
L1–GRADIENT FLOW OF CONVEX FUNCTIONALS
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Abstract. We are interested in the gradient flow of a general first order convex functional
with respect to the L1-topology. By means of an implicit minimization scheme, we show
existence of a global limit solution, which satisfies an energy-dissipation estimate, and solves
a non-linear and non-local gradient flow equation, under the assumption of strong convexity
of the energy. Under a monotonicity assumption we can also prove uniqueness of the limit
solution, even though this remains an open question in full generality. We also consider
a geometric evolution corresponding to the L1-gradient flow of the anisotropic perimeter.
When the initial set is convex, we show that the limit solution is monotone for the inclusion,
convex and unique until it reaches the Cheeger set of the initial datum. Eventually, we show
with some examples that uniqueness cannot be expected in general in the geometric case.
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1. Introduction

We consider the functional

Φ(u) :=

∫
Ω
F (Du) u ∈ BV (Ω),

where Ω is a bounded, connected, open subset of Rd, and F : Rd → [0,+∞] is a convex
function with F (ξ) ≥ c(|ξ|−1) for some c > 0. We also assume that the set {ξ : F (ξ) < +∞}
has non-empty interior and contains 0.
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We are interested in the gradient flow of Φ with respect to the L1(Ω)-topology, with either
homogeneous Neumann, or Dirichlet boundary conditions; in the latter case the functional
has to be relaxed, with an appropriate boundary integral, if the function F has linear growth,
and we leave the details to the reader.

In order to show existence of a solution, we follow the general approach in [11] (see also
the comprehensive reference [3]), which is known as the minimizing movement scheme and
applies to functionals on metric spaces, under general assumptions. However, most of the
theory developed in [3] does not apply to our setting, since the Banach space L1(Ω) does not
satisfy the Radon-Nikodým property (see [3, Remark 1.4.6]). In particular, we cannot derive
uniqueness of gradient flow solution from general results, and we are able to prove it only in
some special cases.

For this reason, the are few results in the literature concerning L1-gradient flows. In [10]
the author considers the L1-gradient flow of a second order functional related to the Willmore
energy, and studies in detail rotationally symmetric solutions. We also mention [17] where
the authors, motivated by a model of delamination between elastic bodies, study a monotone
geometric flow by means of a minimizing movement scheme reminiscent to the one in Section 5.
They show existence of a limit solution and discuss some examples.

The plan of the paper is the following: in Section 2 we introduce the minimizing movements
and we show convergence of the discrete solutions to a limit solution. We also show a general
dissipation estimate from which we derive, under the assumption of strong convexity of F , a
gradient flow equation satisfied by the limit solution.

In Section 3 we analyze the case when the initial datum is a subsolution (see Definition 3.1).
In such case the limit solution is non-decreasing in time and it is indeed unique.

In Section 4 we consider the simplest possible functional, that is, the Dirichlet energy. In
this particular case we can show a stronger uniqueness result, namely that the limit gradient
flow equation always admits a unique solution.

Finally, in Section 5 we consider the geometric evolution corresponding to the L1-gradient
flow of the anisotropic perimeter. Even if we are not able to characterize the limit flow as we
do in the case of functions, when the initial set is convex, we can prove that the evolution is
unique, monotone for the inclusion, and remains convex until it reaches the Cheeger set of
the initial set. In two dimensions we also show that it stays convex until it becomes a Wulff
Shape, and then shrinks to a point in finite time. Simple examples show that the geometric
evolution is in general non-unique, after reaching the Cheeger set.

Acknowledgements. The second author is member of INDAM-GNAMPA and was supported
by the PRIN Project 2019/24. Part of this work was done while he visited CEREMADE,
supported by Univ. Paris-Dauphine PSL.

2. Existence of solutions

2.1. Minimizing movements. Following [11], we introduce the L1-minimizing movement
scheme. Given u0 ∈ L1(Ω), we let un, for n ≥ 1, be a minimizer of

min
u

Φ(u) +
1

2τ

(∫
Ω
|u− un−1|dx

)2

. (2.1)

If F has superlinear growth, then un ∈ W 1,1(Ω). Assuming in addition that F is strictly
convex, we deduce that if u′ is another solution, Du′ = Dun a.e., and u′−un is a constant. As a
consequence, any other solution is of the form un+c where c is a minimizer of ‖un−un−1−c‖1,
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that is, a median value of un − un−1. Notice that, by convexity, the set of median values is
an interval. If un−1 ∈W 1,1(Ω) (which is true for n ≥ 2, and which will we assume for n = 1),
then, since un − un−1 ∈W 1,1(Ω) and Ω is connected, it has a unique median value, hence we
have the following result.

Lemma 2.1. Assume that F is stricly convex with superlinear growth, and that Φ(u0) < +∞.
Then for any n ≥ 1, there is a unique minimizer to (2.1).

Remark 2.2. In case F is not strictly convex or the growth is not superlinear, the uniqueness
is not guaranteed. However, in that case,

(1) by strong convexity in u 7→ ‖u− un−1‖1 of the energy, one easily sees that given any
two minimizers u, u′ of (2.1), ‖u− un−1‖1 = ‖u′ − un−1‖1;

(2) one can easily build measurable selections of the solutions τ 7→ un as τ varies, as
follows. A first observation is that for any p ∈ [1, d/(d− 1)], if the energy of u in (2.1)
is finite, then u ∈ Lp(Ω), by Sobolev’s embedding and using that Φ(u) controls the
total variation of u. Then, given p ∈ (1, d/d − 1), for ε > 0, one can consider the
unique minimizer uε(τ) of the strictly convex energy:

Φ(u) +
1

2τ

(∫
Ω
|u− un−1|dx

)2

+ ε

∫
Ω
|u|pdx

and one easily shows that τ 7→ uε(τ) is continuous (in L1(Ω), as well as Lp(Ω)).
Sending ε → 0 we find that uε(τ) → u(τ), the solution of (2.1) with minimal Lp

norm, which is thus a measurable selection.

We can now define uτ (t) := ubt/τc where b·c is the integer part, and we show the following
theorem (whose proof is classical).

Theorem 2.3. Assume that Φ(u0) < +∞. Then, there exists u ∈ C0([0,+∞);L1(Ω)) and a
subsequence τk → 0 such that uτk → u in L∞([0, T ];L1(Ω)), for all T > 0, and

‖u(s)− u(t)‖1 ≤
√

2Φ(u0)
√
|t− s|

for any t, s ∈ [0, T ].

Remark 2.4. If we consider the piecewise affine interpolant ûτ of un in time, defined as
un+(t/τ−1)(un+1−un) for nτ ≤ t ≤ (n+1)τ , rather than the piecewise constant interpolant,
then the convergence is also in C0([0, T ];L1(Ω)).

Proof. For any 0 ≤ m < n, we have

‖uτ (nτ)− uτ (mτ)‖21 ≤

(
n−1∑
k=m

‖uτ ((k + 1)τ)− uτ (kτ)‖1

)2

≤ (n−m)

n−1∑
k=m

‖uτ ((k + 1)τ)− uτ (kτ)‖21

≤ 2τ(n−m)
n−1∑
k=m

(Φ(uτ (kτ)− Φ(uτ ((k + 1)τ))

= 2(Φ(um)− Φ(un))(nτ −mτ)

≤ 2Φ(u0)(nτ −mτ),
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where we used the Cauchy-Schwarz inequality and the minimality of uτ (kτ), and the fact
that the sequence (Φ(un))n is non-increasing.

We deduce in addition that Φ(uτ (t)) ≤ Φ(u0) for any t > 0, so that, thanks to the assump-
tions on F and together with the bound on ‖uτ (t) − u0‖1, we find that there is a compact
subset of L1(Ω) (even Lp(Ω), for p < d/(d− 1)) which contains uτ (t) for any t > 0.

For any t, s ≥ 0, if follows that

‖uτ (t)− uτ (s)‖1 ≤
√

2Φ(u0)
√
|bt/τc − bs/τc| τ ≤

√
2Φ(u0)

√
τ + |t− s|.

The compactness and convergence is then deduced by the Ascoli-Arzelà Theorem. �

By a simple interpolation argument, we can show a slightly improved convergence for the
previous theorem.

Proposition 2.5. Let p ∈ [1, d/(d − 1)). Then the subsequence (uτk)k in Theorem 2.3 also
converges to u in L∞([0, T ];Lp(Ω)) for any T > 0, while the piecewise-affine interpolants ûτk
converge in C0([0, T ];Lp(Ω)).

