Mean curvature flow with obstacles
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Abstract

We consider the evolution of fronts by mean curvature in the presence of obstacles.
We construct a weak solution to the flow by means of a variational method, corresponding
to an implicit time-discretization scheme. Assuming the regularity of the obstacles, in
the two-dimensional case we show existence and uniqueness of a regular solution before
the onset of singularities. Finally, we discuss an application of this result to the positive
mean curvature flow.
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1 Introduction

Motivated by several models in physics, biology and material science, there has been a growing
interest in recent years towards the rigorous analysis of front propagation in heterogeneous
media, see [26, 8, 18, 21, 13] and references therein. In this paper, we analyze the evolution
by mean curvature of an interface in presence of hard obstacles which can stop the motion.
Even if this is a prototypical model of energy driven front propagation in a medium with
obstacles, to our knowledge there are no rigorous results concerning existence, uniqueness
and regularity of the flow. On the other hand, we mention that the corresponding stationary
problem, the so-called obstacle problem, has been studied in great detail, see [25, 12] and
references therein.

To be more precise, given an open set 2 C R", we consider the evolution of a hypersurface
OE(t), with the constraint E(t) C € for all ¢ > 0, where 2 is an open subset of R™ and R™\
represents the obstacles. The corresponding geometric equation formally reads (we refer to
Section 4 for a precise definition):

| k(z) it x el
v(z) = { max(k(z),0) if x € 00 (1)

where v and x denote respectively the normal inward velocity and the mean curvature of
OE(t) . Notice that the right-hand side of (1) is discontinuous on 92, so that the classical
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viscosity theory [19] does not apply to this case (see however [20, 9] for a possible approach
in this direction).

We are particularly interested in existence and uniqueness of smooth (that is C1'!) solutions
to (1). We tackle this problem by means of a variational method first introduced in [5, 24]
(see also [6] for a simpler description of the same approach), which is based on an implicit
time-discretization scheme for (1).

After showing the consistency of the scheme with regular solutions (Theorem 4.7), we obtain
a comparison principle and uniqueness of smooth solutions in any dimensions (Corollary
4.8). Moreover, in the two-dimensional case we are also able to prove local in time existence
of solutions (Theorem 5.3). Notice that in general one cannot expect existence of regular
solutions for all time, due to the presence of singularities of the flow (even in dimension 2).
On the other hand, due to the presence of the obstacles, regular solutions do not necessarily
vanish in finite time and may exist for all times. Eventually, we apply our result to the
positive curvature flow in two dimensions, obtaining a short time existence and uniqueness
result (Corollary 6.5) for C1}-regular flows. Indeed, such evolution can be seen as a curvature
flow where the obstacle is given by the complementary of the initial set.

We point out that the study of the positive curvature flow in Section 6 is related to some
biological models which originally motivated our work: in several recent studies of actomyosin
cable contraction in morphogenesis and tissue repair there is increasing evidence that the
contractile structure forms only in the positive curvature part of the boundary curve (see
[4, 3] and references therein). Since the contraction of such actomyosin structures can be
associated with curvature terms (see [22, 1, 2]), this leads very naturally to consider the
positive curvature flow problem.

Notice that a set evolving according to this law is always nonincreasing with respect to
inclusion, which is a feature not satisfied by the usual curvature flow. This shows why
assembling the contractile structure only in the positive curvature portion of the boundary
(instead of all around) and thus doing positive curvature flow (instead of usual curvature
flow) is an interesting way to evolve from the biological point of view: it corresponds to
making our wound (or hole) close in a manner where we never abandon any portion of the
surface we have already managed to cover since we started closing.

We also remark that the positive curvature flow is useful in the context of image analysis [27,
p. 204], and appears naturally in some differential games [23].

2 Notation

Given an open set A C R, a function u € L'(A) whose distributional gradient Du is a
Radon measure with finite total variation in A is called a function of bounded variation, and
the space of such functions will be denoted by BV (A). The total variation of Du on A turns
out to be

sup{/ udivz dr: z € CG°(A;RY), |2(z)]| < 1Vz € A}, (2)
A

and will be denoted by [Du|(A) or by [, |Du|. The map u — |Du|(A) is L'(A)-lower semi-
continuous, and BV (A) is a Banach space when endowed with the norm |jul| := [, |u| dz +
|Du|(A). We refer to [7] for a comprehensive treatment of the subject.



