (M) o b+ 14| - fWa,

for any (y,q, M) € R x (R™ x Ry) x Sym™**.
(1)) Let n =1 and F be defined as in (5.6). Then
—c(g, M) + Q(g, M)P(q, M)~ Q(g, M)*  if (y,q,M) ER™ x Z

~

F(y,q,M) =
400 otherwise,
where )
(g, M) := Mpp, — 2|q("—h|2thqv + %%quv +£(y) - g, -
Proof. The assertions follow from Theorem 5.3 and Remark 5.2. O

Remark 5.5. From (i) of Corollary 5.4, it follows that if m = 1 and f = 0, the level set equation
associated with equation (5.5) according to Definition 3.1 coincides with the level set heat equation
studied by Evans in [12].

Proposition 5.6. Let n > 1 and m > 1. The level set equation associated with (5.5) is given by

_ 2
D it (wzi - wywyylw:iy)

—1. %
WyWyy Wy

Wy = tr(Wae — Wayw,, wh,) + + f(y) - wy, (5.10)

provided that wy, = O, during the evolution.
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Proof. We want to solve explicitly the minimum problem (5.9). Setting P; := Pe; and introducing
the Lagrange multipliers Aj, ..., A,, we must solve the linear systems

(Mw qf,‘) (/\) = <_M1:iv) , i=1,...,m. (5.11)

The solution of (5.11) is given by

r —
det ( v q}:_ ) s
A. _ Jk[vv __]v[hiv _ qhi — qv]blgv ]L[hiv
¢ O .My g5
< det (5 12)
My g '
PN, G M My =G, 2t e artgrs
\Pz' = _Mvvl ()‘zqv + Mhiv) = q M—lq* Mvv1(Iv - Mvlehl-va

provided that det M, # 0. Here we have used the formula
det (2 ) =(~1)"(det R) (c — aR™'b¥)
R b* b

where ¢ € R, a,b € R™ (considered as row vectors) and R € Sym™, with det R # 0. Now observe that
P; in (5.12) is a minimum point only if M, is positive definite. O

When f is a Lipschitz function, it is possible to identify explicit classical sub- and supersolution of the
corresponding level set equation.

Proposition 5.7. Assume that f is a Lipschitz function with constant L > 0, and letu : (0,T)xR* —
R™ be a classical solution of (5.5). Then, the function z*(t,z,y) = e’t|ly — u(t,z)? is a classical
supersolution of (1.3), with F as in (5.8). Similarly, the function z~ (t,x,y) := e Lty — u(t,z)|? is
a classical subsolution of (1.3).

Proof. Let us consider z := 22*. Recalling the definition of P in (5.7), we have
Zyy =€"ldy  and  P(Vz,VZ2) =M1, )1,

and, from
Zoy = —eVU" (5.13)

and the definition of Q in (5.7),
Q(VZ,VZZ) = —eLtVu*H(zy)L-

Notice that P(Vz,V2z) = O, and Ker (P(Vz,V2z)) C Ker(Q(Vz,V2z2)), which implies that
ﬁ‘(y, Vz,V?22) is real-valued and is given by (5.8). Hence,

QP1Q*|(Vz,V22) = el (Vu)*1I,, ,, Vu,
(zy)

and from
2 = —e"(y —u)Vu = —2,Vu (5.14)
we get
2
tr{[QP~1Q*|(Vz,V?2)} = tr(Vu*z,,Vu) — eLt@ (5.15)

|zy|2-
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Using (5.13) and (5.14) yields

ZayZy = eltzr (5.16)
and thus
2 2 Lt |Zz|2
C(y,Vz,V?2) = tr(zm - szy(zy ® zw)) +e W +£(y) - 2y
Yy Yy
2

Zz
= tr(2gz) — eLt% +1(y) - 2y (5.17)

y

Furthermore, differentiating (5.14) and using (5.13) yields
Zee = (VU)*zy Vu — 2, V?u (5.18)
and from (5.8) and (5.15) we get

F(y,Vz,V%2) = —C(y,Vz V%) +tr (Q(Vz, V22)P(Vz, V22) 1 Q(Vz2, V22)*)
= —t1 (222) — £(y) - 2y + tr(Vu*2z,, Vu) = tr(z, Viu) — £(y) - 2,

= Au-z,— () 7 = —F(u,V?u) - 2 + (E(u) - £(y)) - 2. (5.19)
Therefore, we get

2¢ = Lz+TF(u, V2u) "2y
= Lz—F(y,Vz,V?2) + (f(u) — £(y)) - 2,

Z _ﬁ‘(yavzavzz)7

since f is L-Lipschitz. Similarly, one proceeds for z~. O

Remark 5.8. We observe that, being 2y, > O, one could get (5.19) directly from Proposition 5.6
using (5.18), (5.14) and (5.16).