Proof. By construction, for t ∈ [0, T ] the norms ‖uτ (t)‖d/(d−1) are uniformly bounded and for
1 < p < d/(d− 1), there is a compact set of Lp(Ω) such that uτ (t) ∈ Cp.

For 0 < ε < 1, writing |uτ (t) − uτ (s)|p = |uτ (t) − uτ (s)|1−ε|uτ (t) − uτ (s)|p−1+ε and using
Hölder inequality, we have

‖uτ (t)− uτ (s)‖pp ≤ ‖uτ (t)− uτ (s)‖1−ε1

(∫
Ω
|uτ (t)− uτ (s)|

p−1+ε
ε

)ε
hence if (p − 1)/ε + 1 ≤ d/(d − 1), for instance for ε = (p − 1)(d − 1) < 1 (or any ε < 1 if
d = 1), we find that

‖uτ (t)− uτ (s)‖p ≤ C
√
τ + |t− s|

d
p
−(d−1)

Hence, the convergence is also in L∞([0, T ], Lp(Ω)). �

2.2. Euler-Lagrange equation. The Euler-Lagrange equation for un minimizing (2.1) takes
the form: −div zn + ‖un−un−1‖1

τ sign(un − un−1) 3 0

zn ·Dun = F (Dun) + F ∗(zn)
(2.2)

where the last statement is in a weak sense if F has minimal growth 1 (Du can be a measure),
otherwise we just have zn ∈ ∂F (Dun).

This follows from [13, Prop. 5.6], applied in V = L1(Ω) and V ∗ = L∞(Ω). In that case,
u 7→ ‖u − un−1‖2/(2τ) is everywhere continuous while Φ is lower semicontinuous. Hence,
∂(Φ(·) + ‖ · −un−1‖21/(2τ)) = ∂Φ + ∂‖ · −un−1‖21/(2τ), where the subgradients are elements
of L∞(Ω). So a minimizer (un) is characterized by

0 ∈ ∂Φ(un) +
‖un − un−1‖1

τ
sign(un − un−1) (2.3)

where sign(t) = {1} for t > 0, {−1} for t < 0, and [−1, 1] for t = 0.
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2.3. Estimate of the time derivative. The class of functionals Φ we are considering satisfy
the following fundamental estimate: for any u, v ∈ L1(Ω),

Φ(u ∧ v) + Φ(u ∨ v) ≤ Φ(u) + Φ(v) (2.4)

(with equality if F has superlinear growth). Here for x, y ∈ R, x ∨ y = max{x, y} and
x ∧ y = min{x, y} and the notation extends to real-valued functions. In this context, we can
prove the following:

Lemma 2.6. Let v ∈ L1(Ω), q ∈ L∞(Ω) with q ∈ ∂Φ(v). Let u be a minimizer of:

Φ(u) +
1

2τ
‖u− v‖21.

Then
‖u− v‖1

τ
≤ ‖q‖∞.

Proof. The following remark is crucial: if q ∈ ∂Φ(v), p ∈ ∂Φ(u), then (denoting as usual
x+ = x ∨ 0 and x− = (−x)+):∫

Ω
(q − p)(v − u)+dx ≥ 0 and

∫
Ω

(q − p)(v − u)−dx ≤ 0. (2.5)

Indeed, one has:

Φ(u ∨ v) ≥ Φ(u) +

∫
Ω
p(u ∨ v − u)dx and Φ(u ∧ v) ≥ Φ(v) +

∫
Ω
q(u ∧ v − v)dx. (2.6)

Using that u∨ v−u = (v−u)+ and u∧ v− v = −(v−u)+, the first inequality in (2.5) follows
by summing the two previous inequalities and using (2.4). The second is proved similarly.

Since in the Lemma, u satisfies the equation (cf (2.3)):

∃p ∈ ∂Φ(u) ∩ −sign(u− v)
‖u− v‖1

τ
,

we deduce from (2.5) that (here “sign” is single-valued as the integrand vanishes for v ≤ u):

0 ≤
∫

Ω

(
q − sign(v − u)

‖u− v‖1
τ

)
(v − u)+dx ≤

(
(ess sup

Ω
q)− ‖u− v‖1

τ

)∫
Ω

(v − u)+dx

(2.7)

so that if {v > u} has positive measure, ‖u−v‖1τ ≤ ess supΩ q. Similarly (multiplying with

−(v − u)−) we show that so that if {v < u} has positive measure, ‖u−v‖1τ ≤ −ess infΩ q. The
thesis follows. �

We deduce immediately the following result, as a consequence of Lemma 2.6 and the Euler-
Lagrange equation (2.3).

Theorem 2.7. Let u0 ∈ L1(Ω), τ > 0 and (un)n≥0 defined by the minimizing movement
scheme. Then

i. for any n ≥ 1,

‖un+1 − un‖1
τ

≤ ‖u
n − un−1‖1

τ
;
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ii. if in addition ∂Φ(u0) 6= ∅, then for any n ≥ 0,

‖un+1 − un‖1
τ

≤ ‖∂Φ0(u0)‖∞

where ∂Φ0 denotes the minimal norm of an element in the subgradient.

Corollary 2.8. Let u be an evolution provided by Theorem 2.3, and assume again ∂Φ(u0) 6= ∅.
Then u is Lipschitz in time and satisfies, for a.e. t ≥ 0,

‖u̇(t)‖1 ≤ ‖∂Φ0(u0)‖∞.
2.4. Dissipation estimate. We shall prove the following dissipation estimate.

Theorem 2.9. Let u0 satisfy Φ(u0) < +∞ and let u be a limit of minimizing movements
given by Theorem 2.3. Then, for any t > 0, u̇ is a measure with marginal s 7→ |u̇(s)|(Ω) in
L2(0, t) and there exists q ∈ L2((0, t);L∞(Ω)) with q(s) ∈ −∂Φ(u(s)) for a.e. s ≥ 0 such that

Φ(u(t)) +
1

2

∫ t

0
(|u̇(s)|(Ω))2ds+

1

2

∫ t

0
‖q(s)‖2∞ds ≤ Φ(u0). (2.8)

Proof. We remain in the framework of Theorem 2.3, assuming that Φ(u0) < +∞ and that

uτ , defined above converges, up to a subsequence, to a function u ∈ C0,1/2([0, T ];L1(Ω)).
As usual (see for instance [3, Sec. 3.2]), for nτ < t < (n+ 1)τ , we let ũτ (t) be a minimizer

of

min
u

Φ(u) +
1

2(t− nτ)
‖u− un‖21,

which satisfies the Euler-Lagrange equation

∂Φ(ũτ (t)) +
‖ũτ (t)− un‖1

2(t− nτ)
sign(ũτ (t)− un) 3 0. (2.9)

By Remark 2.2-(1), observe that even if the minimizer might be non-unique, the value of
‖ũτ (t) − un‖1 is. In any case, as mentioned in Remark 2.2-(2), we assume that t 7→ ũτ (t) is

measurable. We also have that ‖ũτ (t) − uτ (t)‖1 ≤
√

2Φ(u0)(t− τ) so that ũτ converges to
the same limit as uτ , also uniformly in time.

Now, for n ≥ 0, 0 < s < τ , we let h(s) = Φ(ũτ (nτ + s)) + ‖ũτ (nτ + s)− un‖21/(2s), hence
h(τ) = Φ(un+1) + ‖un+1 − un‖21/(2τ) and lims→0 h(s) = Φ(un). It is standard that:

h′(s) ≤ −‖ũτ (nτ + s)− un‖21
2s2

,

so that (using h(τ) = limε→0 h(ε) +
∫ τ
ε h
′(s)ds)

Φ(un+1) +
‖un+1 − un‖21

2τ
≤ Φ(un)− 1

2

∫ τ

0

‖ũτ (nτ + s)− un‖21
s2

ds.

