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Abstract

We consider the evolution of a polycrystalline material with three or more phases, in
presence of an even crystalline anisotropy. We analyze existence, uniqueness, regularity
and stability of the flow. In particular, if the flow becomes unstable at a finite time, we
prove that an additional segment (or even an arc) at the triple junction may develop in
order to decrease the energy and make the flow stable at subsequent times. We discuss
some examples of collapsing situations that lead to changes of topology, such as the
collision of two triple junctions.
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1 Introduction

Several models in phase transitions treat phenomena in which two or more phases of the same material,
or the same phase of a crystal with different orientations, can coexist without mixing. A curve or
a surface I' bounding different regions is called a surface boundary, or interface, and is moving in a
non equilibrium state. In some cases the motion of I' does not depend on the physical situation in
the various phases but only on its geometry, and is described by geometric equations relating, for
instance, the normal velocity of the interface to its curvatures. The crystalline curvature flow in two
dimensions is the formal gradient flow of the energy functional

Fo(T) = /Fgo"(u) aH!, (1.1)

where v is a unit normal vector field to I and the energy density ¢° : R2 — [0, o0), called sometimes
surface tension, is a crystalline (i.e. piecewise linear) norm. When ¢° is isotropic the energy functional
(1.1) is proportional to the length of the interfaces and the resulting geometric parabolic equation is
the curvature flow (at least in the simplest case when T' is the boundary of an open set). However,
when dealing with crystalline and polycrystalline materials, (° is anisotropic and neither smooth nor
strictly elliptic; in addition, multi-phase boundaries with more than two phases occur.

To our knowledge, J. E. Taylor [31], [32], [33], [35] (see also [5] and [9]) was the first to introduce the
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notion of crystalline geometry and to determine the crystalline flow of curves with triple junctions,
in particular to compute the motion of the triple junction. The analysis of the evolution of grain
boundaries has been pursued also by other authors, see for instance [5], [6], [7], [8], [11], [12], [23],
[25], [26], [28]. See also [4], [6], [11], [22] for related physical models of crystal growth, and [14], [16],
[17], [19], [20], [21], [10], [16], [17], [13], [14], [24], [27], [1], [2], [29], [30] for related results.

In the present paper we consider the evolution of a polycrystalline material with three or more phases
for a crystalline ¢° whose one-sublevel set F,, := {¢° < 1} (the Frank diagram) is a regular polygon
of n sides. The dual function ¢ : R2 — R defined by ¢(£) := sup{¢€ -5 : ¢°(n) < 1} is crystalline
too and W, := {¢ < 1} is called the Wulff shape. We are particularly interested in the motion by
crystalline curvature of special planar networks called elementary triods, namely a regular three-phase
boundary given by the union of three Lipschitz curves, the interfaces, intersecting at a point called
triple junction. Each interface is the union of a segment of finite length and a half-line, reproducing
two consecutive sides of W,,.

We analyze local and global existence and stability of the flow. In general, the flow may become unsta-
ble at a finite time. If this occurs, we prove that at subsequent times a regular flow can be constructed,
by adding a new segment (or even an arc with zero crystalline curvature) at the triple junction. In all
flows we present the crystalline curvature remains bounded (even if a segment appears or disappears)
and have a jump discontinuity at the time of instability only in the case of the disappearance of a
segment. We also discuss some examples of collision of two triple junctions. These examples (as well
as the local in time existence result) show one of the advantages of crystalline flows with respect, for
instance, to the usual mean curvature flow: explicit computations can be performed to some extent,
and in case of nonuniqueness, a comparison between the energies of different evolutions (difficult in
the euclidean case) can be made.

The rigorous definition of crystalline curvature for networks has been introduced in [3]: we will see
that the corresponding flow essentially agrees with the one suggested in [33]. Finally, we stress that
Taylor already predicted the appearance of new edges from a triple junction.

The plan of the paper is the following. In Section 2.1 we present some basic definitions and results
from [3], where the crystalline curvature of partitions is computed through the first variation of F.
The crystalline curvature is the tangential divergence of a vector field Ny, : [T — R? which minimizes
the functional

A}dwTN)2¢%u)dH1, (1.2)

among all Cahn-Hoffman vector fields IV on the elementary triod II which satisfy the so-called balance
condition at the triple junction ¢

N5, (g) + Nis,(q) + Nis, (@) = 0. (1.3)

Such a minimizer Ny, is unique (this is true, in general, only in two dimensions) and identifies
the direction along which the functional F, decreases most quickly. The balance condition (1.3) is
the analog of the Herring condition (120 degrees condition) in the euclidean case. By definition of
Cahn-Hoffman vector field, Nis;(q) € dW,. Any triplet of vectors (X,Y,Z) € (0W,)? satisfying
X +Y + Z =0 is called an admissible triplet. In Section 2.2 we introduce the notions of elementary,
quasi-elementary non-polygonal and degenerate triod, and of configuration of an elementary triod.
The regularity of an elementary triod is related to the regularity of each interface and to the balance
condition (1.3). We recall also the notion of stability [3] and introduce the concept of stability region
of a configuration. In Section 2.3 we give the definition of flow by crystalline curvature starting from
an elementary triod which allows to consider also initial data which may develop a new segment or an
arc from the triple junction. In Section 2.4 we determine the geometry of an elementary triod, that is
the three angles at the triple junction ¢ between the interfaces. These angles are determined by the
balance condition (1.3) at ¢, that in turn is related to the existence of admissible triplets. We prove
that any regular polygon P,, n even > 6, has a unique admissible triplet (X,Y, Z) once we fix one
of the vectors of the triplet, for instance X, in dP,. We also determine the range of all admissible



triplets of Npin at ¢ and using this result we compute in Section 2.5 the crystalline curvature of the
triod. Since Npip is unique and its values are fixed (up to a sign change) at the three vertices of the
partitions, it follows that Ny, is given on all the interfaces by linear interpolation. Thus, as shown
in [3] in the case n = 8, it is possible to reduce the minimum problem (1.2) to a one dimensional
minimum problem. In the case of a partition consisting of two adjacent triple junctions, the solution
Nmin of (1.2) is completely determined by the values of two independent real variables. Since the
Cahn-Hoffman vector fields have constant normal component, the crystalline curvature is simply the
tangential derivative of the tangential component of Npin, that is a ratio of lengths. Finally, we
produce which values of the lengths of the finite segments of II provide stable triods (stability region).
In Section 3 we prove that there exists, locally in time, a unique stable regular flow starting from a
stable regular initial datum. In Section 3.1 we show a case of global existence. The analysis of the
long time behavior requires the study of the stability region of each configuration. Stability is the
ingredient that ensures that no additional segments develop at the triple junction during the flow. If
the initial triod is unstable then an additional segment may develop in order to decrease the surface
energy and make the evolved triods stable at positive times. In Section 4 we exhibit an example of
this occurrence. In Sections 5-7 we show that the flow becomes unstable at a finite time 7 and that
at the subsequent times a regular flow can be constructed: in particular, a new segment (resp. an
arc with zero crystalline curvature) develops at the triple junction in the flow of Theorem 5.1 (resp.
of Theorem 6.1). In Theorem 7.1 we prove that the flow has two different behaviors depending on
the initial datum II. For a suitable choice of II, we show that at ¢ = 7 one of the three segments
vanishes, its crystalline curvature remains bounded, the Cahn-Hoffman vector field Ny, has a jump
discontinuity and the triple junction translates along the remaining adjacent half-line in [T, +00). For
the other choices of stable II we prove that a curve appears from the triple junction, as in Section 6,
with the difference that the adjacent segment now has positive yp-curvature and keeps on moving at
subsequent times. Each of these flows has the property that all crystalline curvatures remain bounded.
In Section 8 we study the crystalline curvature flow starting from a stable p-regular partition formed
by two adjacent elementary triple junctions. We discuss some examples of collapsing situations that
lead to changes of topology, such as for instance the collision of two triple junctions. We present several
candidates to continue the flow after the singularity (see Example 8.4). In Section 9 we introduce the
notion of homothetic flow. We classify homothetic flows when n = 6m and we show that the global
flows studied in Section 3.1 converge to homothetic flows as t — +o0.

2 Preliminaries

In this paper, -, |-| and H! are respectively the euclidean canonical inner product, the euclidean
norm and the 1-dimensional Hausdorff measure in R?. Points and vectors of R? will be identified.
Given two points p, g € R?> we denote by pq the vector with initial and end point respectively in p and
q. Given two vectors v,w € R?, we denote by v! the counterclockwise rotation of v of 7/2 around
the origin and by d(v,w) € [0, ] the angle between v and w. Given f : (a,b) — R and t € (a,b), we
denote by f(t+) and f(¢t—) respectively the right and left limit of f at ¢ (if they exist).

Given a subset U of R? we denote by int (U), U and 8U, respectively the interior, the closure and the
boundary of U. In particular, given a segment S C R?, we denote by int (S) the relative interior of S.
Given two parallel (possibly infinite) segments S1, S2, we call the distance vector of Ss from S; the
vector having norm dist(S1, S2) pointing from S; to Sa.

By a Lipschitz curve with boundary in R? we mean a 1-dimensional bounded set ¥ C R? which can
be written locally as a Lipschitz graph on an open interval of R. Any Lipschitz function or vector field
defined on ¥ will be considered as defined up to X. We denote by Lip(X;R?) the set of all Lipschitz
vector fields on . Given a point & € ¥ we denote by T,Y the tangent line of ¥ at x.

We denote by n,m positive integers and by P, the regular polygon of n (n even) sides of length L
inscribed in the unit circle centered at the origin of R?. P, has two horizontal sides and is oriented in



clockwise sense.

2.1 Crystalline curvature of regular partitions of R?

In this section we present some basic notations and definitions from [3]. Let ¢ : R — [0,+00) be a

crystalline anisotropy on R? (i.e. an even piecewise linear convex function) satisfying W, = P,. We

denote by T, and T,. the multivalued mappings (duality mappings) defined as T,,(£) := 10(¢?)(€),

Tpo(€°) := 20((¢°)?)(€°), for all £,&° € R?, where & denotes the usual subdifferential for convex
function. We observe that T, (resp. T,.) is a maximal monotone operator which takes OW,, (resp.
OF,) onto OF,, (resp. onto OW,,).

Definition 2.1. Let ¥ C R? be a Lipschitz curve with boundary, * € % and z € R? \ T,,(T). We
define the vector 29 € R? as the rotation of angle w/2 of the vector z in such a way that 2°% points
out of .

Definition 2.2. A partition of R? is a finite family {E;}; of open subsets of R? (called phases) such
that U;E; = R?, E,NE; =0 fori# j, and OE;NOE;, when it is nonempty, is a Lipschitz curve with
boundary, called interface. By a m-multiple junction of {E;} (m > 3 a natural number) we mean a
point q belonging to m distinct interfaces.

Given a partition {E;} of R?, we set
Ei]’ = 6E, n 6Ej, ) ;é j, I':= U Ei]’, J = U@E” (21)
3 2%

When we write ¥;; we always assume that i # j and ¥;; # . We denote by v a H!-a.e. defined
euclidean unit normal to ¥;; and we set v," := v% /p°(v¥). We denote by Lip, ,(I'; R?) the space
of vector fields N : I' — R? such that Ny, € Lip(X;;;R?) and Nz, (x) € T (v (x)) for H'-almost
every x € ¥;;. Set

N = {N € Lip,,,(T,®?) : > (Njz,))? =0 on J}. (2.2)
2
The condition on J in (2.2) is usually called balance condition.

Definition 2.3. If N # 0, the partition {E;} is said to be p-reqular and any N € N is called a
Cahn-Hoffman vector field on T.

The following definition of y-curvature is based on [3, Theorem 4.8] and the crucial fact that we are
considering planar partitions: if {F;}; is a p-regular partition then the minimum problem

1/2
min{ [/ (div,N)2 °(v) d’Hl] :Ne€ N} (2.3)
r
admits a unique solution which identifies the direction along which the functional (1.1) decreases most
quickly. Let Ny, : T — R? be the solution of problem (2.3).
Definition 2.4. Let {E;} be a @-regular partition. We define the yp-curvature ko, of T' as

Ky = div; Nmin, a.e. on .
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Wo=Pg 5 W= Py

Figure 1: (N|z1 (q1)%*1 Nis, (q1)%%2 N|23(Q1)823) and (N\zl (g2)%%1 Nis, (g2)%%4 N, (%)825)-

Remark 2.5. Let ¥ = 0F be a simple Lipschitz curve which admits a Lipschitz Cahn-Hoffman vector
field, i.e. N € Lip(Z;R?) with N(z) € T,o(v,(z)) for Hl-ae. z € ¥, where v, := v/¢°(v) and v
is a H!-a.e. defined euclidean unit normal to X. It is easy to see that k, = 0 on any nonflat arc v
contained in X since IV on vy is constantly equal to a vertex of 0WV,,. Assume now that S is an open
segment of length L > 0 contained in ¥. Denote by N7, N> respectively the values of N at the initial
and final endpoint of S according to 7 := —v*. The @-curvature of S is zero if L = 400, while if
L < +00,

I‘.'/Lp(p) = %(NQ—NI)‘T, pES (24)

Hence S has constant @-curvature which, setting [ := L7, will be denoted by & (). Notice that x,,
in (2.4) changes sign if we change sign to v.