We say that a set E satisfies the exterior (resp. interior) R-ball condition, for some R > 0,
if for any 2 € OF there exists a ball Br(z'), with 2 € dBgr(2’) and Br(2') N E = 0 (resp.
Bpgr(2') C E). Notice that a set E with compact boundary satisfies both the interior and the
exterior R-ball condition, for some R > 0, if and only if OF is of class C1!.

3 The implicit scheme

Following the celebrated papers [5, 24], we shall define an implicit time discrete scheme for
(1). As a preliminary step, we consider solutions of the Total Variation minimization problem
with obstacles; the scheme is then defined in Definition 4.2 below.

Let B C R™ be an open set and let v : B — [—00,00) be a measurable function, with v* €
L%(B). Following [5, 15, 24], given h > 0 and f € L*(B), we let Sy ,(f, B) € L*(B)N BV (B)
be the unique minimizer of the problem

min/B | Dul| + i B(u—f)2 dx. (3)

u>v
We have the following comparison result (see [15, Lemma 2.1]).

Proposition 3.1. The operator Sy, .(-, B) is monotone, in the sense that uy = Sh, (f1, B) >
up = Sh y, (f2, B) whenever fi > fa and vi > vy a.e.

Proof. The idea is simply to compare the sum of the energies of u; and us, with the sum of
the energy of uj A ug (which is admissible in the problem defining us) and of u; V ug (which
is admissible in the problem defining u1). The conclusion follows from the uniqueness of the
solution to (3). O

Proposition 3.2. Assume f,vt € L*®(B): then u = Sy (f, B) € L*(B) and

1S, (f, B)lloo(p) < max (|| fllpoe sy, v | oo (m)) -

Proof. Again, the proof is trivial. It is enough check that the energy of ups = (uV—M)AM is
less than the energy of u, while uj; is admissible as soon as M > max (||f||Loo(B), ||'U+||LOO(B)).

Theorem 3.3. Let v : R" — [—00,+00) be a measurable function with vt € L2 (R™),

fe L (R"), and h > 0. There exists a unique function u € Ly (R™) N BVioc(R™), which we

loc C

shall denote by Sh,f, such that for all R > 0 and p € (n,+00) there holds
]V}igloo 1w = Sh,o(f, Br)llor(r) = 0-

This function is characterized by the fact that u > v a.e., and for any R and any ¢ € BV (R™)
with support in Br and u+ ¢ > v a.e.,

1 2 1 2
— _ < — _ .
[ 1pu+ g flu st < [ Do g e

R



Proof. We shall show a bit more: for any M > 0, let us denote by u,s an arbitrary local
minimizer of (3), in the sense that

[ put+ g [lus = Pdo< [ D@+l + 5 [luar+o-1Pds (@)
B By

for any ¢ € BV(B)s) with compact support. We will show that (ups)y>2r is a Cauchy
sequence in LP(Bg), provided p > n.

To start, let us consider ¢ : R — R a smooth, nondecreasing and bounded function with
0 <(s) < Cst for any s. Let M’ > M > 0, and let ¢ € C°(By;Ry), which we extend by
zero to Byy. We denote u = upz, v’ = upp. Let ¢ > 0: observe that

u'(z) + t(u(z) —u(z))e(z) > u'(z) > ()

u(z) — t(u(z) — ' (z))p(x) = u(z) —tCsup e (u(z) —u'(z))*
> u(z) — (u(z) — u'(x))"
= min{u(z), u'(x)}
> v(x)

for almost every x € R", as soon as t < (C'sup @)~ L.

Hence, we deduce from (4) that for ¢ small enough,
1 / 2
[D(u = t(u — ')l + o \U—W(U—u)w—f\ dx
By 2h

1
> Du|+ — / u— f|*dx
oot [ s

and
/ “)( +t1/}( — ) | + — / |u'+t1/;(u—u’) — H dx
. Uu uU—u)p o ©

1
> Du/| + — o — f|?dz,
[ g [

which we sum to obtain

t t?
h/BM(u—u')@b(u—u’)npdx < o7 g% dx

+ [ IDu= i/ (u = ) (Du ~ g~ tlu - )¢l
By
+ |D(u + t' (u — u')(Du — Du')p + tip(u — ') Vp| — |Du| — |Du’| .