Thanks to the Euler-Lagrange equation (2.9), we deduce:

Φ(un+1) +
1

2

∫ (n+1)τ

nτ
‖ ˙̂uτ (s)‖21ds+

1

2

∫ (n+1)τ

nτ
‖qτ (s)‖2∞ds ≤ Φ(un),

where for all t, qτ (t) ∈ −∂Φ(ũτ (t)), and û(t) is the piecewise-affine interpolant, which also
converges to u up to a subsequence (in C0([0, T ];Lp(Ω)) for 1 ≤ p ≤ d/(d−1), see Prop. 2.5).
Summing this inequality from n = 0 to bt/τc − 1, for 0 < t ≤ T , we find:

Φ(uτ (t)) +
1

2

∫ t−τ

0
‖ ˙̂uτ (s)‖21ds+

1

2

∫ t−τ

0
‖qτ (s)‖2∞ds ≤ Φ(u0).
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By lower-semicontinuity of the convex functions appearing in the integrals we claim that (2.8)

is deduced, where q is a weak limit (in L2([0, T ];Lp
′
(Ω))) of qτ , and p′ the conjugate exponent

of some p ∈ (1, d/(d− 1)).
The only difficulty is with the measure term. Given ϕ ∈ C∞c ([0, T )× Ω), it is not difficult

to check that for τ small enough:

1

2

∫ t−τ

0
‖ ˙̂uτ (s)‖21ds ≥

∫
Ω
ϕ(0, x)u0(x)dx−

∫ t

0

∫
Ω
ϕ̇ûτdxds−

1

2

∫ t

0
‖ϕ(s)‖2∞ds

so that, passing to the limit along an appropriate subsequence,∫
Ω
ϕ(0)u0dx−

∫ t

0

∫
Ω
ϕ̇udxds− 1

2

∫ t

0
‖ϕ(s)‖2∞ds ≤ lim inf

τ→0

1

2

∫ t−τ

0
‖ ˙̂uτ (s)‖21ds =: `.

In particular (using also that u(t)→ u0 as t→ 0), we deduce immediately that the distribution
u̇ is a bounded Radon measure (in [0, T )× Ω), satisfying for all t ≤ T :∫

[0,t]×Ω
ϕdu̇− 1

2

∫ t

0
‖ϕ(s)‖2∞ds ≤ `.

Letting n ≥ 1, 0 = t0 < t1 < · · · < tn = t and considering mi ≥ 0, i = 1, . . . , n, and the
supremum over all functions ϕ with ϕ|(ti−1,ti) ∈ C∞c ([ti−1, ti) × Ω) with ‖ϕ‖L∞(ti−1,ti) ≤ mi

we deduce:
n∑
i=1

mi|u̇|([ti−1, ti)× Ω)− (ti − ti−1)
m2
i

2
≤ `.

By uniform approximation of a smooth function ψ ∈ C∞c ([0, t);R+) by piecewise constant
functions, we deduce that the marginal measure |u̇|(Ω) in (0, t) satisfies:∫ t

0
ψ(s)d(|u̇|(Ω))(s)− 1

2
ψ2(s)ds ≤ `

and it follows that |u̇|(Ω) is indeed in L2(0, t), with

1

2

∫ t

0
(|u̇|(Ω))2ds ≤ `.

Now, we check that q(t) ∈ ∂Φ(u(t)) a.e.: given ϕ ∈ C∞c ((0, T )× Ω), we have∫ T

0
Φ(ϕ(t))dt ≥

∫ T

0
Φ(ũτ (t))dt+

∫ T

0

∫
Ω
qτ (t, x)(ũτ (t, x)− ϕ(t, x))dxdt.

Since ũτ → u in L∞([0, T ];Lp(Ω)) (using Prop. 2.5) and qτ ⇀ q in L2([0, T ];Lp
′
(Ω)), we

obtain that ∫ T

0

∫
Ω
qτ (t, x)ũτ (t, x)dxdt→

∫ T

0

∫
Ω
q(t, x)u(t, x)dxdt.

It follows that∫ T

0
Φ(ϕ(t))dt ≥

∫ T

0
Φ(u(t))dt+

∫ T

0

∫
Ω
q(t, x)(u(t, x)− ϕ(t, x))dxdt.

We deduce that for a.e. t, −q(t) ∈ ∂Φ(u(t)). �
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A dissipation estimate like (2.8) usually implies that the flow u(t) is a curve of maximal
slope in the sense of [3, Def. 1.3.2], satisfying

∂tΦ(u(t)) = −
∫

Ω
q(t)u(t) dx for a.e. t ≥ 0. (2.10)

However, as already observed in the Introduction, the results in [3] fail to apply in the (1,∞)-
duality, since L1(Ω) does not satisfy the Radon-Nikodým property.

We shall rigorously prove (2.10) in the next section, under the additional assumption that
F is smooth and strongly convex.

2.5. Strongly convex case. In this part, we first assume that in addition there exists γ > 0
such that F is γ-convex:

F (η) ≥ F (ξ) + p · (η − ξ) +
γ

2
|η − ξ|2

for any η, ξ ∈ Rd and p ∈ ∂F (ξ). Then (2.6) becomes

Φ(u ∨ v) ≥ Φ(u) +

∫
Ω
p(u ∨ v − u)dx+

γ

2

∫
Ω
|D(u ∨ v − u)|2dx

Φ(u ∧ v) ≥ Φ(v) +

∫
Ω
q(u ∧ v − v)dx+

γ

2

∫
Ω
|D(u ∧ v − v)|2dx.

One now deduces, following the arguments in the proof of Lemma 2.6:

γ

∫
{v>u}

|Dv −Du|2dx ≤
∫

Ω
(q − p)(v − u)+dx

γ

∫
{v<u}

|Dv −Du|2dx ≤ −
∫

Ω
(q − p)(v − u)−dx.

(2.11)

Summing, we find:

γ

∫
Ω
|Dv −Du|2dx ≤

∫
Ω

(q − p)(v − u)dx.

Using v = un, u = un+1 and (2.3), it follows for all n ≥ 1:

γ

∫
Ω
|Dun+1 −Dun|2dx

≤
∫

Ω

(
−sign(un − un−1)

‖un − un−1‖1
τ

+ sign(un+1 − un)
‖un+1 − un‖1

τ

)
(un − un+1)dx

≤ −1

τ
‖un+1 − un‖21 +

1

τ
‖un − un−1‖1‖un+1 − un‖1

(there is an abuse of notation here since “sign” is multivalued, however we use only that
|sign| ≤ 1 and sign(un+1 − un)(un − un+1) = −|un+1 − un|), which we rewrite:

γτ

∫
Ω

∣∣∣∣Dun+1 − un

τ

∣∣∣∣2 dx+
1

2τ2
(‖un+1 − un‖1 − ‖un − un−1‖1)2 +

‖un+1 − un‖2

2τ2

≤ ‖u
n − un−1‖2

2τ2
. (2.12)
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Then, summing (2.12), we get the estimate:

γ

∫ nτ

0
‖D ˙̂uτ (t+ τ)‖22dt ≤

‖u1 − u0‖2

2τ2
. (2.13)

Remark 2.10. If the initial speed is not bounded we can sum from m to n and get

γ

∫ nτ

mτ
‖D ˙̂uτ (t+ τ)‖22dt ≤

‖um+1 − um‖21
2τ2

≤ 1

mτ2

m∑
k=0

‖uk+1 − uk‖21,

using Theorem 2.7, i. Then, using the minimality in the energy, we obtain:

γ

∫ nτ

mτ
‖D ˙̂uτ (t+ τ)‖22dt ≤

2

mτ
Φ(u0). (2.14)

Recalling Theorem 2.7, ii., we are in particular able to deduce the following result:

Theorem 2.11. Assume F is γ-convex and let u be given by Theorem 2.3. Then u̇ ∈
L2((t,+∞);H1(Ω)) for any t > 0, with

γ

2

∫ +∞

t
|Du̇|2ds ≤ Φ(u0)

t
.

If in addition ∂Φ(u0) 6= ∅, then

γ

∫ +∞

0
|Du̇|2ds ≤ ‖∂0Φ(u0)‖2∞

Remark 2.12. Taking into account (2.11) when deriving (2.7), we can derive slightly more
precise estimates which may be useful in case the initial speed q0 ∈ ∂Φ(u0) has a sign. Indeed,
we obtain for instance that:

• If {u1 > u0} has positive measure, then

‖u1 − u0‖1
τ

≤ ess sup(−q0)− γ
∫

Ω |D(u1 − u0)+|2dx
‖(u1 − u0)+‖1

;

• If {u1 < u0} has positive measure, then

‖u1 − u0‖1
τ

≤ ess sup q0 − γ
∫

Ω |D(u1 − u0)−|2dx
‖(u1 − u0)−‖1

.

In particular, if q0 ≤ 0 a.e., we deduce that u1 ≥ u0 a.e., but then q1 := −sign(u1 − u0)‖u1 −
u0‖2/τ ∈ ∂Φ(u1) is also non-positive and again, u2 ≥ u1 a.e.: by induction we find that
un+1 ≥ un for all n ≥ 0.