2.2 Elementary, quasi-elementary, non-polygonal triods

In this section we introduce the notions of elementary, quasi-elementary and non-polygonal triod, of
configuration of an elementary triod and we fix the orientation of a triod.

Definition 2.6. When {E1, E2, E3} is a partition of R? into three sets having only one 3-multiple
Junction, called triple junction and denoted by q, the set T defined in (2.1) will be called triod, and
denoted by I1. If the partition is p-regular, the triod is said to be p-reqular. For simplicity, 12, Ya3,
Y13 will be denoted respectively by X1, Yo, 33 and correspondingly I/i,j will be denoted by VZ,. We call
angles of 1 the three angles at q between X1, Yo, X3 (see Figure 5).

Remark 2.7. The notion of regularity in Definition 2.6 is essentially the same given by J. E. Taylor
in [35] when each ¥; is polygonal. In the case of a ¢-regular partition with I' = U?_; %, J = {q1, g2},
and N € N as in Figure 1, the triplet of vectors

(N|21 (‘h)axl ) N|E2 (CII)BEZ ) N\Es (QI)BES) »

is the counterclockwise rotation of the triplet (N x,(q1), Nz, (q1), Nis, (@1 )) , while the triplet of vectors

(N|21 (q2)821 ’ N|E4 (q2)824 ) N\Es (q2)625) 3

is the clockwise rotation of the triplet (N, (¢2), Nis, (¢2), Nix; (42))-

Definition 2.8. Let II = Ulezj be a p-regular triod. We say that I is elementary if

(€) each interface T; is the union of a segment S; of finite length L; > 0 and a half-line R; such
that S; and R; reproduce two consecutive sides of W,,, see Figure 2 (i).

We say that I1 is degenerate if two interfaces satisfy (€) and the remaining one X is a half-line.
We say that I1 is quasi-elementary if two interfaces satisfy (€) and the remaining one Xy is the union
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Figure 2: (i) Elementary, (ii) quasi-elementary, (iii) non-polygonal triod (W, = Ps). Note that
ke =0 on S in (i) and (ii), kK, < 0 on Sy in (ii), and k, = 0 on 74 in (iii).

vi M, w,

Figure 3: These triods have the same evolution according to system (2.9). Our convention is to take
the orientation as in (i).

of two segments Sy and Sy, of finite lengths, Ly > 0 and Ly > 0 respectively, and o half-line Rj such
that Sy and Sk, and Sy and Ry, reproduce two consecutive sides of W,,, see Figure 2 (ii)).

We say that 11 is non-polygonal if two interfaces satisfy (£) and the remaining one Xy is the union
of a curve 4, a segment Sy, of finite length Ly > 0 and a half-line Ry, such that Sy and Ry, reproduce
two consecutive sides of W,,, see Figure 2 (iii).

Given either an elementary or a degenerate or a quasi-elementary or a non-polygonal triod II and
N e N, weset A; := S;NR; for any j = 1,2,3 such that R; # 0, A4 := Sy N S if II is quasi-
elementary, and A4 := 77N S}, if II is non-polygonal. We denote by a; the angle of ; at A; opposite
to the region where N(A;) lies, see Figure 3. Notice that o; € {m — 7/2n,7 + 7/2n}.

Let v be the H!-almost everywhere defined euclidean unit normal to I oriented in such a way that
Viint (5,) - N(4;) > 0. We set v = Vjine(s,), 75 := —Vj and [j := L;7;, for any j = 1,2,3, and also
j =4 if Il is quasi-elementary. Thus {7;,v;} is a positively oriented basis of R? and, without loss of
generality, we assume that each I; points towards ¢. We denote by k(l;) the ¢-curvature of S;.

For an elementary triod, we always assume that S; is horizontal and ¥4 and X3 are given in counter-
clockwise sense as in Figure 3. We denote by Vj, W; the vertices of the side of P, (in clockwise sense)
having v; as outer normal and by M; the middle point of the segment [V}, W;]. Note that

T V3 = —T1 " V3, V1 -T3 = —V1 T2, T1 V3 = —UV1 *T3. (25)



Definition 2.9. Let I, TI' be two elementary triods. We say that II and II' are equivalent (or that
belong to the same configuration) if they coincide, after possible rescalings of their bounded edges and
after a rotation. We denote by [II] the configuration of 11, i.e. the equivalence class of I, and by €
the set of all possible configurations for elementary triods.

We recall also the notion of stability [3] and introduce the concept of stability region of a configuration.

Definition 2.10. Let IT be a p-regular triod. We say that 11 is stable if (Nmin) |5, (q) is not a vertex
of W, for any j =1,2,3. We say that 1 is unstable if it is not stable.

It follows that non-polygonal triods are always unstable (see Remark 2.5). Elementary, degenerate
and quasi-elementary triods can be either stable or unstable.

Definition 2.11. Given a configuration (e) € €, the stability region of (e), denoted by S., is the set
of all (A1,A2,A3) € (0,400)% such that, if 11 € (e) is an elementary triod with |S;| = A; for any
j = 17273; then II is stable. For jlyj2;j3 € {17273}} jl #.72 ;é j3 #jl} we let
. _ Aj1 Ajl )
Se(J2,J3) == { (Aj2’Aj ) : (A, A2, A3) € Se}-

3

2.3 Definition of crystalline flows of triods

Our object is to provide a definition of p-curvature flow allowing to consider also initial data for which
a new segment or a curve (with zero yp-curvature) can develop from the triple junction at time zero.

Definition 2.12. Let T > 0 and II be an elementary triod (resp. degenerate). For any t € [0,T), let
II(t) be a @-regular triod and q(t) its triple junction. We say that t € [0,T) — II(t) is a @-curvature
flow starting from I1 = TI(0) if for any t € (0,T)

(i) IL(t) is either elementary or quasi-elementary or non-polygonal (resp. degenerate);
(it) for any j =1,2,3, each R;(t) has zero normal velocity and each S;(t) is parallel to S;(0) = S;;
(iit) for each j = 1,2,3, and also j = 4 if II(t) is quasi-elementary, denoting by h;(t) the distance
vector of the segment S;(t) from S;(0) = S;, then h; € C*((0,T);v;R) and

B _ 0y o
SOG(V]‘) - LP(lJ(t)) J

(2.6)

The flow is said to be stable if I1(t) is stable for anyt € (0,T).

Remark 2.13. Since ¢°(v;) is a constant independent of j € {1,2,3,4}, the system in (2.7) is
equivalent, up to a rescaling in time, to

hy(t) = =y (1(t)) v;. (2.7)
For simplicity, we will consider (2.7) in place of (2.6).
Note that, in Definition 2.12, IT is not required to be stable (even in the definition of stable flow). Let

b (t) := h;(t) - v, for j=1,2,3,4. (2.8)
Then h;(t) = h%(t) v; and, with this notation, system (2.7) becomes
. 1
R (8) = — kp(5(1) = = —== | Numin £) = Nuin(4;(0) | - 75
10 = = o 3(0)) = = g5 [ N, (00) = Nain(4;0) | - 7 29)

h(0) = 0.

Remark 2.14. We observe that S;(t) moves in the same direction of v; if and only if &, (1;(t)) < 0.
Furthermore, system (2.9) is invariant under the change of the orientation of II(¢) (see Figure 3).
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Figure 4: P, admits infinitely many pairs {Y, Z} satisfying Xo +Y + Z = 0 in correspondence of
Xo = M;. Pg has a unique pair in correspondence of all X € dF;.

2.4 Geometry of elementary triods

The angles of an elementary triod are given by the angles between the vectors v;’s and are determined
by the balance condition at g (see (2.2)) that, in turn, is related to the existence of admissible triplets.

Definition 2.15. We call admissible triplet any triplet of vectors (X,Y, Z) € (0W,,)? satisfying

X+Y+Z=0. (2.10)

Lemma 2.16. Let ¢ : R? — [0,4+00) be a Finsler norm on R?, i.e. an even one-homogeneous
convex function for which there exists ¢ > 0 such that ¥(€) > c|f| for any € € R?, and define
Wy = {E€R: (&) <1}. Let X € OWy. Then there ezist two distinct vectors Y, Z in OWy
such that (X,Y,Z) is an admissible triplet. Moreover, if either Wy is strictly convezr or for any
segment S C OWy, parallel to X € Wy we have |S| < |X|, then the unordered pair {Y, Z '} is unique.
Finally, if there exist Xo € OWy and o segment S C OWy, parallel to Xo with |S| > |Xo|, then there
are infinitely many unordered pairs {Y, Z} of distinct vectors in OWy such that (Xo,Y,Z) is an
admissible triplet.

Proof. Let 2hy be the length of the orthogonal projection of Wy on X+R and set X = X/|X|.
Define the multifunctions a, and o as a,(h) := (~hXL + XR) N OWy and a;(—h) := —a,(h) for
any h € [0,hp]. It is easy to see that «,(h) contains exactly two points for h # hps while a.,.(har)
can be either a point or a closed segment. Define the functions a; ,a; : [0, hy] — R? as a; (—h) :==
{Zew(-h) : Z-X<Y-X,Yew(-h)}and o, (h):={Z €a.(h) : Z-X <Y -X,Y € a.(h)}.
Note that a; and «, are local parametrizations of OW,, which can be written with respect to the
basis (—X*, X) as oy (—=h) = (=h,a; (—=h) - X) and a; (h) = (h,a; (h) - X). Define now the function
®:[0,hpy] — Ras ®(h) := &—‘[al’(—h) +a;f(h)]- X. Then & is convex, since so are h — a;, (—h) X,

h +— a; (h) - X. Furthermore, ®(0) = —2, ®(hy;) = 0 if and only if a,.(hy) is a singleton, while
®(hyr) < 0if a,.(hypr) is a proper segment.

We divide the proof into two cases. First we observe that the existence of h, € (0,hn] with
®(h«) = —1 implies that (2.10) is satisfied by choosing Y := a.(h«) and Z := ay(—h.) and, conversely,
the existence of X, Y € OW,, satisfying (2.10) implies that ®(h.) = —1, where h, := max{Y-X, Z-X}.
Case 1: if either Wy is strictly convex (i.e. a,(har) is a singleton) or a..(har) C Wy is a segment
parallel to X with length |a,(har)| < |X]|, then ®(har) > —1 with the equality holding if and only
it |S| = |X| (for instance if Wy = Pg, see Figure 4). From the convexity of ®, the existence of
h« € (0, hpr] with ®(h.) = —1 follows. Assume now that there exists h* € (h., hps] satisfying ®(h*) =
®(h,) = —1. Then, by the convexity of ®, for every A € (0,1) we must have & ((1 — A)hs + AR*) =
—1, that is Wy should be flat along the direction X, but this contradicts the convexity of Wy.



Case 2: if a,.(hym) C OWy is a segment parallel to X with length strictly greater than |X|, then
®(har) < —1 (for instance if Wy, = P4, see Figure 4). Thus, we can find infinitely many pairs {Y, Z}
(as many as the points of a segment of length |X|) of distinct vectors in OW,, satisfying (2.10). O

Remark 2.17. If Wy, = P, and Xy = M; (see Figure 4), then |S| = 2|Xj[; hence there are infinitely
many pairs {Y, Z} of distinct vectors in 0P, satisfying Xo +Y + Z = 0. Moreover, any elementary
triod has always two angles of 7/2. If Wy = P and X = V; (see Figure 4), then |S| = |V4|; hence for
any X € W, there exists a unique unordered pair {Y, Z} satisfying (2.10).

Corollary 2.18. Let n > 6. For any X € [Vi,W1] there exist unique Y = Y(X) € [Va,Ws] and
7Z = Z(X) € [V3, W3] such that (X,Y, Z) is an admissible triplet.

A direct computation yields the following result.
Proposition 2.19. Letn € Nyn > 6, j = 2,3 and II be elementary. Then
27/3 n=>6m m>1
vy, v;) =0 =< 21/3(1+1/n) n=6m—4,m>2 (2.11)
27/3(1 —1/n) n=6m—2,m>2.
Moreover, the cardinality of € in Definition 2.9 is 4 if n=6m and 8 if n € {6m — 4,6m — 2}.