For p < t]|¢]lol|?’]lcc < 1 and ¢ small enough, the integrand in the right-hand side has the
form

lp—plp—p) —tg|+ 0"+ plp—p) +tq — p| — |q|
< 2tlgl+ (1= p)lpl + plp'| + (L = p) [P + plp| — |p| — la| = 2t|q]



and we obtain

¢ 2
/ (u—u)p(u—u)pdr < / g*dr + Qt/ Y(u—u")|V|d.
h By 2h By Bum

Dividing by t and letting ¢ — 0, we deduce

/ (u—u)Y(u—u)pdr < 2h P(u—u)|Veo|dz. (5)
Bar B

Now, by approximation this remains valid for ¥(s) = (s*)?~!, while we can take ¢(z) =

wo(|z|/M)P, for some ¢y € C°([0,1); R;) which is 1 on [0,1/2]. It follows from (5) and
Hoélder’s inequality that

/ [(u — /Yo (|2l /M)]” de
By

<o [ Jw= ) enllalM) F etlel A1) da

< on { /B [(u u’>+soo<|m|/M>}p} - ()" It/ P

Hence:
2hpw,1/p
— len/p

(u— ') 0 <‘M’>

with w,, the volume of the unit ball. Exchanging the roles of v and u’ in the previous proof,
we find that

Lr(Byr)

2hp wrl/ P
luse = uner || Le(Byy ) < U (6)
As in particular ups (or upsr) could, in this calculation, have been chosen to be the minimizer
Sh,w(f, Ba), which is bounded by Proposition 3.2, we obtain that uy; € LP(Byy/2) (as well
as ups). Hence, choosing R > 0, we see that (ups)ar>2r defines a Cauchy sequence in LP(Bp),
provided p > n. It follows that it converges to some limit v € LP(Bpg). As R is arbitrary, we
build in this way a function u which clearly satisfies the thesis of the theorem. O

Corollary 3.4. Assume f > f', v >, h >0, then Sh(f) > Shw ().
Proof. It follows from Proposition 3.1 and the definition of Sy, ,,. O

Corollary 3.5. If f,v are uniformly continuous on R", with a modulus of continuity w(-),
then Sy f is also uniformly continuous with the same modulus of continuity.

Proof. Tt follows from the previous corollary. For z € R", let v/'(z) := v(z—2z)—w(|z]) < v(x)
and f'(z) = f(r —2) —w(|z]) < f(x). Then, Sp o f = Shof(- —2) —w(|z]|) < Shpf, which
shows the corollary. O



Observe that, if f,v are uniformly continuous, then Sy, (f, B) satisfies the elliptic equation

—divz + % =0 on {x € B: u(x)>v(x)}. (7)

where the vector field z satisfies |z| = 1 and z = Du/|Du| whenever |Du| # 0.

Proposition 3.6. Assume that f(x) — oo as x| — oo, and let s € R. Then the set
{Sho(f) < s} is the minimal solution of the problem

. f—s
ECII{lzl)Iis} P(E) +/E . dzx. (8)

Similarly, the set {Sh,(f) < s} is the mazimal solution of

dx. 9
Ec{v<s} g h . (9)

Proof. Let M > 0 and consider the set E3, = {S},(f, Bim) < s}. Reasoning as in [11] (see
also [16, Sec. 2.2.2]) one can show that E3, is the minimal solution of

f

min  P(E, By) —I—/
E

—° dx
ECBpn{v<s} h '

Since f is coercive, the sets E5, do not depend on M for M big enough, and coincide with
the set {Sp,(f) < s}, so that the result follows letting M — +o0.
The second assertion regarding the set {Sh,(f) < s} can be proved analogously. O

4 Mean curvature flow with obstacles

Let us give a precise definition of the flow (1). Given a set E C R™ we denote by
dg(z) := dist(x, E) — dist(z,R" \ E) x € R"
the signed distance function from FE, which is negative inside F and positive outside.
Definition 4.1. Given a family of sets E(t), t € [0,T], we set
d(w,t) := dp(v).

We say that E(t) is a OV supersolution of (1) if there exists a bounded open set U C R"
such that E(t) C Q and OE(t) C U for allt € [0,T7,

d € Lip(U x [0, 7))

2 (10)
|V<d| € L>®(U % [0,T1)
and 5d
n > Ad+ 0O(d) a.e. in U x [0,T]. (11)
We say that E(t) is a CY' subsolution of (1) if (11) is replaced by
% < Ad+ O(d) a.e. in (U x [0,T]) n{d > dqa}, (12)

and we say that E(t) is a CY solution of (1) if it is both a supersolution and a subsolution.



We now fix an open set 2 C R™ (representing the complement of the obstacle) and a compact
set E C Q). The case when E€ is compact can be treated with minor modifications.

Since FE is compact, without loss of generality we can assume that 2 is bounded. Indeed, as
it will be clear from the sequel, replacing Q2 with Q N Bj; will not affect our construction,
provided Bys D E.