If F is γ-convex and C1, we have additionally (Remark 2.10) that u̇(t) ∈ H1(Ω) for t > 0,
and q(t) = div∇F (Du(t)) for a.e. t > 0. In addition, ∂tΦ(u) =

∫
Ω∇F (Du) · Du̇dx =

−
∫

Ω qu̇dx so that

Φ(u(0))− Φ(u(t)) =

∫ t

0

∫
Ω
q(s)u̇(s)dxds ≤ 1

2

∫ t

0
‖q(s)‖2∞ + ‖u̇(s)‖21

which combined with (2.8), yields that q(s) ∈ ∂‖ · ‖21(u̇(s))/2 for a.e. s > 0. Hence we have:
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Theorem 2.13. Assume F is C1 and strongly convex, and let u be a limit of minimiz-
ing movements given by Theorem 2.3, starting from u0 with Φ(u0) < +∞. Then, u̇ ∈
L2((t,+∞);H1(Ω)) for any t > 0 and satisfies the equations{

|div∇F (Du)| ≤ ‖u̇‖1 a.e. in Ω× (0,+∞)

u̇div∇F (Du) = |u̇|‖u̇‖1 a.e. in Ω× (0,+∞).
(2.15)

2.6. Minimal surface energy. The case where Φ(u) =
∫

Ω

√
1 + |Du|2dx is in between

the prevous section and the last Section 5, where we introduce a geometric version of this
gradient flow. In that case, we remark that if we can show that when u0 is L-Lipschitz for some
constant L ≥ 0, u remains L-Lipschitz, then from Section 2.5 we deduce that the solution
satisfies u̇ ∈ H1(Ω) for positive time and that the characterization (2.15) holds. Indeed, in

that case, since the gradients are all bounded by L, F is γ-convex, with γ = (1 + L2)−3/2.
This is the case for instance if we consider the problem in a periodic setting (Ω = Rd/Zd):

Lemma 2.14. Let Ω = Rd/Zd, F (p) =
√

1 + |p|2, v a L-Lipschitz, L ≥ 0 function and u a
minimizer of:

min
u

Φ(u) +
1

2τ

(∫
Ω
|u− v|dx

)2

.

Then u is L-Lipschitz, and unique.

Proof. It is enough to show it for the unique solution up, p > 1, of:

min
u

Φ(u) +
1

2τ

(∫
Ω
|u− v|pdx

)2/p

(2.16)

since in the limit p→ 1 one recover a minimizer (hence the minimizer) for p = 1.
We first show the following: let v > v′, let u minimize, for some λ > 0:

min
u

Φ(u) +
λ

p

∫
Ω
|u− v|pdx (2.17)

and let u′ solve the same problem with v replaced with v′. Then, comparing the energy of u
with the energy of u ∨ u′, and the energy of u′ with the energy of u ∧ u′ and summing both
inequality we end up (using (2.4)) with:∫

Ω
|u′ − v′|pdx−

∫
Ω
|u ∧ u′ − v′|pdx ≤

∫
Ω
|u ∨ u′ − v|pdx−

∫
Ω
|u− v|pdx,

that is: ∫
{u<u′}

|u′ − v′|p − |u− v′|pdx ≤
∫
{u<u′}

|u′ − v|p − |u− v|pdx.

One may write this:∫
{u<u′}

∫ u′(x)

u(x)
p|t− v′(x)|p−2(t− v′(x))− p|t− v(x)|p−2(t− v(x))dx ≤ 0,

which, since −v(x) < −v′(x), is not true unless u ≥ u′ a.e.
Now, assume v is L-Lipschitz and let u = up be the minimizer of (2.16). For z ∈ Rd, ε > 0,

let v′(x) = v(x− z)−L|z| − ε < v(x) and u′(x) = u(x− z)−L|z| − ε be the solution of (2.16)



L1–GRADIENT FLOW OF CONVEX FUNCTIONALS 11

with v replaced with v′. The Euler-Lagrange equation for v and v′ are:{
−∂Φ(u) + 1

τ

(∫
Ω |u− v|

pdx
)2/p−1 |u− v|p−2(u− v) = 0,

−∂Φ(u′) + 1
τ

(∫
Ω |u

′ − v′|pdx
)2/p−1 |u′ − v′|p−2(u′ − v′) = 0

hence letting λ = ‖u − v‖2−p/τ = ‖u′ − v′‖2−p/τ , we find that u is a minimizer of (2.17)
while u′ is a minimizer of the same problem with v replaced with v′. We deduce that u′ ≤ u.
Sending ε→ 0, it follows that

u(x− z)− L|z| ≤ u(x) ∀x ∈ Ω, z ∈ Rd

which shows that u is L-Lipschitz.
We now observe that if there is another solution u′ ∈ BV (Rd/Zd), by convexity arguments,

the absolutely continuous part of the gradient must be the same as Du, and they can differ
only by a singular part. On the other hand, the regularity theory for minimal surfaces shows
that {(x, u′(x)) : x ∈ Rd/Zd} ⊂ (Rd/Zd)×R is C1,α (for any α < 1), so that if it has a vertical
part, one must have |Du| = +∞ somewhere, a contradiction. Hence u is the unique solution
of the problem. �

Hence, we obtain the following result:

Theorem 2.15. Let u0 a Lipschitz function over Ω = Rd/Zd. Then the discrete motion
converges to u(t) ∈ C0([0, T ];Lp(Ω)) for any p < d/(d− 1), with

∫∞
s |Du̇|

2dt ≤ CΦ(u0)/s for
any s > 0, and satisfies{

|κu(x)| ≤ ‖u̇‖1 a.e. in Ω,

−u̇κu(x) = |u̇|‖u̇‖1 a.e. in Ω
for a.e. t ≥ 0,

where κu = div
(
Du/

√
1 + |Du|2

)
a.e.

Remark 2.16. The proof of the existence of a L-Lipschitz solution on the torus when u0 is
L-Lipschitz is valid for any convex function F (Du), so that the results in this section are also
true for F smooth and strongly convex on any bounded subset of Rd.

3. Monotone solutions

In this section we consider the case of Dirichlet boundary conditions (dom(Φ) = u0 +
H0

1 (Ω)), and we assume that u0 ∈ BV (Ω) a subsolution in the following sense:

Definition 3.1. We say that u0 ∈ BV (Ω) is a subsolution if for any v ∈ BV (Ω) with
{v 6= u0} ⊂⊂ Ω, we have

v ≤ u0 ⇒ Φ(v) ≥ Φ(u0).

Lemma 3.2. If u0 is a subsolution then, for any v ∈ BV (Ω) with {v 6= u0} ⊂⊂ Ω, we have

Φ(max{u0, v}) ≤ Φ(v).

Proof. Since u0 is a subsolution, we know that Φ(min{u0, v}) ≥ Φ(u0). Recalling that

Φ(min{u0, v}) + Φ(max{u0, v}) ≤ Φ(v) + Φ(u0),

it follows that Φ(max{u0, v}) ≤ Φ(v).
�
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Replacing u0 with max{u0, u1} in the variational problem which defines u1, we find that
u1 ≥ u0 a.e. in Ω; in particular, the Euler-Lagrange equation reads:

∂Φ(u1) +
‖u1 − u0‖1

τ
ϕ(x) = 0, ϕ ∈ sign(u1 − u0) a.e. in Ω.

Proposition 3.3. If u0 is a subsolution then, for any n ≥ 1, un ≥ un−1 and un is also a
subsolution.

Proof. This follows the proof of a similar result in [12] for mean-convex sets, see also Sec. 5.1.
By Lemma 3.2, for any v ∈ BV (Ω) with {v 6= u0} ⊂⊂ Ω, we have

Φ(max{u0, v}) ≤ Φ(v).

Let v ∈ BV (Ω) with {v 6= u0} ⊂⊂ Ω, and assume v ≤ u1. We have

Φ(v) ≥ Φ(max{u0, v}) ≥ Φ(u1) +

∫
Ω
−‖u

1 − u0‖1
τ

ϕ(max{u0, v} − u1)dx

= Φ(u1) +
‖u1 − u0‖1

τ

∫
{u1>u0}

(u1 −max{u0, v})dx ≥ Φ(u1)

showing that u1 is also a subsolution, and the thesis follows by iterating the argument. �

Let us set now λ1 = ‖u1 − u0‖1/τ . We observe that for any v ≥ u0 with v − u0 with
compact support, one has

Φ(v) ≥ Φ(u1) + λ1

∫
Ω
−ϕ(v − u1)dx.

Since v ≥ u0, we get∫
Ω
−ϕ(v − u1)dx =

∫
{u1>u0}

u1 − v dx+

∫
{u1=u0}

−ϕ(v − u0)dx

≥
∫
{u1>u0}

u1 − v dx−
∫
{u1=u0}

v − u0 dx =

∫
Ω
u1 − v dx,

and we deduce that

Φ(v) + λ1

∫
Ω
v dx ≥ Φ(u1) + λ1

∫
Ω
u1dx.