The angles of II are strictly greater than 7/2 and strictly less than # whenn>6 and n #8. If n =8
then ¥(va,v3) = 7/2. From Proposition 2.19, when n € {6m — 4,6m — 2}, there are eight different
configurations which will be denoted by (a), (b), (c), (d), (a'), (b"), (c), (d'), see Figure 5; when
n = 6m, the four different configurations are the one corresponding to (a), (d), (a'), (d').

From Proposition 2.19 we deduce the following formulas which are used throughout the paper:

Tl-Tj:Vl-l/j:COSﬁn, j:2,3, (212)
vy -T2 =711 -v3 = cos(Pn — m/2) =sindy, (2.13)
T vy = v - T3 = cos(Vn + 7/2) = —siny. (2.14)

Remark 2.20 (quasi-elementary and non-polygonal triods). The angles of a quasi-elementary
triod II are still determined by the balance condition at g (see (2.2)) and are exactly equal to ¥y, Ur,
and 27w — 24,,, as in the case of an elementary triod. The notion of local configuration of I at g can
be introduced by considering the equivalence relation introduced in Definition 2.9 on

(S4US/€)UE]'1 Uzjza j17j2 € {17273}\{k}731 7éj27

with k£ as in Definition 2.8 of quasi-elementary triod. The different local configurations of II in q will
be denoted by (a*), (b*), (c*), (d*), (a’*), (™), (c™), (d’*). For non-polygonal triods, only the angle
between the interfaces X;, and Xj,, ji,j2 € {1,2,3}\ {k}, j1 # j2, with k as in Definition 2.8 of
non-polygonal triod, is known and equal to ¥,.

Weset 6 :=|V; — X(V3)|if n=6m—4, §:=|W; — X(W3)| if n = 6m — 2 (see Figure 6),

(a,b] [0, L] n=6m 1 n =6m (2.15)
a = m = -
’ [6,L—6] n=6m—4,6m—2, §/(L—26) n=6m—4,6m—2,

and
L n=6m 0 n=6m
gy:=4 mL-9J) n=6m-—4 g =4 —mé n==6m-—4 (2.16)
L+mé n=6m-—2 L-m(L-¢§) n=6m-2.



o

(c)

Wi 0‘3%\/3 R
o o O

P “
V,

(e") (d")

(d)

Figure 5: Eight different configurations (up to rotations of 27 /n) when n € {6m — 4, 6m — 2}.

Vi Mi W X(Vs) X(W2) X(V2) X(Ws)

Figure 6: Wulff shapes W, = P12, W, = P14 (n = 6m —4) and W,, = Pig (n = 6m — 2) and relative
regions of ranging of all admissible triplets (filled regions).
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Given an admissible triplet (X,Y, Z) € [Vi, W1] x [Va, Wa] x [V5, W3], we set
z:=V-X|, y=Wa=-Y|, z:=|Vz—Z|. (2.17)
The proof of the next result is omitted and follows by a direct computation.

Proposition 2.21. If n = 6m — 4 then 6 = |[Wy — X(Wa)| = |[Wa =Y (V3)| = |Vz3 — Z(W2)|. If
n=6m—2then § = V1 — X(V2)| = |Vo =Y (W3)| = |W3 — Z(V2)|. Furthermore,

26 = (1—cos ﬂn)flL, m = —(2cos¥,) L, n € {6m—4,6m — 2}. (2.18)

Finally
y=y(x):=—-mr+qy, z2=2(x):=mz+gq,, z€la,b], n>6. (2.19)

2.5 Crystalline curvature of elementary triods

In this section we compute the @-curvatures x,(l1), k,(l2) and k,(I3) (see Definition 2.4) of an
elementary triod II. Each configuration gives rise to a different vector field Ny, : II — R%. Since
in two dimensions the value of Np;, are fixed (up to a sign change) at each vertex A;, the value of
Nmin|s; at g uniquely determines N, on X; simply by linear interpolation. Hence, we can restrict
the minimum problem (2.3) to the class of vector fields N € N which are given by linear interpolation
on each X;. From Proposition 2.21, the admissible triplet (N|x,(q), Ns,(q), Ns,(q)) is uniquely
associated with (x,y(z),z(x)) satisfying (2.19). Hence, we can rewrite the functional in (2.3) as a
function of x. The problem of finding Np,;, in (2.3) reduces to the problem

min f(z), flz) = / (div,N)? ¢°(v) dH' = ax® + Bz + v, (2.20)
z€[a,b] o

where «, 3,7y are coefficients depending on the configuration of II.
Let @pmin be the minimizer of (2.20), Ymin := Y(Tmin) and 2Zmin := 2(Tmin). The stability of an
elementary triod is equivalent to the condition

ZTmin € (a,b).

Proposition 2.22. If II € (d) then Tmin = a, where a is defined as in (2.15). If II € {(a), (b), (c)}
is stable then the expression of Tmin s

a . 1 1 1\1*
2@, (L1, L2, Ls) = m (Z—Z - %3) [L_l +m? (L—2 + L—3)] ; (2.21)
L— L—gq. 1 1 1\17¢
xx(:l)i)n(LlaL2)L3) = m (— quy + L3q ) |:L_1 =+ m2 (L_2 =+ L_3>:| y (222)
-1
©) (Ly, Ly, Ly) = @ L) (1, a1 1 59
wmm( 1,42, 3) m L2 + L3 L1 +m L2 + L3 s ( . 3)

where m, gy, q. are given by (2.15) and (2.16).

Proof. Let N € N be given by linear interpolation on each ¥;, (X,Y, Z):= (N5, (¢), N5,(q), N5, (q))
and z,y,z be as in (2.17). We observe that div. N, , div.- N, divTN‘23 are constant and given as
in Table 1 after replacing Tmin, Ymin, Zmin With z, y, z, and

fla) = (v, ) Lagton) + (dive . ) L) + (dive N, ) L (0s).
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Furthermore, ¢°(v1) = ¢°(v2) = ¢°(v3). In the case of configuration (d), being f(x) an increasing
function of z € [a,b], it follows that the minimizer is given by Zmin = a and the first assertion

follows. In the other cases, since a = ¢°(v1) [L% +m? (LL2 + L%)] > 0, it follows that T, =

—% € (a,b). Formulas (2.21)-(2.23) follow since 8 = —2mp°(v1) (Z—i — z—;) in configuration (a), 8 =
—2me°(v1) (—L;—:y + LL_—sq) in configuration (b) and 8 = —2mp°(v;) (2—”2 + Lz—gz) in configuration

(c). O
Remark 2.23. Since (a'), (b'), (¢’) and (d') are respectively symmetric to (a), (b), (c) and (d) with
!

7
respect to the [j-axis, we can derive the expression of z;, for the configurations (a'), (b’) (c’) and
(d") from those of (a), (b), (c¢) and (d) using the mirror law:

2®) (L1, Ly, L3) € [a,b] = 2%) (L1, Lo, L) = L — 2% (L1, Ls, Ly) € [a,b]. (2.24)

min min

Since (Zmin, Ymin, #min) identifies Nmin at g, x,(l;) is explicitly determined for each configuration, as
shown in Table 1.

o /T ag /T asg/m Ko(l1) Ko (l2) Ko (l3)
(d) [1=2/n|142/n|1-2/n Tmin/ L1 —Ymmin/ L2 Zmin/ L3
() |[1=2/n|1-2/n|1+2/n Tmin/ L1 (L = Ymin)/La | =(L = Zmin)/Ls
(c) |[1—=2/n|1+2/n|14+2/n Tmin/In —Ymin/ Lo —(L — zmin)/ L3
@ |[1-2/n|1-2/n|1-2/n a/L1, @ = Tmin (L = Ymin) /L2 Zmin/ L3
@) |1+2/n|1+2/n|1-2/n —(L = Tumin) /In —~Yumin/ L2 Zmin/ L3
®) | 14+2/m|1-2/n|14+2/n —(L = Tpmin)/In (L = Ymin)/L2 | —(L = 2min)/ L3
() [1+2/m|1-2/n|1-2/n —(L = Tmin) /L1 (L = Yrmin)/ Lo Zmin/ L3
@) | 142/n | 1+2/n | 142/n | =(L—=b)/L1, b=Tmin | —Ymin/L2 | —(L — Zmin)/Ls

Table 1: Angles a; and ¢-curvatures £, (l;) of an elementary triod.
Remark 2.24. When n = 6m, II is unstable if and only if
(Nmin\gl (q)7 ]\fminb;2 (q)7 Nmin|}33 (q)) S {(‘/17 ‘/27 ‘/3)7 (Wh W27 W3)} ) ie. Tmin S {0; L};

see Figure 6. When n = 6m —4 (resp. n = 6m — 2), II is unstable if and only if either Numin|y, (q) =V3
or Nmin|)32 (q) = Wy (resp. either Nminb:2 (¢) = Vo or Nmin\zs (q) = W3), i.e. either zymin = § or
Zmin = L — §, see Figure 6. In particular, configurations (d) and (d') are always unstable.

Remark 2.25. If II is a quasi-elementary triod, the solution N of the minimum problem (2.3)
with T replaced by II is still determined as solution of the minimum problem (2.20) with II replaced
by II. Hence, formulas in Table 1 and in Proposition 2.22 still hold with (a), (b), (c), (d) replaced
by (a*), (b*), (C*), (d*) and with ll, l2, l3 suitably replaced by ljl, l]’2, l4, jl,jg S {1,2,3} \ {k’}, k
as in Definition 2.8 of quasi-elementary triod.
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3 Short time existence and uniqueness of a crystalline flow

Before proving the short time existence result (Theorem 3.3) we need to understand the relations
between the distances h}(t) (see (2.8) and Definition 2.12) and the lengths L;(t) (see Definition 2.8),

in order to write the left hand side of system (2.9) as function of Ly (t).

Proposition 3.1. Let IT be an elementary triod and T > 0. Assume that t € [0,T) — II(¢) € [II] is
a flow starting from I which satisfies (ii) of Definition 2.12 and that, denoting by h;(t) the distance
vector of the segment S;(t) from S;(0) = Sj, h; € C°((0,T); v;R). Then, defining h%(t) as in (2.8),

( hY(t) — vy - vphY (t
Ll(t)ZLl—}—COthélh'l/(t)—}- k( ) Y1 Pk 1( ) . k‘=2,3,
T1 " Vi
$ Lo(t) = La + cotgashy(t) + 4 () = v1 - v (®) (3.1)
V-T2
hY(t) — vy - v3h¥(t
L3(t) = L3 + cotgash¥ (t) + P{t) = w1 - vshi(?) ,
N V1 -T3
hy(t) + hy(t) = 271 - T3 hi (t), (3.2)
and
V1 -V 1
cotgay — Ly(t) — Ly
T - V2 T~ V2
12N %
rank cotgas — ——  Lo(t) — Ly | = 2. (3.3)
V1 -To 5 V1T
1—2(v; - :
271, - T3cotgaz + M —cotgas + Yt L3(t) — L
V) - T3 1%

Conversely, for any j =1
satisfying L;(0) = L, h%(0) =
|S;(t)| = L;(t) and h;(t ) h;’(t)l/J, then t € [0,T) — II(t) is a flow starting from II which satisfies
(i) of Definition 2.12 and h;(t) is the distance vector of S;(t) from S;(0) = S;.

12,3, let L; : [0,T) — (0,+00), h% : [0,T) — R be continuous functions
)=0, (3. ) (3.2), and (3.3). IfII(t) € [I] is the elementary triod having

Proof. From
qq(t) = qq(t) -vjv; +qq(t) - 77 = hi(t)v; + [L;(t) — L; — cotga; hi(t)] 7, (3.4)
we get, for j = 2,3,

hi(t) = wvi-vihi(t) +v1 -7 [L;(t) — Lj — cotgayh(t)], (3.5)
Ll (t) L1 + COthzlh; (t) + 71 - I/jh;(t) + 7 - Tj [Lj (t) — Lj — COth[jh; (t)], (36)

Thus, by (3.5) . )
1(t) — vy -v;hE(E
L;(t) — Lj — cotga;h¥(t) = £ 1/11-7"] J(), J=123, (3.7)
j

and the second and the third equalities in (3.1) are proved.
Inserting (3.7) in (3.6), subtracting the resulting equations and using (2.12) and (2.5) yields

v (B (1) + B ()] + 2 2 hE () % [R5 (1) + h% ()] = 0.