Definition 4.2. Let h > 0 and set
ThE = {SthdE < O}. (13)
Given t > 0, we let
Bu(t) :=T""E
be the discretized evolution of E defined by the scheme T},.

Notice that Ty F is an open subset of €2 and, by Proposition 3.6, T, E is the minimal solution
of the geometric problem

) 1
glclgP(F)—i-h/FdEdm (14)
or equivalently

1
in P(F) + — .
PP s

When € = R™ this corresponds to the implicit scheme introduced in [5, 24] for the mean
curvature flow. Here, from (7) it also follows that T, E' satisfies

/f—&-dTE:O on OTRE \ 0. (15)

Remark 4.3. Observe that from Proposition 3.1 it follows
FEy C Ey = TyFE1 C ThEs.

Moreover, by Corollary 3.4 we have S}, 4,dr > Sh _oodp which implies T, C CIN}LE =
{Sh,—cdr < 0}. Notice that T}, E is the scheme introduced in [5, 24] for the (unconstrained)
mean curvature flow.

From the general regularity theory for minimizers of the perimeter with a smooth obstacle
[25, 12] we have the following result.

Proposition 4.4. Let 9Q be of class C*', E C Q and h > 0. Then there exists a closed
set ¥ C 0T, E N Q such that H*(X) = 0 for all s > n — 8, OTLE \ ¥ is of class CY, and
(OTRENQ)\ X is analytic.

Proposition 4.5. Let 9Q be of class Ct1. Then there exists C(2) > 0 such that
ThE = {Sh,—o(dE + Chxge) < 0}

for all C > C(). In particular TR E is a minimizer of the prescribed curvature problem

minp(F)+cyF\Q+1/ dp da. (16)
F h F



Proof. We recall that S, _o(dg + Chxqe) is the limit, as M — oo, of the minimizer uys of
the variational problem
i /|D|+1/( dg — Chxge)*d (17)
min ul + — u—dg — c)7dx
wEBV(BuM) J By, 2h B E XQ
From Proposition 3.6 it follows that Tj, £ is the minimal solution to (14), while
F = {Sh—oo(dp + Chxqe) < 0}

is the minimal solution to (16). If FF C €, then |F \ Q] = 0 and both F and T, E solve the
same problem, and they must therefore coincide.

In order to show that F C €, it is enough to find a positive constant C' such that for all
& & Q, upr > C >0 for M large enough.

By assumption, () satisfies an exterior R-ball condition, for some R > 0, that is, for any
x & Q, there is a ball Br(z') with € Bgr(z') and Br(2') NQ = 0. If M is large enough, we
also have Bg(x') € Byyja. Since E C €, dg +hCxqe > hCXpy(ar), 50 that uyy is larger than
the minimizer u’ of

1
min Du —|—/ u — hC )2 dx
uEBV(BM)/BM| R BM( XB(a)

If C > n/R, then it is well known that for M large enough, v’ > (C — n/R)h a.e. in
XBg(2) [11]. The thesis then follows. O

4.1 Existence of weak solutions

As a consequence of Proposition 4.5, when 02 is of class C!:! the scheme enters the framework
considered in [17]. In that case, we can also deduce the existence of weak solutions in the
sense of [5, 24]. We observe that the results in [6, p. 226] and, as a consequence, [6, Th. 3.3]
still apply and we can deduce the (approximate) 1/(n + 1)-Holder-continuity in time of the
discrete flow starting from an initial set Fy. Then, up to subsequences, we can pass to the
limit and deduce the existence of a flow E(t), which is Holder-continuous in time in L(£2),
and in a weak sense a solution of (1).

4.2 Consistency of the scheme

The main result of this section (Th. 4.7) is showing that the implicit scheme is consistent
with regular evolutions, according to the following definition.

Definition 4.6. The scheme T}, is consistent if and only if

1. If E(-) is a supersolution (see Def. 4.1) in an interval [t1,ts], then for any t € [t1,ts],
any Hausdorff limit of T])'E(t1), n — oo, h — 0, nh — t — t1, contains E(t).

2. If E() is a subsolution, this inclusion is reversed.

Theorem 4.7. The scheme T}, is consistent.



Proof. The proof consists in building, arbitrarily close to OE(t), strict super and subsolutions
of class C?, of the curvature flow with forcing term Cxqe, for C large enough. Then, the
consistency result in [17, Th. 3.3] applies.

Step 1. Let E be a subsolution on [t1,?2] in the sense of Definition 4.1, let U be the neigh-
borhood associated to OE(t). Without loss of generality we can assume t; = 0.