Notice that, if equation (1.3), with F asin (5.8), admits existence of viscosity solutions satisfying
a comparison principle, then Proposition 5.7 implies that we can recover the (graph of) classical
solutions of (5.5) from the zero sub-level set of solutions of (1.3). Moreover, Proposition 5.7 could be
considered as a first step towards the asymptotic analysis of solutions of the scaled Ginzburg—Landau
systems, and towards a proof of their convergence to the mean curvature flow in arbitrary codimension,
alternative to the energy—based approach followed in [2, 5].

5.4 Parametric curvature flow of planar curves

Parametric curvature flow of planar curves describes the evolution of curves by curvature, possibly
with self-intersections which are not considered as singularities of the flow. The computations of this
section show that such a flow can be described using the level set method. As we shall see, it turns out
that the corresponding level set equation is rather involved (see (5.25)). As already observed in Remark
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3.5, this is a case where the domain of F is not the whole of [0,400) x R x R™ x R x R x Sym!*T™.
Consider the following system of differential equations

Vu

for a function u : [0,T) x R — R™. In this case F reads as

X

F(P,X) = —W,

(P,X) € (M™1\ {Opyr}) x TH¥IX™,

Equation (5.20) says that the family {u(¢,-)}+ of curves in R™ evolves by curvature (see [7], [23]).
Recall that, in this case, we have

Pl =- e (MO LT

, ,M) e R xR}® x Sym™, 5.21
Lt b @ er xRy xsym (.21)

which is singular on the m-dimensional subspace {g, = 0} C R'*™. Hence, it seems reasonable to
consider F' defined as in (5.21) but restricted to the domain

dom(F) = Ry x R* x Sym!*t™ =: D,

Remark 5.9. With computations similar to the case of the one-dimensional heat equation one checks
that the graph Iy,.y of z € R — u(t,z) € R™ evolves in R™*! with the geometric law

vi=_"

= —7. 5.22
1-72 (5.22)

Following the approach of [12], it would be interesting to consider the solution of the following regu-

larized version of (5.22),
K

Vi=— -
1—72+¢e272’
corresponding to the regularized system

VZu

—mzo, in (0,+OO)X]R,

u;

and to the regularized level set equation

wy + F*(Vw, V?w) = 0, in (0,400) x R*™ (5.23)
i M(1, P (1,P) 14 |PP
~ 1,P*)*-(1,P*) 1+
Fe(¢,M)=— inf : :
(g, M) (1,123)@1L { 1+ |P)? g2 +|P|? } ’

for any (¢, M) € R x RJ* x Sym™, and compare the limit as € — 0 of any solution w® of (5.23) with
the evolution by curvature of {u(t,-)}:.

We explicitly compute F only for m = 1 and m = 2; the case m = 2 corresponds to the flow of planar
curves.
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5.4.1 The case m =1
From Definition 3.1, we have for any (¢, M) € Dy

ﬁ'(q, M) - inf My, + 2MhVP‘ + P*M,, P
P:q,+q,P=0 |P|Z
]\4-hhqv2 - 2thqhqv + -Z\lvvqh2
- = . (5.24)

Equation (5.24) is the level set heat equation, exchanging the role of ¢, and ¢, (compare with Corol-
lary 5.4 (i) with f = 0). Indeed, if we assume that the function y = u(t,z) is invertible for any
t €[0,7T), and we let v(t,y) := u 1(t,-)(y) its inverse, then v solves the heat equation.

5.4.2 The case m =2
To simplify notations we set P = (P1, P»), ¢, = (¢1,42),

From Definition 3.1, we have for any (g, M) € Dy

~ P2 4+ 2¢P, P, P2 + 2dP, 2eP.
F(g, M) = - inf aFf +2cP P 40P, + 2dB + 2eB 4 ]
(P1,P2):q1 P1+q2 Po+q, =0 Pl +P2

Notice that }?'(qh, q1,q2, M) = ﬁ’(qh, g2, q1, M). Since q, # 0, without loss of generality, we can assume
g2 # 0 and set P, = —"“Z%Pl. Then

~

F(‘LM) = _I;PEth(q’M,Pl),

where A'P2 4+ B'P, + C'
+ 1+
h(g, M, Py) == =2
@M P) = pr T Bp ¢

and

A=qg +¢ >0, A':=ag3 — 2cqiq2 + bai,

B :=2q,q1, B':=2(bgna1 — cana2 + da3 — eq o),

C =g, >0, C" = bg,* — 2eq,0> + fd5-

Notice that AP? + BP, + C > 0. Now, we have

d (A'B - AB")P? +2(A'C — AC")P, + B'C — BC'

ap, e M, P = (AP? + BP, + C)?

Since E := (CA' — AC")? — (A'B — AB")(B'C — BC") > 0, letting

AC' — A'C+VE
Pei=—Zp_ap

we conclude

!

~ A -~
Fa.M) = —min { 5, ha, M.P). ha. M2 |, (@M)€ Do, (5.25)
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