Hence, by (2.5),

B hpy(t) =0,

T1 - V3

) (hS(6) + 2 (1)) —

T1 - V3

((T1 . 113)2 + (1/1 . 113)2
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which proves (3.2).
Similarly, inserting (3.7) in (3.6), adding the resulting equations, and using (2.12) and (2.5) yields

uw):2a+mwmww+nwmwrwwwiﬁéﬁwm—@w
U0 - 150 (3.8)

= 2Ly + 2cotgay hy (t) +
T1

Substituting (3.2) into (3.8) gives the first equality in (3.1). Now, system (3.1) and (3.2) imply

vy - Vg 1

cotgay — 0
L]. (t) — L]. 1 T1 Vo 71 °* VI2/1 vy hi(t)
Ly(t) - Ly | = T cotgar — oo 01| ns@) (3.9)
L3(t) - L3 1- 2(1/1 . I/3)2 12BN Z] hg(t)
271 - T3cotgag + —————  —cotgas + 0
v -T3 VT3

If we show that system (3.9) has always rank 2 then, being hY solutions of (3.1)-(3.2), the condition
(3.3) follows. Let Aj 2 be the (2 x 2) matrix given by the first two rows and the first two columns of
the matrix in (3.9). If cotgay = cotgaz, i.e. IL€ {(b),(d),(a’),(d")}, then det A; » = cotg?as +1#0.

1 in’
If cotga; = —cotgay, i.e. IL€ {(a),(c), (b’),(c")}, then det A; »=—— (l_sm '(a21+19n))' Using
sin” J, sin” a;p

Table 1, one checks that det A;» # 0 if either IT € {(a),(c)} and n # 6 or II € {(b'),(c’)} and
n ¢ {10,12,14}. In the remaining cases one can check similarly that the minors given by the first and
the third row (or the second and the third row) of the matrix in (3.9) are not zero. Then (3.3) follows.
The converse assertion of the proposition follows by construction. O

Remark 3.2. System (3.1) is not symmetric under permutations of the indices 1,2, 3, unless n = 6m.
This is due to the fact that for n # 6m only two of the angles at the triple junction are equal. Finally,
notice that a flow starting from IT which satisfies (ii) of Definition 2.12 with II(¢) elementary in [0,T)
has two degrees of freedom.

Theorem 3.3. LetII be elementary and stable. Then there exist T >0 and a unique stable p-curvature
flowt € [0,T) — IL(t) starting from I with [IL(¢)] = [II] for any ¢t € [0,T). Moreover, h; € C*([0,T"))
for all j =1,2,3.

Proof. We assume II € (a), the proof in the other configurations being similar. Let $1(21)n be defined as
=z (w) and define the vector field

min

in (2.21). For any w := (w1, w2, w3) € (0,+00)3, we set G(w) :
F = (F17F2,F3) : (0,"‘00)3 — RB as

. 1 .
F(w) = — (cotga1 n V3) Gw) mG(w) +¢ ,
T - V3 w1 T - V3 w3
1 cuo\ —
Fy(w) = —— % N (Cotgag n I/z) mG(w) + gy
Vy-Tp Wy V1 -T2 W2
]. ° z
F(w) = — Glw) _ (cotga3 _h V3> mG(w) +4 .
Vi -T7T3 w1 vy -T3 w3

Notice that F' is obtained by differentiating with respect to ¢ the right hand side of system (3.1) and
by replacing the h%’s (in (2.9)) with the expressions in G and w; (where we used Table 1, (2.21) and
(2.19)). Consider the Cauchy problem

{muszm)

w(0) = (L1, Ly, L) € (0, +00)3. (3.10)
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Figure 7: Stable ¢-curvature flow from a stable elementary triod II (see Theorem 3.3): (i) II € (a),
(i) T € (b), (iii) II € (c).

Since F is C™ in (0, +00)3, there exists a unique solution w € C*°([0, T); (0, +00)?) of (3.10) for some
T > 0. Denote by II(t) the elementary triod belonging to configuration (a) and having |S;(t)| := w;(t)
for any j = 1,2,3. Define z(t) := $$3n(w(t))7 y(t) := —mx(t)+qy, 2(t) :== mz(t)+q¢.. By construction,
for any t € [0,T), =(t) is the solution of the minimum problem (2.20) with II replaced by II(¢) and
Nmin(t), the solution of (2.3) with I" replaced by II(¢), is determined by (z(t),y(¢), 2(t)). Thus

z(t) y(®) z(t)
w1 (t) ’ wo (t) ’ ws (t) ’

where 1;(t) := w;(t)7;. Since w; € C=([0,T)), possibly reducing T > 0, we have z(t) € (a,b) for any
t € (0,T). Therefore, II(¢) is elementary and stable for any ¢ € [0,T), and &, (l;(-)) € C*([0,T)), for
any j =1,2,3. Defining for any j =1,2,3

Fo(l(t) = K (l2(8) = — Ko (l3(t)) =

hi) == (g, R = — /0 o) s, te0,T), (3.11)

we get a flow satisfying (2.7). To prove (ii) of Definition 2.12, in view of (converse part of) Proposi-
tion 3.1 it is sufficient to show that (3.1), (3.2) and (3.3) are satisfied. Denote by f; the function in
(2.20) where II is replaced by II(t). Equality (3.2) follows from

_dfu(a) _ s, y@)dy 2 dz

0 de 2¢°(1n) [wl ) wa(t)dz  ws(t)dz

] =26°() [ (&) = m (5 (6) + B5(®))]

and from —m = (273 - 73) 7! (see (2.15) and (2.18)). Integrating (3.10) yields (3.1). Finally, (3.3)
follows from (3.2), since

1—2(vy - 1y)? vy - U
wy(t) — Ly = (27’1 - Tacotgas + M) hi(t) + (—cotgaz + 2 Z) hy(t).
vy -T2 vy -T2
Uniqueness of the flow follows by uniqueness of w; and h}. O

Corollary 3.4. IfII is degenerate and stable, then there exist T >0 and a unique stable @-curvature
flow t € [0,T) — TI(t) starting from I with TI(t) € [II] degenerate for any t € [0,T). Moreover,
h¥  h% € C([0,T)), j1,J2 € {1,2,3}\ {k}, k as in Definition 2.8 of degenerate triod.

J17 7712

Proof. As in the proof of Theorem 3.3 we obtain the (two) non-degenerate lengths wj;, , w;, as solutions
of a system of two ordinary differential equations and the assertion follows by the same arguments. [
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Definition 3.5. Let II be elementary and stable. We define T = T(II) as the supremum over all
T > 0 for which there ezists a unique stable p-curvature flow t € [0,T) — II(¢t) starting from II.

Corollary 3.6. Let II be elementary and stable, and t € [0, T) — IL(t) € [II] be the stable p-curvature
flow starting from II. Then

=271 - 13k, (11 (1)) + Ko (l2(t)) + Ky, (I3(t)) =0, Vte[0,7). (3.12)
Proof. If follows by differentiating (3.2) with respect to ¢ and using (2.9). O

Condition (3.12) is related to the geometry of the triod near the triple junction and is equivalent to
stability of the triod. In particular, if n = 6m, we have 71 - 73 = —1/2, hence the sum of ¢-curvatures
at the triple junction is zero (as in the euclidean case).

Using (3.2), (2.13) and (2.5), for any t € [0,7) and all n > 6, system (3.1) can be written as follows:

1
Li(t) — Ly = [cotgas + cotgda]hi(t) — pr— hi (t) (3.13)
1
= [cotga; — cotgda]hy (t) + mhg(t) (3.14)
1
Ly(t) — Ly = pr hi(t) + [cotgan — cotgd,]hs (t) (3.15)
= 2cos,[cotgas — cotg(29,)]h] () — [cotgan — cotgdnlhy (t) (3.16)
14 1 v
= [COth@ - COt}g(2'l9n)]h2 (t) + mhf} (t) (317)
1
L3(t)— Ly = th(t) + [cotgas + cotgdy]|hy (t) (3.18)
1 14 14
= m% (t) + [cotgas + cotg(20,)]hs (t). (3.19)

The following proposition describes some useful qualitative properties of the flow.

Proposition 3.7. Let II be elementary and stable, and t € [0,T) — II(t) € [II] be the stable o-
curvature flow starting from IL. Denote by j1 and jo the two indices for which the half-lines respectively
emanating from Aj;, , A;,, parallel to S;,, S;, and not containing q, lie in the same phase. Then

(i) L;, and L;, are non decreasing in [0,7T);
(i) sup; sup,eio, ) [ (1i(t))] < +00;
(iii) sup; supseio,7 |L;(t))| < +oo;
(i) Lj, € Lip((0,7)), js # ju,J2;
(v) if T < +oo then L;j(T—) < +oo for any j =1,2,3.
Proof. We show the assertion (i) for configurations (a), (b) and (c), the cases (a'), (b'), (c’) being

similar (interchanging Lo(t) with L3(t)). Differentiating (3.14), (3.17) and (3.18) with respect to ¢,
using cotga % cotgB = S2PEY (9 11) and Table 1, we see that j; = 2, j» = 3, L (t) >0, Lj,(t) >0

sin asin 37 ) )
in configuration (a), and j; =1, jo =3, Lj, (t) > 0, Lj,(t) > 0 in configuration (b) and (c). Assertion
(i) follow from (i) since, using Table 1, h¥ (¢) and h% () are bounded and, using (3.2), h% (?) is
bounded. Using (3.1), (ii) implies (iii). Conclusions (iv) and (v) follow from (iii). O
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For any ¢ € (0,7), for simplicity, we denote by z(¢) the solution of the minimum problem (2.20)
with II replaced by II(t) and y(t) := —mz(t) + ¢y, 2(t) := ma(t) + ¢.. Thanks to Proposition 3.7,
Li(T—), z(T—), kx(L;(T—)) are well-defined. We denote by II(7) the elementary triod satisfying
[I(T)] = [II] and |S;| = L;j(T—), for any j = 1,2,3. Finally, Npyi,(7) denotes the solution of (2.3)
with T replaced by II(T).

Remark 3.8. We conclude from Proposition 3.7 that either L;,(7—) = 0 or II(7) is unstable or
both of the previos occurences happen at time ¢t = 7. Finally, L;,(7—) = 0 is not equivalent to
|ko(ljs (T—))| = +00, but whenever S;, disappears in a stable flow, its ¢-curvature remains bounded.

3.1 A case of global existence

In general, T is finite and the flow develops singularity at time ¢ = 7. The following result shows
that in a specific case the flow is global, i.e. T = +o00. For all n = 6m > 12, set

o 2 1 1\*'
Yoo 1= UT, Voo := 1+ V3sinay — cos ay, Tri= (ﬁ + pr a1) (—cotgal — ﬁ) . (3.20)

Theorem 3.9. Let n = 6m and II € (a) be stable. Then T = +o0.
(i) If n > 12 then limy_, o L;(t) = +o0 and lim;_, k,,(1;(t)) =0 for any j = 1,2,3. Furthermore,

Lo(t) i Ly(t) — v lim z(t) = z(o0)

t—o0 L3(t) e t—o0 Ll(t) oo t—o0

where Uoo, Voo are given as in (3.20) and x(00) := I (Ueo + Voo +1)71 € (0, L).

(i) If n = 6 then lim; oo L1(t) = 0, lim; yoo Lo(t) = Ly + Lo, limy ,o L3(t) = +o0, and
lim;_y o0 Zmin (t) = 0. Furthermore,

l
Lo+ L

tlirrolo ky(l3(t)) =0 and tlggo ke (la(t)) = — tlir{.lo ke (l1(t)) =
The analysis of the long time behavior requires the following lemma (recall Definition 2.11) which in
particular shows that if n = 6m the stability region S, is the whole of (0, +00)3.