Observe that there exists p > 0 such that {|d(-,t)| < p} C U for all t € [0, 2], and the sets
o, o{d(-,t) < s}, |s| < p, satisfy the interior and exterior p-ball condition for all times (in
particular 0E(t) satisfies the condition with radius 2p).

Let ¢, > (d —1)/p?, and for € > 0 small, let

de(z,t) = d(z,t) — e — 4cpet t €[0,tq].

Observe that for € small enough, {|d.(-,t)| < p/2} C {|d(-,t)| < p} for all ¢. The constant
¢, is precisely chosen so that in this set, the curvature of two level surfaces {d(-,t) = s} and
{d(-,t) = §'} at points along the same normal vector Vd(-,t) differ by at most c,|s — ¢'|.
We have, for a.e. t € (0,t2) and z € {|d(-,t)| < p} C U,

od. od

E(%t) = a(naE(x,t)(x)vt) —4cpe,

thus:
o If pp((7) € Q, then (by Definition 4.1)

ad
8—;(1‘, t) < Ad.(z,t) —4cpe +cpld| < Ade(x,t) + cplde| + cp(—4e + (1 + 4ept))

so that if ¢ <t = min(ts,1/(2¢,)) and |d:| < g/2,

od. €
W(.’L‘,t) S Ada(l',t) - Cpi. (18)

e While if Tlpp(, 4 (7) € OS2, then d = dg and almost surely dd/0t = 0, so that dd. /0t =
—4cpe. On the other hand, there is a constant C' large enough (of order 1/p, and
admissible for Proposition 4.5) such that |Ad:| < C a.e. in {|d(-,t)] < p}, and we
deduce

ad.

0 = ot (z,t) < Ad.(z,t) + C — 4cpe. (19)

Moreover, if d. > —¢/2, we have that dg = d > 4c,et + /2.

Consider a function g. which is C' in {dg > £/2}, 0 in Q, and smoothly decreasing from C' to
0 as dq decreases from /2 to 0: we deduce from (18) and (19) that

od.
ot

a.e. in {(z,t) : |d-(z,t)] <e/2,t € (0,t)}. We have built a strict subflow, as close as we want
from OFE(t), for ¢t € [0,¢]. The fact that ¢ could be less than t3 is not an issue, as we will see
in the end of the next step. On the other hand, the consistency result in [17] requires that

e
S Adg"‘gg _Cp§



d is at least C? in space, which is not the case here (and the proof does not extend to C'!
regularity). For this, we need an additional smoothing of the surface, which we perform in a
second step.

Step 2. Now consider a spatial mollifier ¢, (z) = n™"¢(x/n), with n << e. For all time let
d? = ¢, * d., which is still Lipschitz in ¢ and now, smooth in z. If n is small enough, and
since g, is continuous, we have

od!?
ot

< Ad" + g. —cpz

for a.e. z,t with |d-(x,t)| < £/2 —n. We can rewrite this equation as a curvature motion
equation with some error term, as follows:

add . Vad! € (D%d! vd?) - Vd!
< |Vdl| | div ==~ — cp— 1—|Vdl 20
5 S |Vd!| < v v + 9 Cp4 + ge( Vdd]) + V|2 (20)
Now, we have that
1> |Va > 1 e (21)

almost everywhere, for some constant ¢ > 0, of order 1/p. Hence, if 7 is small enough, we
have
g:(1 — |Vl]) < ¢pe/16. (22)

We claim that the following estimates holds: there exists a constant ¢ > 0 (of order 1/p?)
such that
|D*d?Vdl| < en. (23)

This will be shown later on (see Step 3). Using (21) and (23), we find that

(D247 vdl) - vd!
[Vd|?

< cye/16

if 1 is small enough. Thus (20) becomes, using (22),

od!
ot

U
< |Vad| (div;;ia + gg> - cpg. (24)
Since |D%d.| < 1/p for a.e. t and x with |d.(x,t)| < &/2, this is also true for |D?dZ| (for
|d-(x,t)| < /2 —n), and using (21) we can easily deduce that the boundaries of the level
sets E.(t) = {dZ(-,t) < 0} have an interior and an exterior ball condition with radius p/2.
Together with (24), and using g. < Cxqec, we find that E.(t), 0 < t < t, is a strict subflow
for the motion with normal speed V = —x — C'xqe, and [17, Th. 3.3] holds. We deduce that
there exists hog > 0 such that if h < ho, T (E:(t)) C E.(t+h) for any ¢ € [0, — h], where T},
is the evolution scheme defined by