It follows that u1 is a solution of the obstacle problem (with Dirichlet boundary conditions)

min
v≥u0

Φ(v) + λ1

∫
Ω
v dx.

Notice that, if F has superlinear growth and is strictly convex, the solution is unique.1 Observe
also that, if v, v′ are minimizers of the above obstacle problem for, respectively, two different
non-negative parameters λ and λ′, then the inequality

Φ(v) + λ

∫
Ω
v dx+ Φ(v′) + λ′

∫
Ω
v′ dx ≤ Φ(v ∧ v′) + λ

∫
Ω
v ∧ v′ dx+ Φ(v ∨ v′) + λ′

∫
Ω
v ∨ v′ dx

shows that (λ− λ′)
∫

Ω(v − v′)+dx ≤ 0. Hence, if λ > λ′ one has v ≤ v′.

1When F has linear growth such a statement is unclear, we only know that, for all λ1 but a countable
number, the solution is unique, otherwise it is trapped in between a minimal and a maximal solution.
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Let us now introduce, for m ≥ 0, the volume function

f(m) := min

{
Φ(v) : v ≥ u0, v = u0 on ∂Ω,

∫
Ω
v − u0dx = m

}
. (3.1)

From now on we shall assume that F is strictly convex and superlinear. For any λ ∈ R,
we define vλ as the solution of the obstacle problem with parameter λ, that is, the unique
minimizer of

min
v≥u0,v=u0 ∂Ω

Φ(v) + λ

∫
Ω
v dx. (3.2)

Observe that limλ→+∞ v
λ = u0. Thanks to the uniqueness of the solution and the comparison

principle, we observe that the domain D := {(x, t) : x ∈ Ω, u0(x) < t < supλ≤0 v
λ(x)} is such

that for any (x, t) ∈ D, there is a unique λ > 0 such that t = vλ(x). Indeed, since both

supλ′>λ v
λ′ and infλ′<λ v

λ are minimizers of (3.2), they must coincide for all λ. In particular,
the function

λ 7→
∫

Ω
vλ − u0dx =: mλ

is continuous and decreasing, going from 0 as λ → +∞, to some maximal value m̄ ≤ +∞
as λ → +∞2. One can check easily that for any m, one has f(m) = Φ(vλ) for any λ such
that m = mλ. On the other hand, if v′ is another minimizer of (3.1), for m = mλ, then since
Φ(v′) + λ

∫
Ω v
′dx = Φ(vλ) + λ

∫
Ω v

λdx, v′ also minimizes (3.2) and by uniqueness v′ = vλ.
In addition, given m,m′ and corresponding λ, λ′, we have

f(m′) + λm′ = Φ(vλ
′
) + λ

∫
Ω
vλ
′ − u0dx ≥ Φ(vλ) + λ

∫
Ω
vλ − u0dx = f(m) + λm,

showing that

f is convex and −λ ∈ ∂f(m). (3.3)

Observe that, in case F is not superlinear or not strictly convex, one can still build by
approximation an increasing family of minimizers with increasing masses, minimizing the
obstacle problem for some non-increasing multipliers, but one might lose uniqueness.

Proposition 3.4. Let F be strictly convex and superlinear, and let u0 be a subsolution, then
un = vλn for any n ≥ 1, where λn := ‖un − un−1‖1/τ .

Proof. By the above analysis un is the unique solution of

min
v≥un−1

Φ(v) + λn

∫
Ω
vdx

with λn = ‖un − un−1‖1/τ . We show by induction that this is also vλn , knowing that it is
true for n = 1. Assume it holds for un−1, then by comparison principle and the fact λn is
non-increasing (see Theorem 2.7), one has vλn ≥ un−1. Hence we get

Φ(un) + λn

∫
Ω
undx ≤ Φ(vλn) + λn

∫
Ω
vλndx.

But since un ≥ u0, the reverse inequality is also true, hence un and vλn are both minimizers
of the obstacle problem for λn. By uniqueness, we deduce that they coincide. �

2If domain of F is not the entire space, the maximal reachable mass m̄ can be finite.
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Observe that λn can be also built as follows: given λn−1, when λ decreases from λn−1 to 0,
then ‖vλ−un−1‖1/τ increases from 0 to ‖v0−vλn−1‖1/τ > 0, and there is a value in (0, λn−1)
for which they coincide. Moreover, letting mn =

∫
Ω u

n − u0dx, by Proposition 3.4 and (3.3)
we have

mn −mn−1

τ
= λn ∈ −∂f(mn), (3.4)

for any n ≥ 1, so that the sequence (mn)n solves the discrete implicit Euler scheme for the
gradient flow of the convex function f .

Theorem 3.5. Let F be strictly convex and superlinear, and let u0 be a subsolution with
Φ(u0) < +∞. Then there exists a unique limit solution u given by Theorem 2.3 with initial

datum u0. Moreover, the function u is non-decreasing in t, and u(t) = vλ(t) for a.e. t > 0,
where λ(t) ∈ L2((0,+∞)) is positive and non-increasing.

Proof. The monotonicity of u in t follows directly from Proposition 3.3.
Letting λτ (t) = λbt/τc+1 and mτ (t) = mbt/τc+1 for t ≥ 0, by Helly’s Theorem we may

assume that, up to a subsequence, λτ and mτ converge pointwise to functions λ(t) and m(t)
which are respectively non-increasing and non-decreasing. By Proposition 3.4 we then get
that uτ (t)→ u(t) = vλ(t) and

∫
Ω uτ (t)− u0dx→ m(t) = mλ(t) as τ → 0, for a.e. t > 0.

Recalling (3.4) we also have that m is the unique solution of the gradient flow

ṁ+ ∂f(m) 3 0

with initial value m(0) = 0, see for instance [5]. It follows that u(t) is the solution of (3.1) for
m = m(t), and since the latter is unique, we deduce that also the limit flow u(t) is unique,
and that uτ → u as τ → 0, without passing to a subsequence. The fact that λ ∈ L2((0,+∞)),
by the dissipation estimate 2.8. �

Remark 3.6. Observe that ‖unτ − umτ‖1 = τ
∑n

l=m+1 λl =
∫ nτ
mτ λτ (s)ds, hence

‖u(t2)− u(t1)‖1 =

∫ t2

t1

λ(s)ds for all 0 ≤ t1 < t2,

which is equivalent to

m(t) =

∫
Ω
vλ(t)(x)− u0(x)dx =

∫ t

0
λ(s)ds for all t ≥ 0. (3.5)

If F is of class C1, recalling that the functions vλ satisfy

−div∇F (Dvλ) + λ = 0 a.e. in {vλ > u0},

equation (3.5) implies (2.15).

Remark 3.7. If F is of class C1 one can check that two different values of λ yield different
functions (when vλ > u0, since in that case one has −div∇F (Dvλ)+λ = 0 a.e. in {vλ > u0}).
Then, using that t 7→ u(t) = vλ(t) is Hölder continuous in L1(Ω) by Theorem 2.3, it follows
that λ(t) is continuous.
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4. The Dirichlet energy

In this section, we consider the simplest case F (ξ) = |ξ|2/2, so that

Φ(u) =
1

2

∫
Ω
|Du|2

is the Dirichlet energy of u.
In what follows, we shall consider either the case of Dirichlet boundary conditions (dom(Φ) =

u0 +H1
0 (Ω)), or the case of homogeneous Neumann boundary conditions (dom(Φ) = H1(Ω)).

4.1. Uniqueness. Assuming that Φ(u0) < +∞, the limit solution u provided by Theorem 2.3
satisfies ∫

Ω
|Du(t, x)|2dx+

1

2

∫ t

0
‖u̇(s)‖21ds+

1

2

∫ t

0
‖∆u(s)‖2∞ds ≤

∫
Ω
|Du0|2dx, (4.1)

which is (2.8), and we take into account (cf Theorem 2.11) that u̇ ∈ L∞([t,+∞];H1(Ω)) for
any t > 0, and ∂Φ(u(t)) = {−∆u(t)} for a.e. t. As usual, this can be rewritten:∫ t

0

(∫
Ω
Du(s, x) ·Du̇(s, x)dx+

1

2
‖u̇(s)‖21 +

1

2
‖∆u(s)‖2∞

)
ds ≤ 0,

which is possible only if ∆u(s) ∈ ‖u̇‖1sign(u̇) a.e. in Ω, for a.e. s ∈ [0, T ], and we obtain the
equations {

|∆u| ≤ ‖u̇‖1 a.e. in Ω

u̇∆u = |u̇|‖u̇‖1 a.e. in Ω
a.e. in [0, T ], (4.2)

cf (2.15).
It turns out that this defines a unique evolution starting from u0 ∈ H1(Ω). Indeed, for

different solutions u, v of (4.2) we have

d

dt

∫
Ω
|Du−Dv|2dt = 2

∫
Ω

(Du−Dv) ·D(u̇− v̇)dx = −2

∫
Ω

(∆u−∆v) · (u̇− v̇)dx ≤ 0. (4.3)

Theorem 4.1. For any u0 ∈ H1(Ω), there is a unique flow u ∈ C0([0,+∞);H1(Ω)) which
solves (4.2). In addition, the minimizing movements ûτ converge to u in C0((0,+∞);H1(Ω))
(ie., locally uniformly in time), as τ → 0. The semi-norm of the speed ‖Du̇‖2 is non-increasing
in time.