Lemma 3.10. For alln > 6, S; = So = 0. If n = 6m we have S.(3,1) = Sar(2,1) = (0, +00)%.
Moreover, if m is defined as in (2.15), then

[ Sa(3,1) =S (2,1) = {(u,v) € (0,+00)? : v <m},
L—-§6—Lu L—(L-4)u
_ _ 2.
n=bm—d —> ¢ Sb(Q’l)_Sb’(3’1)_{(“ )€ (0, F00) s m =7 — <v< —7—%5 }
L
Sc(2,1) =8 (3,1) = (u,v)€(0,+oo)2:m<v<+—6u ,
\ L-25
(  L-0-Lu L—(L-d)u
Sa(3,1) =S (2,1) = { € (0,4+0)2: m 75 <v< T -2 },
n=6m-2=¢ S$(2,1) =Sy (3,1) = {(u,v) € (0,+00)? : v <m},
L+ éu
\86(3,1) { €(0,+0)2:m<uv< L—26}'
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Proof. Using Proposition 2.22, and (2.24) for configurations (a'), (b’), (c’), the conclusion follows by
imposing Tmin € (a,b). O
Proof of Theorem 3.9. Let xf;)n be given as in (2.21). For any ¢ € [0,7) define y(t) and 2(t) as in
-1
(2.19) with & replaced by z(t) := z%) (L1 (t), Lo(t), Ls(t)). Set d(t) := (ZLi(t)Lj (t)) . Using
i<j

Table 1, (2.15) and (2.16), system (2.9) reads as

hY(t) = — = —Ld(t) Ls(t
1( ) L (t) ( ) 3( )
Yo _ Yt
h¥(t) = = Ld(t) (L1 (t) + Ls(t)), (3.21)
Ly(2)
- z(t)
¥(it) = — =—-L Ly (t).
Hy(t) = = o = ~Ld(® L)
Set A; := (cotgal — \/Lg) %, Az = (cotgal + \/ig) %. Then condition (3.3) becomes
Lg(t) = AL, (t) + A3L3(t) + (L2 — AL, — A3L3)(0) te [0, T) (322)
Differentiating (3.14) and (3.18) with respect to t and using (3.21) yields
Ly =Ld(t)fi, Ls=Ld(t) fs, (3.23)
dL dL
where f1 := —\% L — (cotgal + \/ig) L3 and f3:= — (cotgal — \/ig) Ly + %Lg. Thus f—1l = f—33
and, if we substitute L3 = RL;, we obtain
p1dLy +p2dR =0, (3.24)

with p; == (cotgal + %) R? + %R — (cotga1 — \/ig) and py 1= [(cotgal + %) R+ %} L.

Let us show (i). Integrating (3.24) yields log Ly + 3 [ (ﬁ + ﬁ) dR = 0 where r > 0 is defined

2 _ 1
as in (3.20) and R := — Lsmai < 0. Thus
cotga + 7
9 Ls _ Ls _
1 1

Step 1. There exists to € [0,7T) such that f;(t) > 0 (and hence L; > 0) for any ¢ € [to, T).
If f; is positive at time ¢ = 0 then so is at the subsequent times since, using (3.14) and (3.18),

fi(t) = —h4(cotg?an +1) >0,  t€[0,7). (3.26)
We proceed by contradiction: assume that f; <0in [0,7), i.e.
V3 1
Li(t) > MoLs(t) te€[0,T), My:= —7(c0tga1 + ﬁ) >1 (3.27)

Then, from (3.23), L, is decreasing in [0,7) but bounded below from MyLsz. From Proposition 3.10
and Proposition 3.7 (v), we conclude that 7 = +oc0. Note that A; > 0 and Az > 0 if n > 12. Set

LL3(0)

M= A M) L4 (0) + £(0) — ALy ()] 1 1, (0) + L (0)2 /Mo

0.
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From (3.21), (3.22) and (3.27) we get —h% > M, and, from (3.26), fi > Mj(cotg?a; + 1) in [0, c0).
Thus — (cotga1 + %) Ls(t) > % Ly (t) + My (cotg?as +1)t+ f1(0), for any ¢ € [0,00). Hence, letting
t — 400 we get Ly — +oo and, from (3.27), L1 — +oo. This gives a contradiction since, by our
assumption, L is decreasing on [0, 00). Step 1 is proved.

Since (3.27) holds when L; is decreasing, 7 = +oo follows from Proposition 3.7 and formula (2.21).
Let us show lim; ,oo L1(t) = +o0c. Assume that lim; ,o, L1(t) < +oc. Then from (3.25) and (3.22)
we get respectively lim;_, o L3(t) < oo and lim; o, Ls(t) < co. But this implies lim; ,o, L;(t) = 0 for
any j = 1,2,3. Differentiating (3.16) with respect to ¢ and recalling that hy >0 and hj > 0, we get
lim; o0 AY (t) = limy_0e A4 () = 0, and consequently lim;_, o, h%(¢t) = 0 that gives a contradiction with
system (3.21).

Finally we get also lim;—, oo L3(t) = +00 and lim;_,oc La(t) = 400 respectively from f1 > 0 on [tg, +00)
and (3.22). Using again (3.22), (3.25) and (2.21) the conclusion follows since 4; + A3r = V.

Let us show (ii). If n = 6 then oy =¥, = 27/3. Thus, (3.22) reduces to
L2(t) = —Ll(t) +Sy te [O,T), So:= L1 + Lo, (328)
and (3.24) to (2R + 1)dL; + L1 dR = 0 so that integrating yields log (L1 V2R + 1) = C. Hence

Ly(t) = % (%&) _ Ll(t)) tE0,T), Coi=Lu(Ly +2Ls). (3.29)

Using (3.21), (3.29), (3.28), we can rewrite the first equation in 3.23 as L; = 4LL?/v/3g(L1), where
g(s) := 283 — Sps% — CySp. Given A € (0,L;), let T € (0,7) be the time that the solution needs to
achieve the value A. Then we get

14 A CoS 4
2 _ el - 25 — Gy — 2920 = ___IT. )
|:$ S()S + C()SO 8:| . /I:l ( s S(] 52 ds \/g (3 30)

From (3.30) we discover that T < T for any A € (0,L;). Hence A = 0 and 7 = +00. Further, being
Ly (t) strictly decreasing in [0, 4+00) (from (3.23)), we have L; > 0 in [0, +00) and from (3.30) we get
limtT+oo Ll (t) =0. O

4 Configurations (d) and (d'): development of a new segment.
In this section we assume n = 8 and II € (d). From Proposition 2.22, II is unstable with Z,i, = 6, i.e.
Nuin = (X (V3),Y(V3), V3) (see Figure 8), and from Table 1, k,(l1) = Lil, ke(le) = LL—;&, ke(l3) = 0.

Since Tmin tends to be smaller than § and the constraint Nmin|,, (g) € Two(yg;) cannot be violated, the
J
appearance of a vertical segment at ¢ is forced during the flow, as explained in the following result.
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Figure 8: Development of a vertical segment Ss(t). The rotated quasi-elementary triod on the right
will be used in the proof of Theorem 4.1.

Theorem 4.1. Let n = 8 and II € (d). Then there exist T > 0 and a stable p-curvature flow
t € 0,T) — II(t) starting from II. More precisely

I(t) = T1(8) U2 (t) U (S4(t) US3(2) € (2%),  Vte (0,T), (4.1)
and, defining
B(t) = 2y (L2(0), La(8), L1 (1), §(t) = —mB(H) +q,, () :=mE(t) +q.,  (42)
with mf::l)n as in (2.21) and m,qy,q. as in (2.15), (2.16), then k,(I3(t)) =0,
_ 2@ _ #(b) _ )
K0) = T Rol(0) = F. Rlla(®) = L0 (4.3
Finally, k,(1;(-)) € C>((0,T)) for any j =1,2,3,4, and
H%@manzgwlﬁmﬂﬂmZLé{ H%@mﬁnzf%+%yméé6<ﬂ (4.4)

The idea of the proof is to consider the p-curvature flow starting from the rotated quasi-elementary
triod II in Figure 8, with singular initial datum (L2, 0, L1). Notice that, from Lemma 3.10, (L2, 0, L)
belongs to the boundary of the stability region S,.

Proof. Set G(w) := 2 (w) for w = (wy,ws, w3) € (0,+00)* with wf;)n as in (2.21), and define the

vector field F = (Fl,}r7n’21:1F3) € C°((0,+00)3 R3) as
1 mGw)+q. -mG(w) + mG(w) + g,
Fi(w) = W+e g )= pw) = W e mEW) +a.

sin ¥y ws W w3

(4.5)

where m, g, q. are defined as in (2.15) and (2.16). Notice that F is obtained by differentiating with
respect to t the right hand side of (3.14), (3.17), (3.19) and by replacing the fi;{’s (in (2.9)) with the
expressions in G and w; (where we used Table 1, (2.21) and (2.19)). Despite the appearance of ws in
the denominators of F3, the presence of G ensures that F' and all its partial derivatives are bounded
in (0,400) x {wz2 = 0} x (0,400). Thus the Cauchy problem

w(t) = F(w(t))
{M®=@Mum, (4.6)
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admits a unique solution (A1, A2, A3) € ([0,7); (0, +00)3) of (4.6) for some T > 0. Set L (t) := As(t),
Ly(t) := A1(t), La(t) := As(t) for any t € [0,T). Let us show that Ly > 0 in [0,7). In order to do
that, one checks that L4(0) > 0 as a consequence of

a4y = mG(La(t), La(t), L () | mG(La(t), La(t), L1 (1)) + ¢

La(t) = L. (@) :(2)

and

lim G(wy,wy,ws) =L —6, lim Fy(wy,wy,w3) =0 ( imLy(t) =0 ), wy,ws € (0,+00).
wo—0 wo—0 t—0

Hence, we conclude that Ly is increasing in a neighborhood of 0, say [0,T).

Let II(t) be the quasi-elementary triod defined in (4.1) and having |S;(¢)] = L;(t), j = 1,2,3, 4. Define
Z(t) := G(L2(t), La(t), L1(t)) and y(¢), z(t) as in (4.2). By construction, for any t € (0,T), the solution
Numin(t) of (2.3) with T replaced by II(t) is determined by (Z(t),§(t), 2(t)). Since L; € C>([0,T)),
possibly reducing T' > 0, we have # € (3, L — ) in (0, T). Therefore, II is stable in (0,T), #,(I;(-)) €
C*([0,T)) for any j = 1,2,3, and (4.3) holds. Defining, for any j = 1,2,3, h% : [0,T) — R as in
(3.11) and reasoning as in the last part of Theorem 3.3 we get a stable p-curvature flow starting from
II. Since L;, L, Ly are monotone functions in (0,7), the limits in (4.4) exist and the computations
follow using lim; ,¢ Z(t) = L — § and lim,_,o L4(t) = 0. O

Remark 4.2. The flow ¢t — II(¢) of Theorem 4.1 is the unique stable flow starting from II. Indeed, if
t — II'(t) is a stable flow starting from II then, from Proposition 2.22, IT'(¢) ¢ (d) and, being Zmin = 9,
i.e. Nminx, = V3 (see Figure 8), II'(t) must be quasi-elementary with II'(t) € (a*).

We expect that ¢ — II(¢) is also unique among all regular flows starting from II.

5 The case n=_8 and II € (b): development of a new segment

In this section we prove that at time ¢t = 7 € (0,+00) the flow starting from a stable triod II € (b)
becomes unstable and a vertical segment develops in order to decrease the energy functional and make
stable the flow at subsequent times.

Theorem 5.1. Let n = 8 and II € (b) be stable. Then T < +00 and Npyin(T) = (X (V3),Y(V3), V3).

Furthermore, there exist T € (T,4+o0] and a stable -curvature flow ¢t € [T,7T1) — I(t) starting
from TI(T). More precisely, for anyt € (T,7T1), II(t) is the quasi-elementary triod defined as in (4.1),
ky(l3(t)) = —L/L3(t) and (4.3) holds. Finally, k,(1;(-)) € C{(T,T1)) for any j = 1,2,3,4, and
(4.4) holds with t | O replaced byt ) T.

The idea of the proof is that at the finite time ¢ = T the solution reaches the boundary of the stability
region and, at the same time an infinitesimal segment appears; then the flow is continued arguing as
in Theorem 4.1.
Proof. For any t € [0,T) define z(t) := 2} (L1(t), La(t), Ls(t)), y(t) and z(t) as in (2.19) with z
replaced by z(t). Then system (2.9) reads as

L —2(t)

R T I R =l (5.1

system (3.1) reads as

Ly (t) = Ly + V2h5(t), Ly(t) = La — h5(t) — h5 (1), Ls(t) = L3 + hy (t) + h5(t), (5.2)
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X(Vz)
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Sy (2,1) Y<V3
(a%) Wo= Py
X min =L-8 X(V;)
\

: / 7T
L x
I Y<v3> TE (@) ’

Figure 9: @-curvature flow starting from a stable II € {(b)} (see Theorem 5.1): at time ¢ = 7T the
flow becomes unstable and a vertical segment develops in order to make the triod stable.

while (3.2) and (3.3) become
—V2RY(t) = h¥(t) + h5(t)  and  Ls(t) — Ly = Ly — Lo(2). (5.3)

Ls(t) _ Ls(t)
Lz(t) and v(t) = Lj(t)'
(2.22), (2.19) and m = v/2/2, we obtain

Define u(t) :=

Differentiating (5.2) with respect to t € (0,7) and using

ﬂ_L—2(5 wv (1 +u) (D — Eu) o= (L—20)(L—3) v*(A— Bu—Cv) (5.4)
L} 24 68%u+ (L —26)%0’ B dL% 02 + 82u + (L — 26)20’ '

where A := §(L — ), B =: 6L, C := (L — 8§)(L —26), D := (L —§)?, E := L? — 36L + 6%. Recall
that the stability region Sy(2,1) is given by Lemma 3.10, see Figure 9. Notice that A — Bu— Cv <0
is equivalent t0 Tmin < L —§ and D — Eu > 0 for any (u,v) € Sp(2,1). Thus 4 > 0 and v < 0 in
Su(2,1). From (5.4) we get

dv _L—0 v(A—DBu-—Cv) >_L—5 v
du & wu(u+1)(D—Eu) § u(u+1)’

(5.5)

A*%];S”) < 1 for any (u,v) € 8(2,1). For any (ug,v0) € Su(2,1) we have v(u) >

L—

u u+1)\ £
o ( 1 +0u0 : ) > (1120) * . From Proposition 3.7 we have that Ls(-) is non decreas-

ing; hence, from (5.3) it follows that Lo(+) is non increasing, so that 0 < L3(0) < Ls(t), La(t) < Lo(0)
for any t € (0,7). Since Ls(t)/L2(t) < L/(l — ¢) it follows that (L — 0)L3(t) < LL»(0) and
LLy(t) > (L — §)L3(0) for any t € (0,7). It follows Li(T—) — L1 < +oo, since L3(t)/L1(t) is
bounded from below. Furthermore, since we have, using (5.2) and (5.1),

since —

o-.