ThE = {Sh,_oo(dE-i—C'hXQc) < 0}

for any bounded set E. (It corresponds to the time-discretization of the mean curvature flow
with discontinuous forcing term —C'xqe.) Recall that if £ C Q, Proposition 4.5 shows that

10



ThE TpE C . In particular, for the subflow E(-) considered here, he have T}'(E(0)) =
T, E(0), for all n and h > 0. By induction, it follows that as long as nh <,

TPE(0) = TLE(0) C E.(nh),

hence T}Et/hJE(O) is in a 3e-neighborhood of E(t). Since ¢ only depends on p > 0 (the
regularity of the subflow E(-)), we can split [0, t2] into a finite number of intervals of size at
most ¢ and reproduce this construction on each interval, making sure that the € parameter
of each interval is less than one third of the € of the next interval.

We deduce that for any 6 > 0, if » > 0 is small enough, then T}'E(0) C {dg(n) < 0}, for
0 < nh < ty. This shows the consistency of T} with subflows, assuming (23) holds.

Step 3: Proof of estimate (23). Recall that since d. is a distance function, |Vd.| = 1 almost
everywhere. Now, let us compute, for n > 0 small and z,y € {d(-,t) <e&/2 —n}:

Vd2(x,t)]? = [Vd2(y, ) = (Vdl(z,t) — Vdl(y,t)) - (Vdl(z,t) + Vdl(y,t))
/ (Vdo(z — 2,t) = Vde(y — 2,t))-(Vde(x — 2/, t) + Vde(y — 2/, ) on(2)on(2') dz d2' .
B, JB, o5)
As |D%d.| < 1/p, Vd.(-,t) is 1/p-Lipschitz, using |Vd.(z — 2,t)|? — |Vde(y — 2,t)|?> = 0 it
follows
(Vde(x — 2,t) — Vd:(y — 2,t)) - (Vdg(x — 2 t)+ Vd(y — 2, t))
< Vdila=28) = Vdely = 20)| 1z = | < Slo—yllz=2!

and it follows from (25) that
m 2 m 2 4
|Vd€(l‘,t)| - |Vds(y>t)| < ﬁ‘x_yhf

We deduce (letting y — x) that

4
2|D2d (z,t)Vd (x,t)| < ﬁn,

which is estimate (23).

Step 4. Consistency with superflows: the proof is almost identical (reversing the signs and
inequalities), but simpler for superflows. Indeed, all the sets we now consider stay in Q and
we do not need to take into account the constraint or the forcing term Cxqe.

O

We can define a generalized flow as limit of the scheme T} as h — 0. Given an initial set
ECQ, forall t >0 we let

E)=T"E  and  E,=|JEu(t) x {t} CR" x [0, +00). (26)
t>0

11



Then there exists a sequence (hy)g>1 such that both Ej, and R™ x [0,4+00) \ Ey, = “Ej,
converge in the Hausdorff distance (locally in time) to E* and °E, respectively.

From Corollary 3.4 and Theorem 4.7 we obtain a comparison and uniqueness result for
solutions of (1).

Corollary 4.8. Let Eyi(t) and Es(t) be respectively a sub- and a supersolution of (1) for
t € [0,T], in the sense of Definition 4.1. Then, if E1(0) C E5(0), it follows that E;1(t) C Ea(t)
for all t € [0,T). In particular, if OF is compact and of class CY', there exists at most one
solution E(t) starting from E. Moreover, by Remark 4.3, E(t) is contained in the solution
to the (unconstrained) mean curvature flow starting from E.

5 Short time existence and uniqueness in dimension two

In this section we assume n = 2 and 95 of class C1:1.
The following result follows as in [11, Lemma 7].

Lemma 5.1. Let h > 0 and let E C Q with OF of class C*'. Let §g be the mazimum § > 0
such that both OF and OS2 satisfy the 0-ball condition, and let v = Sp, q,dE. Then, for all
§' € (0,0g) we have

for all h < (6 — 0")?/3.