Proof. The uniqueness follows from (4.3) in the case of Dirichlet boundary conditions. In
the case of Neumann conditions, assume we have two different solutions u(t) and u(t) + c(t),
c(t) ∈ R (with c ∈ H1(R+) thanks to (4.1)). The equations state, then, that for a.e. t and
a.e. x ∈ Ω, both u̇∆u = |u̇|‖u̇‖1 and (u̇+ ċ)∆u = |u̇+ ċ|‖u̇+ ċ‖1. In case {∆u = 0} has positive
measure, we deduce that either ‖u̇‖1 = 0 but then 0 = |ċ|2|Ω| on a set of positive measure,
meaning ċ = 0, or |u̇| = 0 on a set of positive measure and on the same set, |ċ|‖u̇+ ċ‖1 = 0.
Hence again, ċ = 0 (or we would have u̇ ≡ −ċ 6= 0 a.e., a contradiction).

Hence, we assume |{∆u = 0}| = 0. Since in addition,
∫

Ω ∆u = 0 (in the case of Neumann
conditions), Ω is split into two sets Ω± of positive measure, with ∆u > 0 a.e. in Ω+, hence
u̇ ≥ 0, and ∆u < 0 a.e. in Ω−, hence u̇ + ċ ≤ 0. This contradicts u̇ ∈ H1(Ω) if ċ > 0, since
one would have |{−ċ ≤ u̇ ≤ 0}| = 0. Symmetrically, one cannot have ċ < 0, hence ċ = 0. We
deduce that c(t) = 0 (since c must be continuous with c(0) = 0), and it proves uniqueness in
the Neumann case.
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The convergence of ûτ to the unique possible limit u is guaranteed by Theorem 2.3 and
Proposition 2.5, at least in C0([0, T ];Lp(Ω)) for any T > 0 and p < d/(d− 1). In addition, it
follows from (2.14) by standard arguments that ‖Dûτ (t)−Dûτ (s)‖ ≤ 2/min{t, s}

∫
Ω |Du

0|2dx,
from which we also deduce the uniform convergence on any interval [t, T ], T > t > 0.

Eventually, the fact that the speed is non-increasing in H1 follows from the fact that,
using (4.3), ‖Du(t + ε) − Du(t)‖2 ≤ ‖Du(s + ε) − Du(s)‖2 for any t > s > 0 and any
ε > 0. �

We observe that the contraction property in the continuous setting also has a counterpart
for the discrete flow:

Lemma 4.2. Let v, v′ ∈ L1(Ω), v−v′ ∈ H1(Ω) (resp. H1
0 (Ω) in the case of Dirichlet boundary

conditions) and assume u is a minimizer of

1

2τ
‖u− v‖21 + Φ(u)

and u′ a minimizer of the same problem with v replaced with v′. Then:

1

2

∫
Ω
|D(u− u′)|2dx ≤ 1

2

∫
Ω
|D(v − v′)|2dx− 1

2

∫
Ω
|D(u− u′ − v + v′)|2dx. (4.4)

and in particular

‖Du−Du′‖2 ≤ ‖D(v − v′)‖2.

Proof. Subtracting the Euler-Lagrange equations for u and u′, multiplying by (u−v)−(u′−v)
and integrating by parts, we get:∫

Ω
(Du−Du′) · (D(u− v − u′ + v′)dx ≤ 0

thanks to the monotonicity of the subgradient of ‖ · ‖21/2. It follows∫
Ω
|D(u− u′)|2dx ≤

∫
Ω
D(u− u′) ·D(v − v′)dx

from which we deduce (4.4). �

Specializing (4.4) to the case v = un, v′ = un−1, for n ≥ 1, we find:∫
Ω
|D(un+1 − un)|2dx ≤

∫
Ω
|D(un − un−1)|2dx−

∫
Ω
|D(un+1 − 2un + un−1)|2dx. (4.5)

which shows that also for the discrete flow one has that ‖D ˙̂uτ‖2 is non-increasing in time.

4.2. Energy decay estimate. In the case of homogeneous Neumann or Dirichlet boundary
conditions, we expect that limt→∞

∫
Ω |Du(t)|2dx = 0. Actually, we have the rate:

Proposition 4.3. Let u solve (4.2), with u0 ∈ H1(Ω) (with Neumann boundary conditions)
or u0 ∈ H1

0 (Ω) (with Dirichlet boundary conditions). Then, for any t > 0 we have∫
Ω
|Du(t)|2dx ≤ e−

t
CΩ

∫
Ω
|Du0|2dx,

where CΩ is the constant in the Poincaré-Wirtinger (Neumann) or Poincaré (Dirichlet) in-
equality.
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Proof. We consider the minimizing movement scheme, and, given τ > 0, n ≥ 1, we com-
pare the energy of un with the energy of ua := un−1 + aτ(un−1 − mn−1), a ∈ R, where
mn−1 =

∫
Ω u

n−1dx/|Ω| is the average of un−1 for Neumann boundary conditions, and 0 for
homogeneous Dirichlet boundary conditions. One has in particular, thanks to the Poincaré(-
Wirtinger) inequality:

‖un−1 − ua‖21 = a2τ2‖un−1 −mn−1‖21 ≤ a2τ2CΩ

∫
Ω
|Dun−1|2.

Hence:

1

2

∫
Ω
|Dun|2dx+

1

2τ
‖un − un−1‖21

≤ (1 + 2aτ + τ2a2)
1

2

∫
Ω
|Dun−1|2dx+

τ

2
a2CΩ

∫
Ω
|Dun−1|2.

Choosing a = −1/CΩ, we find:

1

2

∫
Ω
|Dun|2dx ≤ 1

2

∫
Ω
|Dun−1|2

(
1− τ

CΩ
+ τ2

C2
Ω

)
.

Hence,
1

2

∫
Ω
|Dun|2dx ≤ 1

2

∫
Ω
|Du0|2

(
1− τ

CΩ
+ τ2

C2
Ω

)n
.

We conclude using that

lim
n→∞,nτ→t

(
1− τ

CΩ
+ τ2

C2
Ω

)n
= e
− t
CΩ .

�

5. Gradient flow of anisotropic perimeters

Given a norm ϕ on Rd, we consider the anisotropic perimeter

E 7→ Pϕ(E) :=

∫
∂E
ϕ(ν) dHd−1.

Letting ϕo be the dual norm of ϕ, we recall that the convex set

Wϕ := {x ∈ Rd : ϕo(x) ≤ 1},

usually called Wulff Shape, is the unique volume-constrained minimizer of Pϕ, up to transla-
tions and dilations. We say that ϕ is smooth (resp. elliptic) if the function ϕ2/2 is smooth
(resp. strongly convex).

We now introduce the geometric L1-minimizing movement scheme. Given τ > 0 and
E ⊂ Rd, we consider the minimum problem

min
F
Pϕ(F ) +

1

2τ
|E4F |2, (5.1)

and we let TτE be a (possiblynon-unique) minimizer of (5.1).
Given an initial set E0 ⊂ Rd, for all n ∈ N we let En := Tnτ E0. For (x, t) ∈ Rd × (0,+∞),

we also let

Eτ (t) := Ebt/τc uτ (x, t) := χEτ (t)(x).

The function t 7→ Eτ (t) is the discrete L1-gradient flow of Pϕ, with initial datum E0.
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We point out that the analogous concept for the L2-gradient flow of Pϕ, where (5.1) is
replaced by the problem

min
F
Pϕ(F ) +

1

2τ

∫
E4F

dist(x, ∂E) dx, (5.2)

was originally introduced in [1, 16] as a discrete approximation of the mean curvature flow.
From (5.1) it follows that

Pϕ(En) ≤ Pϕ(En−1) and
1

2τ
|En4En−1|2 ≤ Pϕ(En−1)− Pϕ(En), (5.3)

for all n ∈ N, so that

|En4Em|2 ≤

(
n∑

k=m+1

|Ek4Ek−1|

)2

≤ 2τ(n−m)
n∑

k=m+1

(
Pϕ(Ek−1)− Pϕ(Ek)

)
(5.4)

≤ 2τ(n−m)Pϕ(E0),

for all 0 ≤ m < n.
Reasoning as in the proof of Theorem 2.3, from (5.3) and (5.4) we get the following result.