Lﬂﬂs—%ﬂﬂsLiﬂ, Lﬂﬂz—V%ﬂnZVGQL?
it follows T < +oo, z(T—) = 4 and
kol (T—) = ——2 bolla(T-) = — =0 ko (s(T) =

Li(T-) Ly(T-)’ Ls(T-)

We proceed as in proof of Proposition 4.1, with the difference that now k,(I3(7—)) > 0, so that a
system of four ODEs is required. For any @ := (w1, ws,w3) € (0,+00)* we set G(@) := (al) (@) with
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2% asin (2.21). For any w := (@, ws) € (0,00)* we define the vector field F € C*°((0, +00)*; R*) as

F1(w) = —\/5 M’ FQ(U}) — F3(U)) _ \/§£
- “ (5.6)
Fy(w) = B mG (W) n mG (W) +qz7 Fy(w) =2 L ol —mG(ﬁJ\)7
w2 ws Wy wa

where m, gy, q. are given by (2.15) and (2.16). Since F and all its partial derivatives are bounded in
(0, +00) x {wz = 0} x (0,+00)?, the Cauchy problem

w(t) = F(w(t))
{w( T) = (L2(T),0, L1 (T), Ls(T)), (5.7)

admits a unique solution (w1, ws,ws,ws) € C([T,T1);(0,+00)*) for Ty € (T,+oc] For any t €
[T,7-1), set Ll(t) = Ag(t), Lg(t) = Al(t), L3(t) = A4(t), L4(t) = Ag(t). As in the proof of
Theorem 4.1, we obtain that L, (0) > 0 as consequence of let us compute the second derivative of
L,4(t). Differentiating with respect to time the following expression

@y — mG(L2(t), La(t), L1(8)) | mG(La2(t), La(t), L1 (t)) + - L
La(t) * Li(t) V2 ®

Ly(t) =

and

lim G(wi,ws,ws) =L —38 lim Fy(wy,wy, ws,ws) =0 ( lim Ly(t) =0 ), wy,ws,wy € (0,400).
wo—0 wo—0 t—0

The cclnclusion follows by the same argument once we define for any ¢ € [T, T1), the quasi-elementary
triod TI(¢) as in (4.1) with |S;(t)| := L;(t), Z(t) := G(La(t), L(t), L1(t)), h;(t) := h%(t)v; and h%(t)
as is (3.11) with

lmhy(6) = A{(T), §=123 and  h{(T)=0.

We notice that, the condition (i) of Definition 2.12 holds since, similarly to Proposition 3.1, one
can show that (ii) is satisfied for t € (7,71) — II(¢) if and only if system (5.7) with w(t) =
(La(t), La(t), L1(t), L3(t)) holds in (7,7:) and II(t) is stable for any ¢ € (T, 71). O

Remark 5.2. The flow ¢ — II(t) of Theorem 5.1 is the unique stable flow starting from II(7). Indeed,
assume that ¢ — IT'(t) is a stable flow starting from II. If IT'(¢) € (b) and u, v are defined as in proof
of Theorem 5.1 then (u(t),v(t) ¢ Sp(2,1), which gives a contradiction. Since any non-polygonal triod
is unstable and since Tmin = 6, i.6. Npinjsz, = V3 (see Figure 9), II'(t) must be quasi-elementary with

IT'(t) € (a*). We expect that ¢t — TI(¢) is also unique among all regular flows starting from TI(T).

6 The case n=6m —4 and II € (a): development of a curve
In this section we prove that at time ¢t = 7 € (0, +00) the flow starting from a stable triod II € (a)
becomes unstable and a curve develops from the triple junction at subsequent times.

Theorem 6.1. Let n=6m —4 and II € (a) be stable. Then T < +oo and there exists a @-curvature
flow t € [T,+00) — II(t) starting from II(T). Moreover, for any t € [T,+00), the triod I1(t) is
non-polygonal and unstable with Nmin(t) = (X (V3),Y (V3),V3). Finally, k,(I3(t)) =0,

)

o1 (8)) = Lf(t), ot =~ o (6.1)
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Figure 10: @-curvature flow starting from a stable II € (a) for n = 8 (see Theorem 6.1): at time
t = T the flow becomes unstable and a curve 74 of zero p-curvature develops from the triple junction.

Proof. For any t € [0,7) define 2(t) = 2%, (L1(t), La(t), Ls(t)), y(t) and z(¢) as in (2.19) with z

replaced by z(t). Then system (2.9) reads gsin
) =~k s = 20 =0 (63

Step 1. Ly, Ly, L3 are strictly positive and bounded in [0, 7]
From Lemma 3.10, we know that (u,v) € Sa(3,1) = {(u,v) € (0,+00)? : v < —(2cos¥,)~'} in [0, 7),
where w(t) := L2(t)/Ls(t) and v(t) := La(t)/L1(t), i-e.

—2cosUnLa(t) < L1(t), t€[0,T). (6.4)

cotgay — cotgdy
—2 cos ¥q(cotgay + cotg(29y))
costy < 0, we deduce L;(t) < (cotgay — cotgihy)h?(t) < MyLy(t) for any ¢t € [0, 7). Hence, using
(6.4), we obtain

Set My := > 0. From (3.14), (3.16), cotgay = —cotgas < 0, h% < 0,

My
L 1 < L; — MyL .
1(t) ( + 2cos19n> <Ly oLs, tel0,7)

Now we observe that 1 + %OE >0and Ly — MoLy > 0. Indeed, Ly — MoL2 > (—2costq — My) Lo

and using Table 1 and (2.11),

(1 — 4 cos® ¥, )cotgay + _Siz#ssf)"@ cos(29,) + 1)

2 cos ¥ (cotgay + cotg(2v,))
(1 — 4 cos® ¥,)(cotgay + cotgid,)

= >
2 cos Un(cotgay + cotg(29,)) >0 Vn28

—2cost, — My =

since 1 — 4cos? ¥, < 0, cotgay + cotgd, < 0 and cotga; + cotg(29¥,) < 0. Thus L is bounded in
[0,7), and from (6.4) and (3.3), so are Ly and Ls.

Step 2. Ls(t) — Lz > C+/L? — 2(cotgay — cotgdy)(L — d)t, t € [0, T), for some constant C > 0.
Step 2 follows since, using (3.13), (3.18) and (6.3), we have

Lyi(t) < —(cotgoy + cotgﬂn)L—_d Ls(t) > d

Li(t)’ = sind, L1 (t)’ telo,7).
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n=8 n>8

Figure 11: Flow lines diagram in the variables (u,v) corresponding to (p-curvature flows starting from
stable IT € (a) (see Theorem 6.1).

From step 1 and step 2, we get T < 400, and hence z(7T—) = 4.
For any w := (wy,ws) € (0,4+00)? we define the vector field F' = (Fy, Fy) € C°°((0, +o0)?; R?) as

. scotgay + cotgty _ 1) =6 _ ccotga + cotgd,
Fi(w):= -9 wy ws sind,’ Fow) := wy sin ¥, d wa ' (6:5)
The Cauchy problem
(1) = F(w(®) 66)
w(T) = (L1(T), L2(T))

admits a unique solution (wi,wz) € C*([T,T);(0,+0)?) for some T € (T,+oc]. Notice that F
is obtained differentiating with respect to ¢ the right hand side of (3.13), (3.15) and by replacing
hY and hy respectively by —6/w; and &/ws. For any t € (T,T), j = 1,2 we denote by X,(t) the
interface of an elementary triod having S;(t) parallel to S;(7) with one of the endpoints in R;(T)
and L;(t) :=|S;(t)| = w;(t). It follows from Proposition 3.1 that the condition (ii) of Definition 2.12
is satisfied with 0 # S1(t) N Sa(t) =: q(t) and furthermore (6.1) holds in [7,T). For any j = 1,2 define
hY : (T,T) = R as in (3.11) with limyy 7 h%(t) = h%(T—). Then t € (T,T) = i1 (t) U Xa(t) is a flow
starting from X1 (7) U X2(7T) which satisfies (i)-(iii) of Definition 2.12.

Step 3. We have T' = +oc0. Since L1 (t) = Lo(t) is the solution of the system (6.6) with initial datum
Li(T) = Lo(T), v(t) := La(t)/L1(t) < 1 for any t € [T,T). Moreover, v is increasing since

d(cotgay + cotgdy,)

o(t) = 2 v (v =1) >0. (6.7)
2
sin L—25 sin(ag —9,)\ " )
- _ _ < = m. Then L L
Set c¢g sin{o + 97) ( 5 + sna < T2 m en L; and Ly are

increasing in [7,T) since, from (6.5) it follows that Li(t) > 0if and only if v(t) > ¢o € (0,m) while
Ly(t) > 0 if and only if v(t) < Cl—o € (1,+00). Substituting wy = L; and ws = vLi(= L2) in the
second equation in (6.6) and solving in Lj,v, yields

_Or

1+v)*(1—-wv)*2 = I (6.8)

where a; := L _260; ag = L ZCO and O := (L1(T) + L2(T))** (L1 (T) — L2(T))*2. If, by contradic-

tion, the maximal time of existence T is finite then, using the first equation in (6.6) (with wy = Ly
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and wy = Ly) and Ly < Ly in [T,T), we get

. b 1 0 Un
L(t) < ——2— . -2 LAR N .T). (6.
1(t) < A0 (cotgoq + cotgd, + n 1911) 0] [cotgal + cotg ( 5 )] te[T,T). (6.9)

Integrating (6.9), L (T) < \/L1(7')2 — 26 [cotgay + cotg (22)] (T — T) < 400, which contradicts the
maximality of T'. Hence, T = +00. From (6.9) and (6.8), (6.2) follows.

Step 4. For any t € (T,+00) let 74(t) be the curve which has initial point in ¢(7) and is created by
the motion of ¢(s) := S1(s) N Sa2(s) for s € (T,t). Then ~(t) is p-regular for any ¢ € (T, 00).

Let (X(t),Y(t)) be the component of gq(t) with respect to the (71,v1)-axis. Then, from (3.4), we
get X = hY(t)cotgd, — hilt) y — hY, and the slope of the tangent to the curve with respect to the

A X sin ¥, ?
(11, v1)-axis is given by

_ hy (t)
h¥ (t)cotgdn — hy (t)

1 -1
1 (CO g + v(t) sin 19,1)
sin 9,

e

K(t) =

Thus, 74 and ¥3 join in a C! fashion since K(7) = tg(m — ¥,,) > 0. Furthermore, v, is concave in

- ) 2 . - -
[T, +00) since, from (6.7) K = vzvsliiﬁ >0, X =-0/(L1K) <0 and d’Y/dX? = K/X < 0. Finally

, 1\ On o
tllglo K(t) = (cotgﬁn + sin19n> =tg (7) <tg (7T + i ﬁn) ,

where the right hand side gives the slope of a segment parallel to Rs.

Step 5. Conclusion of the proof.

Let ¥3(t) := v4(t) U X3(T) and II(t) := E1(t) U Ea(t) U £3(¢t) for any t € (T,+00). Then II(¢) is
non-polygonal, unstable, and ¢ € [T, +o00) +— II(t) is a p-curvature flow starting from II(7). O

Remark 6.2. We expect that the flow of Theorem 5.1 is the unique regular flow starting from II(7).
Notice that if Zmin < ¢ in some open intervall contained in (7, T + o), for some o > 0, then, in view
of the constraint Nmin|x; (q) € Tpo (llé), at time t = T a new segment Sy should appear in 33 in such a
way that X1 () UXa(t) U (Se(t) USs(t))] € (2') for any ¢ € (T, T + o), but this would give an unstable
triod with Npin = (X(V3),Y (Va),V3) in (T,T + o) since Ly/L; < 1in [T,T + o) and

Ly L\ _[(L1 Lx 2 Ln )
- (L4’L2) _{<L4’L2) € (0+o0)™: - <195 ("

a contradiction. Hence Zmin = d in [T, T + o).