Lemma 5.2. Let E C Q with OF of class CY'. Then, there exists 6 > 0 and T > 0 such
that
OEy(t) satisfies the 6-ball condition for all t € [0,T]. (28)

Proof. Let 0 be as in Lemma 5.1, and let K = 2/dg. By Lemma 5.1, applied with §' = Kh,
we get,

h h K ~ K2
T.EOF) < — < (14— K
dy(0TLE, 0 )_5E—Kh_5E( +5Eh+0(%h>

for all h < hg := 6%/12, where the constant C > 0 is independent of E. Recalling (15) and
Proposition 4.4, we get

1 K /\KQ )
Il o) < 5 (1 # g+ O )

which implies

1
Sr,p > min < g — dH(aThE,aE)> (29)
15l Lo (o7, )
h K = K2 K = K2 )\
2 5Em11'l 1—2<1+h+02h2>,<1+h+02h2>
0% op 5% op 5%
for all h < hg. By iterating (29) we obtain (28). O

We now prove a short time existence and uniqueness result for solutions to (1).
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Theorem 5.3. Let 002 be of class CYl and let E C Q with OFE of class CYl. Then there
exists T > 0 such that (1) admits a unique C1* solution E(t) on [0,T] with E(0) = E.

Proof. Let Ej, be as in (26) and let

0= (5] s (5[

By Lemmas 5.1 and 5.2 there exist an open set U C R™ and 7" > 0 such that 9F(t) C
U for all t € [0,T] and |V2d,| € L>®(U x [0,T]); moreover, recalling (27) we also have
dp € Lip(U x [0,T]). By the Arzela-Ascoli Theorem the functions dj, converge uniformly in
U x [0,T], up to a subsequence as h — 0, to a limit function d € Lip(U x [0,T]) such that
|V2d| € L>®(U x [0,7T]) and |Vd| = 1in U x [0,T]. Letting E(t) = {z : d(z,t) < 0}, for all
t € [0, 7] we then have E(0) = E, E(t) C Q and dE(t) is of class CbL.

It remains to show that (11) and (12) hold in U x [0,T]. From Theorem 4.7 it follows that,
given a supersolution E(t) on [t1,te] C [0,7T] with E(t1) C E(t1), we have E(t) C E(t) for all
t € [t1,12], and the same holds with reversed inclusions if E(t) is a subsolution. This implies

that

od

5t = Ad a.e. in (U x [0,T])N{d > da} Nn{d =0},
which proves (12). Observe that, by parabolic regularity, 0E(t) N {2 is an analytic curve and
the equality holds everywhere.

As we have

od
5t =0 a.e. in (U x [0,T]) N{d = dqa},
the proof of (11) amounts to show
Ad<0 a.e. in (U x [0,T)) N{d = dq}. (30)
Assume by contradiction that there exist (z,¢) € (U x (0,7)) N{d = dq} such that
od
E(f,f) =0 < Ad(z,t) = Adq(Z). (31)

Without loss of generality we can assume d(Z,t) = do(z) = 0, and dg is twice differentiable
(in the classical sense) at 7.
Let us take an open set 2 O Q with (compact) boundary of class C*° and such that

z€dQ and  Adg(T) > Ada(z) > 0.
We let Q(t), for t € [0

B(t) = Q(t—D,te
Theorem 4.7

7] and 7 > 0, be the evolution by curvature of € [5], and observe that
t+ 7], is a subsolution in the sense of Definition 4.1. In particular, by

E(t) CE({t)  forallte [fi+7]
but this implies, letting ci(ac, t) = d@(t) () and recalling (31),
ad ad
= — (7 > (7 = Ad=(x) > A T
0= 20 > %(a.1) = Ady(3) > Adal®) > 0,

leading to a contradiction. This proves (30) and thus (11).
Finally, the uniqueness of E(t) follows from Corollary 4.8. O
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Remark 5.4. Notice that in Theorem 5.3 it is enough to assume that €2 satisfies the exterior
R-ball condition for some R > 0, which is a weaker assumption than requiring 02 to be of
class Cb!. Indeed, we can approximate Q with the sets

Q= |J Bx) p>0.
B,(z)CQ

Notice that €, C © and 01, is of class CU1, for all p > 0. If we take p small enough so that
E C Q, then, by Theorem 5.3 applied with 2 replaced by €2,, we obtain a solution E,(t) on
[0,7,]. However, E,(t) is also a solution of the original problem, with constraint € instead
of Q,, since Q, is a subsolution to (1) in the sense of Definition 4.1.

6 Positive mean curvature flow
In this section we consider the geometric equation

v = max(k, 0). (32)

Notice that, by passing to the complementary set, (32) includes the evolution by negative
mean curvature v = min(x, 0).

Definition 6.1. Given a family of sets E(t), t € [0,T], we set

d(w,t) = dgu ().