Theorem 5.1. Assume that E0 ⊂ Rd is a set of finite perimeter. Then there exist a se-
quence τk →∞ and a function u(x, t) ∈ L∞((0,+∞), BV (Rd))∩C1/2((0,+∞), L1(Rd)), with
u(x, t) = χE(t)(x) for some family of sets E(t), such that

lim
k→+∞

sup
t∈[0,T ]

‖u(·, t)− uτk(·, t)‖L1(Rd) = 0 ∀T > 0.

Following [16, Lemma 1.3, Remark 1.4], we show a density estimate for minimizers of (5.1).

Lemma 5.2. There exists c > 0 depending only on ϕ and the dimension d such that the
following holds: let E ⊂ Rd and F a minimizer of (5.1), then

(1) for a.e. x ∈ F \ E and all r > 0 such that |B(x, r) ∩ E| = 0, |B(x, r) ∩ F | ≥ crd;
(2) for a.e. x 6∈ E, and r > 0 such that |B(x, r) ∩ E| = 0, if |B(x, r) ∩ F | ≤ crd/2, then

B(x, r/2) ∩ F = ∅.

Proof. Following [16] we compare the energy of F and F \ B(x, r) in (5.1) and, introducing
b > a > 0 s.t. a|x| ≤ ϕ(x) ≤ b|x|, we observe that for a.e. r > 0, if |B(x, r) ∩ E| = 0:

Pϕ(F ) +
1

2τ
|E4F |2 ≤ Pϕ(F \B(x, r)) +

1

2τ
|(E4F ) \B(x, r)|2

implies aHd−1(∂F ∩ B(x, r)) ≤ bHd−1(∂B(x, r) ∩ F ). Introducing f(r) = |F ∩ B(x, r)|, this
is rewritten (a + b)Hd−1(∂(F ∩ B(x, r))) ≤ f ′(r), and using the isoperimetric inequality we

deduce that for some constant γ > 0 depending only on d, a, b, γf(r)1−1/d ≤ f ′(r). The thesis
follows from a version of Gronwall’s Lemma. �

Remark 5.3. A symmetric statement holds for points x ∈ E, with B(x, r) ∩ F replaced with
B(x, r) \ F .
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Remark 5.4. A similar proof (see [16] again) shows that there exists r(τ) > 0 such that for
r < r(τ), for a.e. x ∈ F , |B(x, r) ∩ F | ≥ crd, and for a.e. x 6∈ F , |B(x, r) ∩ F c| ≥ crd. In
particular, the points of Lebesgue density 1 (resp. 0) of F form an open set, the reduced
boundary of F is Hd−1-essentially closed, and there is no abuse of notation in denoting it ∂F .

5.1. Outward minimizing case.

Definition 5.5. Let Ω ⊂ Rd be open. We say that a set E ⊂ Ω is outward minimizing if

Pϕ(E) ≤ Pϕ(F ) ∀F ⊃ E,F ⊂ Ω.

Notice that if ϕ is smooth and E is an outer minimizer with boundary of class C2 then E
is ϕ-mean convex, that is, Hϕ(x) ≥ 0 for any x ∈ ∂E, where Hϕ(x) is the ϕ-mean curvature
of ∂E at x (see for instance [9] for a precise definition). Conversely, if Hϕ(x) ≥ δ > 0 for any
x ∈ ∂E one can build Ω ⊃⊃ E such that E is outward minimizing in Ω. Notice also that a
convex set is always outward minimizing.

We recall the following result proved in [12, Lemma 2.5] (see also [9, Section 2.1]).

Lemma 5.6. E is outward minimizing if and only if

Pϕ(E ∩ F ) ≤ Pϕ(F ) ∀F ⊂ Ω.

From Lemmas 5.2 and 5.6 we obtain the following result.

Proposition 5.7. Assume that E ⊂⊂ Ω is outward minimizing in Ω. Then, for τ small
enough (depending only on ϕ, dist(E, ∂Ω), and the dimension) we have that TτE ⊆ E and
TτE is outward minimizing in Ω.

In particular, the limit flow obtained in Theorem 5.1 is non-increasing and outward mini-
mizing in Ω.

Proof. The first assertion follows from the minimality of TτE and from the fact that

Pϕ(TτE ∩ E) +
1

2τ
|(TτE ∩ E)4E|2 ≤ Pϕ(TτE) +

1

2τ
|TτE4E|2,

with equality iff TτE ⊆ E. We use here Lemma 5.6 which holds if we can prove first that
TτE ⊂ Ω. Let r := dist(E, ∂Ω)/2. Then for τ small enough, we have (comparing the energy of

TτE and E in (5.1)) that |TτE\E| ≤
√

2τPϕ(E) ≤ crd/2 where c is the constant in Lemma 5.2.
Using point (2) in Lemma 5.2, it follows that {x : r/2 < dist(x,E) < 3r/2} ∩ TτE = ∅ and
we deduce that TτE ⊂ {x : dist(x,E) ≤ r/2} ⊂⊂ Ω.

In order to prove the second assertion, we fix F such that TτE ⊂ F ⊂ Ω, and we notice
that

Pϕ(TτE) ≤ Pϕ(F ∩ E) +
1

2τ
|(F ∩ E)4E|2 − 1

2τ
|TτE4E|2 ≤ Pϕ(F ∩ E) ≤ Pϕ(F ),

where the last inequality follows from the outward minimality of E.
�

Remark 5.8. From Proposition 5.7 and (5.1) it follows that the set TτE solves the minimum
problem

min
F⊂E

Pϕ(F )− 1

τ
|E| |F |+ 1

2τ
|F |2, (5.5)

hence TτE is also a solution of the volume-constrained isoperimetric problem (see also (5.12)
later on)

min
F⊂E,|F |=|TτE|

Pϕ(F ). (5.6)
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If ϕ is smooth and elliptic (that is, ϕ2/2 is smooth and strongly convex), from (5.5) it
follows that TτE ∩ int(E) is smooth and satisfies the Euler-Lagrange equation

Hϕ(x) =
|E \ TτE|

τ
for x ∈ ∂TτE ∩ int(E). (5.7)

If in addition ∂E is of class C1,1, by classical regularity results for the obstacle problem [6,8]
∂TτE is also of class C1,1 outside a closed singular set of Hausdorff dimension d − 2, and
satisfies the Euler-Lagrange inequality

0 ≤ Hϕ(x) ≤ |E \ TτE|
τ

for a.e. x ∈ ∂TτE. (5.8)

Passing to the limit in (5.7) and (5.8) as τ → 0, and reasoning as in Theorem 2.13, we may
expect that the limit flow E(t) satisfies the equations

0 ≤ Hϕ ≤ −
d

dt
|E(t)| a.e. on ∂E(t)

Hϕ = − d

dt
|E(t)| a.e. on ∂E(t) ∩ int(E0),

(5.9)

for a.e. t > 0.

Remark 5.9. We cannot expect that there always exists a constant λ > 0 such that TτE is a
solution of

min
F⊂E

Pϕ(F )− λ|F |, (5.10)

as it happens in the case of functions (see Section 3). In the sequel we shall see that, in the
case E is convex, this is true only if E does not coincide with its Cheeger set, and τ is small
enough so that λ is greater than the Cheeger constant of E.

5.2. Convex case. We now consider the special case of a convex initial set.

Proposition 5.10. Let d = 2 and assume that ϕ is smooth and elliptic. Assume also that
E0 is a bounded convex set. Then the limit flow E(t) obtained in Theorem 5.1 is given by a
decreasing family of convex subsets of E0.

Proof. As in [17, Section 4.1] one can easily show that TτE is a convex subset of E with
boundary of class C1,1, satisfying (5.7) and (5.8). As in [4, Section 9] (see also [15, Theorem
2.3]), it follows that each connected component of ∂TτE∩ int(E) is a graph and it is contained
in r∂Wϕ, with r = τ/|E \TτE|. As a consequence, if r is greater than the inradius of E, then

TτE = E−r :=
⋃

x+rWϕ: (x+rWϕ)⊂E

(x+ rWϕ),

otherwise TτE = rWϕ + s for some segment s ⊂ E, and s is a point if r is smaller than the
inradius of E.