7 The case n=_8 and II € (c¢): disappearance of a segment

In this section we show that the flow has two different behavior depending on the initial datum IT € (c).
For a suitable choice of II, we show that one of the three segments vanishes at t = T, its p-curvature
remains bounded, the Cahn-Hoffman vector field Nmin has a jump discontinuity at ¢(7) on each ¥;
and the triple junction translates along the remaining adjacent half-line in [T, +00). For the other
choices of stable II € (c) we prove that at time ¢t = 7 € (0, +o00) the flow becomes unstable, a curve
appears from the triple junction, as in Section 6, with the difference that the adjacent segment now
has positive ¢-curvature and keeps on moving at subsequent times.

In the following theorem we denote by z2), (A1, +00, A3)) the limit of 2, (A1, A, As)) as Ay — 400,

where z°) is defined as in (2.22).

min
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2 (c)

Figure 12: The white region is the stability region S.(2,1). Flow lines diagram of system (7.5)
corresponding to p-curvature flows starting from stable II € {(c)} for n = 8 (see Theorem 7.1);
Z’min(T) S {5,L — 5}.

Theorem 7.1. Let n = 8 and II € (c) be stable. Then T < +oo and II(T) is unstable. Moreover,
there exists a curve 7y tangent to the line {Zmin(u,v) = 8} at (u2,v2) = P, (see Figure 12) which
divides S:(2,1) in two disjoint regions U, := {(@,7) € Sc(2,1) : @ > ua, ¥ > v, :=yN{u=14a}} and
B, :=85:(2,1) \ U, such that

(i) if (u(0),v(0)) € B. then Nuyin(T—) = (X (Va),Wa, Z(W>)), i.e. z(T—) =L —4§, Ly(T—) =0,
ko(l2(T—=)) = 0 and 2321 ; = g Furthermore, there exists a stable ¢-curvature flow in
(T=
(T, +00) starting from TI(T) with
b (11 (1)) = LL_IZ()t), b (I3 (1)) = —LL;(igt), t € (T,+o0) (7.1)

8(L — 8)%Ls(t) o~
Ly + (L —202Li () ) =mal) + ¢z
the triple junction translates along Ry(T) in (T, +00) and

where T(t) := 2 (L3(t), +o0, L1 (t))) =

ml]’l

Finally,

. Ls(t) . (1+v2)?
1 t)y=L—0 li =2 | t)=0———2% € (6,L—9).
i =Loo fm g =V p=inly € 0L

In particular, Nuin(T—) # Nuin(T+), see Figure 13 (i).

(i) If (u(0),v(0)) € U, then Nuyin(T) = (X (V3),Y (V3),Vs). Furthermore, there exist T € (T, +00]
and a p-curvature flow in [T,Tz) starting from II(T). Furthermore, for any t € [T,Tz2), II(t)
is non-polygonal, Npyin(t) = (X (V3),Y(V3),V3), ke(l3(t)) = —L/L3(t) and (6.1) hold, see
Figure 13 (ii).

Proof. For any t € [0,7) we define z(t) = 2! (L1(t), La(t), L3(t), y(t) and 2(t) as in (2.19) with

mll'l

replaced by z(t). Then system (2.9) reads as

i = -2, s = L0 g =1 (ztgt’, (7.2)




system (3.1) reads as
Li(t) = L1 + V2h4(t), Ly(t) = Ly + h3(t) — hy(t), Ls(t) = L3 + hy (t) + h5(t), (7.3)
while (3.2) and (3.3) become

—V2RY(t) = h¥ + by and  V2(Ly(t) — Ly) = Ls(t) — Ly(t) + Ly — Ls. (7.4)
Define u(t) := ﬁzgg and v(t) := ﬁj Eg Differentiating (7.3) with respect to time and using (2.23),

(2.19), and m = 4, we obtain for any ¢t € [0,7)

o L —6 u[26%u?® + v(L — 26)(—0u? + Lu + L — §)]

L2 02 + 62u + (L — 26)%v
(7.5)
. (L—26)(L—19)? v? (1 —+/2v)
Y= 2 32+ 0%u + (L — 20)%0

Recall that the stability region S;(2,1) is given by Lemma 3.10, see Figure 12. It follows that v < 0
in 8:(2,1) with the equality holding only if v = 0 or v = m (i.e. {Zmin(u,v) = L —§}). Notice that

—6u?+Lu+L—368<0foru>uy:= il ) "1:2;;1‘%. Moreover, 4 < 0 if and only if u > ug and
V26u?

> .
U‘(Su?—Lu—L—f—é (7.6)

2
or, more precisely, if and only if (7.6) holds for any u > uy, where u; := Loty (;;M) 9L 55 the
intersection point of the line {Zmin(u,v) = §} and the curve of points satisfying 4 = 0. Since the

condition )
0 <0 usu
7 L—28 !

{®min(,v)=51
is satisfied if and only if g(u) := —8%u®+ 262 Lu? +§L(2L — §)u+ L?(L — ) < 0, that is, for any u > us,
ug > uy (for g(ug) > 0), it follows that the trajectories of solutions of system (7.5) intersects the line
{Zmin(u,v) = 0} for u < uz. Denote by P, the point belonging to the line {Zmin(u,v) = 6} having
u-coordinate equal to uz. Let v C S; be the flow line tangent to {Zmin(u,v) = 6} in P>. Then v
decompose S;(2,1) into B, and Uk,.

Let us first prove (ii). If (u(0),v(0)) € U,, then the trajectory of the solution of (7.5) intersects the
line {Zmin(u,v) =0} at 7. It is clear that 7 < +o0 since any L;(7) is bounded and

) ) s
Lalt) = ~VEI(0) > £

Let (wy,wsz) € C°([T,T); (0,+00)?) for some T € (T, +o0] be the solution of (6.6) with F' defined as
in (6.5). For any t € (T,T), j = 1,2 we define X;(t), h} and 74 as in Theorem 6.1. Then, following the
same argument, (6.1) hold in [T,T), t € (T,T) — X1 (t) UX2(¢) is a flow starting from Xy (T)UX2(T)
which satisfies (i)-(iii) of Definition 2.12, T' = 400 and 4 is concave and p-regular in [T, 4+00). Let
t € [T,+00) = y4(00) U S3(t) U R3(t) be the p-curvature flow starting from ~4(co) U (S3 U R3)(T).
Since hf(t) = —L/L3(t) € C=([T,+00)) and from (7.4) we have

V2R (T)| = =V2h%(T) = hy(T) + B5(T) > B5(T) = |R5(T),

it follows that |h%(t)] < v2|h¥(t)| (that is v(t) > V/2/2) for any ¢ in a neighborhood of T, say
(T, T2). We conclude that the normal velocity h% of S3(t) is smaller than the ones of Si(t) and Ss(t).

. . L—-§
L) < ~2(0) <2 7,
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Figure 13: -curvature flow starting from a stable IT € {(c)} (see Theorem 7.1): (i) the segment S
has zero length at time t = T and z(7) = L — §; (ii) (7) = ¢ and a curve develops from the triple
junction for t > T.

Thus, setting X3(t) := ya(t) U (S3 U R3)(t) and II(¢) := X1 (t) U Xa(t) U X3(t) for any ¢t € (T,72), we
conclude that the triod II(¢) is ¢-regular and unstable in [T, 72) and ¢ € [T, 72) — II(¢) is the unique
p-curvature flow starting from II(T).

Let us prove (i). Given o > 0, set
B.(0) := {(u,v) € B, : 26°u* + v(L — 28)(—6u®> + Lu+ L — &) > o, u > uy }.

Notice that B.(o) = {(u,v) € Bc : u(u,v) > 0, u > w; }. Without loss of generality, assume
(u(0),v(0)) € Bc(o). Then (u(t),v(t)) € Bc(o) for any ¢t € [0, 7). Since for any (u,v) € B.(0) we
deduce the following estimates

Vow—1 9 V2 -1

—C1 <-<——73
ou U u
with ¢ := (L — 28)(L — 8)v? and cp := UF%&#. Integrating yields

2 Vae 2 _ca
\/7_(14-15262) §v§§<1+eﬁi2),

and hence lim;_,7 u(t) = +oo, lim;,7 v(t) = ‘/TE Thus the first part of the assertion follows from
(2.23) and (2.19).
Let us show 7 < +oc. Let € > 0 and assume v(0) < v/2 — . Then v(t) < /2 — ¢ for any ¢ € [0,7),

and L3(t) = ﬁLL(t) < CL3(t), where C := (2 — v/2¢)(I — §). It follows that
1
L3(t) < /L% +2Ct. (7.7)
Using (7.3) and (7.2) we get

Lo(t) = —V2h¥ (t) — 2h5(t) < Voo (L3(t) - \/5) < —V2e L-o

and, inserting (7.7) and integrating, yields

Ly(t) < L% — w,wg +2Ct.
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We conclude that 7 < 400 and, from Proposition 3.7 (v), also Li(T—), L3(7T—) < +00. Moreover,
II(7—) € (b) is degenerate. Notice that the p-curvature flow starting from II(7—) can be described
as g-curvature flow starting from II € (b), obtained by a rotation and a symmetry with respect the
Ls-axis from II, i.e. Ly = +oo and Lz = v/2L;. Recalling the mirror law (2.24), TI(T ) is stable, the
p-curvature flow starting from II(7 —) satisfies system (2.7) with ¢-curvatures given as in (7.1) and

L) _ . L) _ V2

1m — =
t— o0 Ll (t) t— o0 L3(t) 2

Finally, since d hY = —(L — &) hY in [T, +00), the triple junction translates along Ry (7). O

Remark 7.2. We believe that the flows of Theorem 7.1 (i) and (ii) are the unique regular flows
starting from II(T).

8 Adjacent triple junctions: solutions after the collision

In this section we fix W, = Fs and consider the ¢-curvature flow starting from a stable p-regular
partition, denoted by Y, consisting of two adjacent elementary triple junctions ¢; and g2. Given a
Cahn-Hoffman vector field N on T as in Figure 14, we set

(X1,Y1,7y) = (N|21(111)7N\22(Q1)7N\23(Q1)), (X2,Y3, Z5) = (N|21 ((I2)7N|24(q2),N|25(q2)),

and z; := |Vi — Nz, (g)], ¥; := y(x;), 2z; = 2(x;), j = 1,2, where y and z are defined in (2.19).
From Proposition 2.21 we know that the admissible triplet (X;,Y;,Z;) is uniquely associated with
(%,v;,2;). Noticing that we can restrict the minimum (2.3) to vector fields which are linear on each
¥, and verify the required constraints, the problem of finding Nmin in Definition 2.4 reduces [3] to the
following minimum problem:

(zl’zsren[?,L—J]z f(xl’ 1.2)7

where
f(zy1,22) = / (div.N)?°(v) dH' = 0127 + 0223 + 0127172 + B171 + B2 + 7,
T

and o1, 02, 012, b1, B2,7 are coefficients depending on the configuration we are analyzing.
We say that T is stable if (Nmin)|s; (gx) is not a vertex of W, for any j = 1,2,3 and k = 1,2. We say
that Y is unstable if it is not stable. The stability of Y is equivalent to

(mlminax2min) € (63-[‘ - 6)2
Notice that if Y is stable then

_ o122 — 20254 _ 0121 — 2019

Limin = —4 = 5> 2min = g 5 (8.1)
0102 — 0719 0102 — 0719

From now on, Z1min; T2min Will be denoted simply by T, T2 and we set ; := y(T;), z; := 2(T;).

The discussion of finding which values of L;, i = 1,...,5, provide a stable Y simplifies only in the

case of adjacent triple junctions which either belong to the same symmetry classes (i.e. Ly = L4 and

L3 = L, see Figure 14 (i)) or are symmetric with respect to the axis orthogonal to X; at its middle

point (see Figure 14 (ii)), leading respectively to T1 = Z» and T; = L — T».