We say that E(t) is a C*! solution of (32) if there exists a bounded open set U C R™ such
that OE(t) C U for allt € [0,T],

d € Lip(U x [0,T)) |V2d| € L=(U % [0,T))
and 5d
5 = max (Ad,0) + O(d) a.e. in U x [0,T7. (33)

Lemma 6.2. Let E1(t) and Ex(t), with t € [t1,t2], be two CH solutions of (32) in the sense
of Definition 6.1. Then, if E1(t1) C Ex(t1), it follows that E1(t) C Ex(t) for allt € [t1,t2]. In
particular, if OF is compact and of class C1', there exists at most one solution E(t) starting
from E.

Proof. Notice that it is enough to prove the thesis with to = t; 4+ 7, for some 7 > 0, since the
general claim then follows by iteration. Fix € > 0, let d.(w,t) := dpg,)(x) + & + Cet and let

E.(t) :={x: de(x,t) <0} t€[t1,t1 + 7],

where the positive constants C, 7 will be determined later. Notice that 0F, is compact and
of class C! for all € small enough, and E.(t) — F»(t) as ¢ — 0. A direct computation gives

od.
ot

> max (Ad. + ¢ (C — CK*r — K?),0) + O(d.) a.e. in U X [t1,t1 + 7], (34)
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where

K = sup [|[Adg,wllL=@E. )
x€[t1,t2]

If we choose C = 2K? and 7 < 1/C, (34) implies that FE.(t) is a supersolution of (32).
Letting D.(t) := dist(0FE1(t),0E.(t)), we have that D, is Lipschitz continuous, D.(0) > ¢
and D.(t) > 0 for a.e. ¢ € [t1,t1 + 7]. As a consequence, E.(t) C Ey(t) for all t € [t1,t1 + 7],
and the thesis follows by letting ¢ — 0. O

Remark 6.3. Notice that the viscosity theory [19] applies to equation (32), since the function
k — max(k,0) is continuous. Then, Lemma 6.2 implies that, if the initial set has compact
boundary of class C1'!, the corresponding viscosity solution does not create fattening, i.e. is
unique, before the onset of singularities. Corollary 6.5 below will establish the existence of
such C'H! solutions.

Given E C R™ and h > 0, we set EV = Eg = F and, by iteration,

E’}? = {Sh7dén_1 (désq) < 0}
h

(35)
Ejt i= { Shaai (d 1) < 0}

for all n € N. We also let Ej(t) := E}[f/h} and Ej(t) = E}[f/h]. Notice that Fj(t) is the
discretized evolution corresponding to the mean curvature flow with obstacle Q = E (see
Definition 4.2), while E},(t) is an implicit scheme for (32).

Proposition 6.4. Let h > 0 and let E C R™ be a set with compact boundary. Then
En(t) = En(t) forall t>0.

In particular
Eh(tg) Q Eh(tl) fO’l“ all tl S tQ. (36)

Proof. We have to show that Er = E} for all n € N. By the definition we have El = E} = F.
If we also show that E,% = E}%, then the thesis follows by iteration. As dr > dg, by Proposition
3.1 we have that S, 4, (dr) > Sha,(dE), so that

Ej = {Shap(dr) <0} C {Shay(ds) <0} = F. (37)
By Proposition 3.6 we know that E? is the minimal solution of
min P(X) + 1/ drdz.
XCE h Jx
Recalling (37) it then follows that E? is also the minimal solution of

) 1
)r(rlé%P(X) + h/XdFdx

and hence coincides with E,%, again by Proposition 3.6. O
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Proposition 6.4 implies that the evolution (32), with initial set F, can be seen as a particular
case of (1) with Q = E. As a consequence, from Theorem 5.3 we get a short time existence
result for regular solutions to (32).

Corollary 6.5. Let E C R? with compact boundary of class CY'. Then there exists T > 0
such that (32) admits a unique solution E(t) on [0,T] with E(0) = E and 0E(t) a compact
set of class C1't for all t € [0,T]. Moreover

E(tg) Q E(tl) fO’F all t1 § t2. (38)

Proof. Thanks to Theorem 5.3 there exist 77 > 0 and a unique solution E(t) of (1) on
[0,7], with E(0) = E = Q and OE(t) of class C%'. By Proposition 6.4, for all £ € [0,7),
E(t) is the solution of (1) on [t,T] with obstacle Q = E(¢). In particular, letting as above
d(r,t) = dg)(z) and recalling (11), this implies

(2? = max (Ad + O(d), 0) a.e.in U x 0,77,

that is, E(t) is the solution of (32) in the sense of Definition 6.1.
The uniqueness of E(t) follows from Lemma 6.2, and (38) follows from (36). O
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