By iterating the previous argument, and taking the limit as τ → 0, get the thesis.
�

Remark 5.11. By the argument above we get that

E(t) = E−r(t) t ∈ [0, T ],

where r(t) is continuous, increasing, and T ≥ 0 is the first time such that r(T ) equals the
inradius of E. In particular, the limit flow is unique on [0, T ].
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Remark 5.12. By approximating a general norm ϕ with a sequence of smooth and elliptic
norms, following the proof of Proposition 5.10, we obtain that there exists r > 0 such that
TτE = E−r or TτE = rWϕ + s for some segment s ⊂ E.

As a consequence, also in the case of a general norm, there exists at least one limit flow
E(t) given by a decreasing family of convex subsets of E0. We point out that, in the general
case, we do not prove uniqueness of the limit flow.

In [7] it has been proved that, in any dimension d ≥ 2, a volume-constrained minimizer
of Pϕ inside a convex set E is unique and convex if its volume is greater or equal than the
volume of the Cheeger set of E, which is the minimizer F ∗ of the variational problem

min
F⊂E

Pϕ(F )

|F |
=: λ∗

(λ∗ is called the Cheeger constant of E), and is unique when E is convex [2, 8, 14]. The
Cheeger set is also characterized as the largest minimizer (∅ being the smallest one) of the
problem minF⊂E Pϕ(F )− λ∗|F |, which has value 0.

For λ > λ∗, there is a unique minimizer F λ to (5.10), which is convex, and coincides
with the above volume-constrained minimizer (and is continuous with respect to λ, see [7]).
Moreover, if ϕ is smooth and elliptic, λ coincides with the mean curvature Hϕ of ∂F λ ∩ intE
(otherwise it can be thought of as a variational mean curvature).

It follows that, as long as |En| ≥ |F ∗|, where F ∗ is the Cheeger set of E0, we can define a
non-increasing sequence λn ≥ λ∗ such that En = F λn and which satisfies, for n ≥ 1,

|En−1| − |En|
τ

= λn,

or equivalently for all n ≥ 1,

|E0| − |En| = τ
n∑
k=0

λk.

In the limit τ → 0, similarly to Section 3, up to a subsequence the non-increasing function
λbt/τc+1 converges pointwise to a non-increasing function λ(t), while Eτ (t) converges to F λ(t).
In particular, in the limit we find that:

|E0| − |E(t)| =
∫ t

0
λ(s)ds (5.11)

for all 0 ≤ t ≤ T ∗, where λ(T ∗) = λ∗.
If ϕ is smooth and elliptic, since the sets F λ are all different, the function t 7→ λ(t) is

continuous on [0, T ∗], so that the function t 7→ |E(t)| is of class C1 by (5.11). We deduce
that (5.9) holds for all t ∈ (0, T ∗).

We then obtain a partial extension of Proposition 5.10 to arbitrary dimensions and for a
general norm ϕ.

Proposition 5.13. Assume that E0 is a bounded convex set not coinciding with its Cheeger
set. Then there exists T ∗ > 0 such that limit flow E(t) is given by a decreasing family of convex
subsets of E0 for t ∈ [0, T ∗]. Moreover, each set E(t) is a volume-constrained minimizer of
Pϕ inside E0, and E(T ∗) = F ∗ is the Cheeger set of E0. In particular, for t ∈ (0, T ∗] E(t) is

the unique minimizer F λ(t) of (5.10) for some λ(t) > λ∗ which solves (5.11).
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For m ∈ [0, |E0|] we let

f(m) := min
{
Pϕ(F ) : F ⊂ E0, |E0 \ F | = m

}
. (5.12)

Reasoning as in Section 3 we have that, for any m ∈ [0, |E0 \ F ∗|] there exists a unique
λm ≥ λ∗ such that |E0 \ F λm | = m and Pϕ(F λ

m
) = f(m). Moreover the function m→ λm is

non-increasing in this interval, and

− λm ∈ ∂f(m), (5.13)

which implies that f is convex on [0, |E0 \F ∗|]. With almost the same proof as Theorem 3.5,
we can show the following uniqueness result for the limit flow E(t).

Proposition 5.14. Assume that E0 is a bounded convex set not coinciding with its Cheeger
set. Then the flow E(t) given by Proposition 5.13 is unique and satisfies

d|E(t)|
dt

= −λ(t) (5.14)

for all t ∈ (0, T ∗), where λ(t) coincides with the mean curvature of ∂E(t) inside E0 and E(T ∗)
is the Cheeger set of E0.

Remark 5.15. If ϕ is smooth and elliptic, from (5.14) it follows that E(t) satisfies (5.9).

Recalling the proof of Proposition 5.10, when d = 2 the minimizer Em in (5.12) is uniquely
characterized and coincides with the set E−rm as long as m ≥ |E−

r0 |, where r0 is the inradius of

E0 and rm ≥ r0 is such that |E−rm | = m. When m < |E−
r0 | the minimizer Em is only unique

up to translations.
If in addition ϕ(x) = |x|, it has been proved in [15] that the function f is convex on [0,m0],

where m0 = |E0| − |Br0 | and Em is a solution of (5.10) with λ = 1/rm, among sets of volume

greater of equal to |Brm |. Observing also that f(m) = 2
√
π(|E0| −m) for m ∈ [m0, |E0|),

reasoning as above we get that f satisfies (5.13) for all m ∈ (0, |E0|), so that we can partly
extend the result in Proposition 5.14.

Proposition 5.16. Let d = 2, ϕ(x) = |x|, and assume that E0 is a bounded convex set. Then
the flow E(t) is defined on a maximal time interval [0, Tmax), with

lim
t→Tmax

|E(t)| = 0,

it is unique up to translations, and satisfies (5.14) for all t ∈ (0, Tmax), where λ(t) coincides
with the curvature of ∂E(t) inside E0. Moreover, E(t) is unique as long as |E(t)| ≥ |E−

r0 |.

We show with two simple examples that uniqueness of the flow cannot be expected for
t > T ∗. In the following we fix d = 2 and ϕ(x) = |x|.
Example 1. Let E0 = BR(x0) for some R > 0 and x0 ∈ R2. Then, by the isoperimetric
inequality, TτE

0 is a ball contained in E0 of radius r minimizing the function

r 7→ 2πr +
π2

2τ
(R2 − r2)2, (5.15)

that is, r = R−τ/(2πR2)+o(τ) as τ → 0. By iteration, it follows that the discrete evolutions
Eτ (t) converge, up to a subsequence as τ → 0, to E(t) = BR(t)(x(t)), with

R(t) :=

(
R3 − 3t

2π

) 1
3

for t ∈
[
0,

2

3
πR3

)
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and x(t) is a Lipschitz function such that |ẋ(t)| ≤ |Ṙ(t)| for a.e. t ∈ [0, 2
3πR

3).
Notice that in this case the limit evolution is non-unique.

Example 2. Let E0 = BR1(x1) ∪ BR2(x2) for some R1 ≥ R2 > 0 and x1, x2 ∈ R2 such that
|x1 − x2| > R1 + R2. As in the previous example, we have that TτE

0 = Br1(x̃1) ∪ Br2(x̃2),
with Bri(x̃i) ⊆ BRi(xi) for i ∈ {1, 2}, and the radii ri minimize the function

(r1, r2) 7→ 2π(r1 + r2) +
π2

2τ

(
R2

1 − r2
1 +R2

2 − r2
2

)2
. (5.16)

If R1 > R2, by an easy computation it follows that r1 = R1 and r2 minimize the function in
(5.15) with R replaced by R2, that is, r2 = R2 − τ/(2πR2

2) + o(τ) as τ → 0. In particular, in
the limit as τ → 0, we obtain the evolution E(t) = BR1(x1) ∪ BR2(t)(x2(t)), with R2(t) and
x2(t) as in the previous case of a single ball.

On the other hand, If R1 = R2 = R then either r1 = R and r2 minimize the function in
(5.15), or viceversa r2 = R and r1 minimize the function in (5.15). This implies that, in the
limit as τ → 0, only one of the two balls start shrinking, whereas the other does not move
until the first ball disappears. As above the limit evolution is non-unique.

References

[1] Fred Almgren, Jean E. Taylor, and Lihe Wang. Curvature-driven flows: a variational approach. SIAM J.
Control Optim., 31(2):387–438, 1993.

[2] François Alter and Vicent Caselles. Uniqueness of the Cheeger set of a convex body. Nonlinear Anal.,
70(1):32–44, 2009.

[3] Luigi Ambrosio, Nicola Gigli, and Giuseppe Savaré. Gradient flows in metric spaces and in the space
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