Let T > 0 and let us introduce the orientation of YT as in the comment after Definition 2.8. We say

that ¢t € [0,T) — Y(t) is a g-curvature flow starting from T if Y(¢) is a p-regular partition consisting
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v11 Vi Xy
v.x2 Vi X,
YZ YzZz

(i)

Figure 14: Example 8.1: collision of two adjacent triple junctions; in (i) we have Ly = Ly, Ly = Ly
and Kk, =0 on X;.

of two adjacent elementary triple junctions g;(t) and g2(t), and conditions (ii)-(iii) of Definition 2.12
hold for any j = 1,2, 3,4, 5. If the adjacent triple junctions of T belong to the same symmetry classes
or are symmetric with respect to the axis orthogonal to ¥; then, arguing as in Theorem 3.3, one can
show that there exists a unique stable yp-curvature flow starting from a stable Y.

When 7T is not stable, at least one of the two triple junctions is not stable. If in addition the gradient
of f on 9[6, L — §)% points inside [§, L — ]2, then the appearance of a new edge from one of the two
triple junctions (or from both) is forced during the subsequent crystalline flow.

The following example shows that the collision phenomenon occurs and a quadrijunction forms.

Example 8.1. Consider the partition of Figure 14 (i) with Ly > 0, Ly = Ly > 0 and L3 = Ly > 0.
In this case f reads as

fz1,22) = ¢° () (M+£+z_f+ﬁ+z_2) : (8.2)

so that

0'1=LL1+m(LL2+LL3>>0, 02=LL1+m<LL4+LL5)>O, 0'122—1%,

[l
]
e
o
+
S
N—

51=2m(%?+2—;); B2

where m, gy, ¢. are defined in (2.15) and in (2.16). Thus, the triod is always stable since using (8.1)

_ _ —,31 0L,y + (L — 5)L3
TH =Ty = = € (6,L —9). 8.4
! >7 201 o2 Ly + Ls ( ) ®4)
The evolution equations are given by
v _ R R NS D VR | S R
h{ =0, hy= Ly’ hs I3’ hy Iy’ hsg Iy

so that the triple junctions move along ¥; until they collide at the middle point at a finite time.
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W= P

Figure 15: These quadrijunctions are p-regular with k, = 0 and unstable, i.e. Nuin|s;(q1) is a vertex
of W, for some j = 2,3,4,5.

) (i)

Figure 16: Example 8.2: these configurations are stable only for suitable choices of L;, j =1,...,5.

Consider now the partition of Figure 14 (ii) with Ly > 0, Ly = Ls > 0 and L3 = L4 > 0. Formulas
(8.2) and (8.3) still hold and, using (8.1), we get
L N L-§ ¢
— — m2L L L
T1=L-Ty=— 1 > € (8, L-4).

m2L, Jr_L_2+ Lj

Therefore, the triod is always stable and the evolution equations are given by

. T1 — To L — 27, y
v — = h” =
hy Iy L, °’ 2

Z1
L3’

2
Ly’

_ %
Ly

7
Ly’

hg = hy = hg =
If in addition L3 > Lo, the triple junctions move as shown in Figure 14 (ii) until they collide at a
finite time and a quadrijunction forms.

In general, it is not clear what happens after the collision. In a special case the solution can be

continued in a “natural” way, see Example 8.4. A quadrijunction E as in Figure 15 is y-regular
with K, = 0 and unstable, i.e. Nmin|x; (¢1) is a vertex of W, for some j € {2,3,4,5}. Indeed, the

minimizer Ny, of (2.3) with I’ replaced by T which satisfies 2522 (Nminmj)azf = 0 is given in
Figure 15. Finally, ¢t — E is a stationary ¢-curvature flow starting from =, i.e. = does not move.
The following example concerns the stability of the partitions given in Figure 16 (see (8.6)), and will

be used to construct the flow after the collision of two triple junctions (see Example 8.1).
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Example 8.2. Consider the partition of Figure 16 (i) with L; > 0, Ly = Ly > 0 and L3 = L5 > 0.
In this case

f($1,$2)=g0°(1/1)<($1_$2)2 LEmw)?  (E=z)? (L) (L—z2)2>’

I Lo Ls Ls Ls (8.5)

Lo Ly Ls
Furthermore, since the first two equalities in (8.4) hold, we have

 (L=0)’Ly— (L? — 30L + 6°)Ls B Ly (L-6 L
T1 =Ty = 6(L2 T L3) S ((S,L (5) A1 I, —L ,—L —5/- (86)

so that o7, 09, 012 are given as in (8.3) B, = 2m (L_—qy — L;—g‘) and By = 2m (L_qy — ﬂ).

The evolution equations are given by

L-y,

L-z . L-7 .. L—7%
Ly, ’ '

hY =0, hy=-— o

hy =

We observe that, because of the symmetry, iiZ = —h'g, h'g = —h'g and, by direct computations,

hy = —(2L — 8)/(Ly + L3) = —Hg . Hence, assuming that the initial partition is stable, the flow is

stable in the whole of [0, +00) with the triple junctions translating in opposite directions along ;.

Consider now the partition of Figure 16 (ii) with Ly > 0, Ly = L5 > 0 and L3 = L, > 0. Since (8.5)

still holds, the expressions of o1, 02, 012, 81, f2 are the same. Using (8.1) it follows

L(L —26)% §(L*—-35L+6%) O6(L—9)*

Ly Ly * L
2(L—26)2 & §? ’
L, Ly L3

E]_:L_EQZ

so that
_ L3 m L3
—_ L3 m L3
IL— B M (5622,
T < 1) <= L1>L—25< 1) 5L2)

Therefore, assuming that the initial partition is stable, the evolution equations are given by

L — 27,
L, °’

L-7y
Ly ’

L_El fl.yzL_y2

L — 2%y
L3 ) 4 L4 ) -

hY = I

hy = — hy = R = —

(8.7)

If in addition L3 > Lo, the triple junctions move (for small times) as shown in Figure 14 (ii).

Remark 8.3. From the computations made in Example 8.2, it follows that the first partition is stable
for any L; > 0 while the second one is stable provided that L; is small enough. In particular, if L; =0
then 1 =T = % Hence, in Example 8.2 we have constructed stable o-curvature flows starting from
o quadrijunction.

In the following example we construct flows after the collision of two triple junctions.

Example 8.4. Consider the partition of Figure 17 (i) with L; > 0, Ly = Ly = L3 = L5 > 0. As shown
in Example 8.1 there exists a finite time Ty > 0 such that L;(Tp) = 0. From the considerations made
in Remark 8.3, there exists at least one stable ¢-curvature flow starting from the quadrijunction Y (75)
as shown in Figure 17 (i). This is not the only stable p-curvature flow starting from Y (Tp). There are
other candidates to continue the flow after the singularity: the stable flows shown in Figures 17 (ii)
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z, z,
s

Ly

® (i) (iii)

Figure 17: Example 8.4: existence of three stable flows after the collision of two adjacent triple
junctions. Another candidate to continue the flow after the singularity is the stationary (not stable)
flow t € [Ty, 4+00) — Y(Tp). The dotted partition in (i) is the rotation of 90 degrees of partition in
Figure 16 (1) with L2 = L3 = L4 = L5.

and (iii) and the stationary flow ¢t € [Ty, +00) — T(Ty). The latter flow is not stable and has the
largest energy (1.1) among the four flows.

Some explicit comparisons between the energies of the different evolutions can be made. For instance,
if we denote by Y ;) (t) (resp. Y(;;(t)) the partition in Figure 17 (i) (resp. Figure 17 (ii)) at time ¢,
then Fy (T (55 (1)) < Fo(X(3) (#)) for any ¢ > Ty, since h¥ ) (t) = 5255 < gl = hE ) (8).
Furthermore, notice that in the case of the flow in Figure 17 (i), £, (l;(To—)) = £, (l;(To+)) for any
Jj =2,3,4,5, while in the other cases &, (l;(To—)) # ko (l;(To+)) for any j = 2,3,4,5.

We believe that a selection of the “most natural” evolution between the three flows in Figure 17
cannot probably be done if one considers the evolution of interfaces without looking at the phases,
i.e. without looking at the interfaces as the “boundaries” of their interior.

9 Homothetic flows and asymptotic convergence (n = 6m)

In this section we introduce the notion of homothetic flows and we assume n = 6m. In the case of
curves the homothetic flows by crystalline curvature have been studied in [29], [15].

Definition 9.1. Let II be elementary. We say that t € [0,4+00) > II(t) is a homothetic flow starting
from II = T1(0) if there exists A € C°([0, +00)), A(0) =1, such that IL(t) = A(#)IL(0) +qq(t). If A =1
we say that the flow is translating; if in addition qq(t) = q the flow is stationary.

Lit) _ L;(0)
Li(t)  Li(0)
The flow is stationary whenever an elementary triod has two of the segments S; of infinite length.

Remark 9.2. ¢ € [0,400) — II(¢) is homothetic if and only if

for any 4,7 = 1,2, 3.

We characterize now all homothetic flows for n = 6m. If n = 6 we will consider the following limit
cases of degenerate triod:

(i) I € (a) with L; =0 and L3 = +oo (see Figure 18 (i));
(ii) I € (a) with Ly =0 and L3z = 400 (see Figure 18 (ii));
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i) (u,v)=(0, + ) (i) (u,v)=(0,0) (iii) (u,v)=(0,k) @iv) (u,v)=(1,0)

Figure 18: The case n = 6. The flows (i), (ii) and (iii) are translating; (iv) is homothetic.

-

i) (u,v)=(0,1) (i) (u,v)=(1,0) (i) (u,v)=(u_,v,)

Figure 19: The case n = 12. The flows (i), (ii) and (iii) are homothetic.

Theorem 9.3. Let n = 6m. IfII € (d), the flow is stationary for any choice of L1, Ly, L3 € (0, +00].
If I € (a), the flow is homothetic if and only if one of the following holds:

(i) Ly = 400 and Ly, L3 € (0,+00]. The flow is stationary and I1(t) is unstable for any t € [0, +00).
(i) Ly = 400 and Ly = L3 (see Figures 18 (iv) and 19 (ii)). The flow is stable.
(i%5) n> 12 and L3 = +00, L1 = Ly (see Figure 19 (i)). The flow is stable.

(iv) n =6 and L3 = +o0, (L1, Ls) € [0,+00)?\ {(0,0)} (see Figure 18 (i), (i), (ii)). The flow is
translating. The triod II(t) is unstable for any t € [0,4+00) if either Ly = 0, Ly € (0,+00) or
Ly, =0,L; € (0,400) (resp. (i) and (ii) in Figure 18); in the other cases, the flow is stable.

(v) n > 12 and Ly = usLs, Ly = veoLy (see Figure 19 (i), where uco, Voo are defined in (3.20).
The flow is stable.

Proof. If II € (d) then h;’(t) =0 for any t € [0,+00), j =1,2,3 (see Table 1).
Assume II € (a). From (3.21), (i) follows since z(t) = 0 and h‘J’(t) =0 for any t € [0, +0), j = 1,2,3.
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Now

let w(t) := La(t)/L3(t) and v := La(t )/Ll( ). Recalling that cotgay = —cotgas = cotgas and

= 2n/3, from (3.21), (3.13), (3.15) and (3.18), we obtain

L [ (cotgal - —) (cotga1 + \/_) v— \/guv + (cotgm - %) u2]

u =

I utv+1
9.1)
. IV [ (cotga1 — %) u— (cotgm + %) + \/—uv + (cotgm + %) 1)2] |

L3 u+v+1

From Remark 9.2 it follows that all homothetic flows are the constant solutions (u,v) of system (9.1).

We seek for solutions of (9.1) of the form % = K, K constant. Imposing v = Ku we obtain three

possi

(1)
2)

3)

bilities:
K =0, that gives (ii), since h¥(t) = 0, hy(t) = —h%(t) = L/(La(t) + Ls(t)) and (3.17), (3.19)
hold;

u = 0, that gives (iii) and (iv), since h%(t) = 0, hy(t) = —h¥(t) = L/(L1(t) + La(t)) and (3.13),
(3.15) hold. Notice that if n = 6 then Ly = Ly = 0 while if n > 12 then Li=1Ls> 0;

K =71 and v = v, U = U that gives (v). Indeed, equalizing the brackets on the right-hand
sides of (9.1) we get

1 4 1
— (cotgay + — ) v? — —uv + | cotga; — — | u? =0,
( s «3) V3 ( o «5)

and thus v = ru for n > 12 and v = 0 for n = 6 (observe that if n > 12 then cotga; + \/_ <0

and the equality holds if and only if n = 6). Hence, if n > 12, substituting v = ru in 4 = 0
yields the conclusion, i.e. us = (1 + V3sina; — cos a1)/r.

2

The inverse implication follows by construction. O

Remark 9.4. The p-curvature flows in Theorem 3.9 converge to homothetic flows, i.e. if n > 12
(resp. n = 6) the limit triod satisfies (v) (resp. (iv) with L; = 0) of Lemma 9.3, see Figure 19 (iii)
(resp. Figure 18 (i)).
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