Approximation of the anisotropic mean curvature flow
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Abstract

In this note, we provide simple proofs of consistency for two well known
algorithms for mean curvature motion, Almgren-Taylor-Wang’s [1] variational
approach, and Merriman-Bence-Osher’s algorithm [24]. Our techniques, based
on the same notion of strict sub- and superflows, also work in the (smooth)

anisotropic case.

1 Introduction

The Mean curvature flow refers to the motion of a hypersurface I'(t) C RY whose
normal velocity, at each point, is equal to (minus) its mean curvature. We will
consider only compact hypersurfaces I'(t), that are the boundary of some evolving
set E(t) (bounded or unbounded). In this case, the motion is also known as the
“area-diminishing” flow, and is in some sense the gradient flow of the perimeter of
E(t). It is well-known that this motion can be characterized in terms of the distance
function to I' = OF [18, 2]. More precisely, if we define d(z,t) as

d(z,t) = dist(z, E(t)) — dist(z, RV \ E(t))

(the signed distance function to OE(t)), then the exterior normal to E is given
by Vd whereas the curvature is Ad. On the other hand, the normal velocity of a
point of the boundary is given, at each time, by —8d/0t, so that the evolution is
characterized by

%(x,t) = Ad(z,t) (1)
at any x € OE(t) (i.e., (z,t) such that d(z,t) = 0).

It is well known that the Mean curvature flow enjoys a comparison principle:
if £, F are two (smooth) evolutions such that E(t) C F(t) at some time ¢, then
E(s) C F(s) at any subsequent time s > ¢ as long as the flows are defined. This key
property allows to define a generalized flow for nonsmooth surfaces, by comparison

with smooth flows: basically, a generalized flow will be a flow such that any smooth
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flow starting inside remains inside while any smooth flow starting outside remains
outside. The formal theory that provides such a generalization is known as the
barrier theory and is initially due to De Giorgi [16, 8, 5]. The theory of viscosity
solutions (which is also based on the comparison principle) defines the generalized
flow as the zero sub- or superlevel set of a function u that solves an appropriate
degenerate parabolic equation, and yields the same generalized flows as the barrier
theory [6]. The generalized flow starting from a set F is usually unique, except
when the “fattening” phenomenon occurs, which corresponds to the fattening of the
level line {u = 0} of the corresponding viscosity solution.

It is shown in [5] that a barrier solution can be characterized by comparison with
appropriate sub- and superflow: in this case, a generalized flow will be characterized
by the property that any smooth flow starting inside and evolving (strictly) faster
than the Mean curvature flow remains inside, while a smooth flow starting outside
and evolving (strictly) slower than the Mean curvature flow remains outside. The
definition of a strict super- or subflow of (1) is the following: E(t) will be a strict

superflow (on a small time interval [to,?1]) iff its signed distance function satisfies

ad
a(m,t) > Ad(z,t) (2)

in a neighborhood of {d = 0}, while a strict subflow is defined with the reverse
inequality.

We show in this note that such a definition (which will be slightly adapted to
cover non-isotropic cases) makes very easy the proof of convergence for two well-
known approximation schemes for the Mean curvature flow, namely, the Almgren-
Taylor-Wang [1] approach and the Merriman-Bence-Osher [24] approach. In both
schemes, a time step h > 0 is fixed and a discrete-in-time evolution is defined, by
providing a simple evolution operator E — Ty E that approximates the evolution of
a initial set F over a time interval of duration h. Given Ey, the discrete evolution
E(t) is simply T,Et/ "l (Ep) where [-] denotes the integer part. One then wants to
know whether Ej(t) — E(t) as h — 0, where E(t) is the generalized evolution
starting from Ey. The key to prove this convergence are the two properties of
monotonicity and consistency. The operator T}, will be monotone if given any E, F'
with E C F, one has T, E C T, F. The notion of consistency we will use is based on
our notion of strict super- and subflow: T} will be consistent if, given any superflow
E on [tg,t1] and given h > 0 small enough, one has E(t + h) C TpE(t) for any
t € [to,t1 — h], while given any subflow, the same holds with the reverse inclusion.
It follows from the theory of barriers that if T} is monotone and consistent in the
above-defined sense, then 0FE}(t) converges to OE(t) as h — 0 (in the Hausdorff
sense), at any time, as long as the generalized flow OE(t) is uniquely defined (é.e.,
no fattening occurs).

In our cases, the set T, E(t) will be defined as a level set of some function u

(depending on h and E(t)), satisfying some elliptic or parabolic equation, and it



will be quite easy to build from a function d satisfying (2) a sub- or supersolution v
of the same equation that will be compared to u, yielding a comparison of the level
sets.

This note is organized as follows: in Section 2 we introduce the anisotropic
curvature flow and we give a rigorous definition of the corresponding super and
subflows. Then, in Section 3 we introduce the Merriman-Bence-Osher’s scheme
and we prove its consistency. In Section 4 we do the same for the Almgren-Taylor-
Wang’s algorithm. We observe that in this case, a result of consistency with smooth

flows is already found in [1], however, its proof is by far more complicated than ours.

2 Anisotropic curvature flow

We follow the definitions and notation in [7, 9]. Let us consider (¢, ¢°) a pair of
mutually polar, convex, one-homogeneous functions in RY (i.e., ¢°(£) = SUPy(my<1 &
1, ¢(N) = Supge(ey<1 & - M, see [25]). These are assumed to be locally finite, and,
to simplify, even. The pair (¢, ¢°) is referred as the anisotropy (the isotropic case
corresponds to ¢ = ¢° = | -|). The local finiteness implies that there is a constant
¢ > 1 such that

¢l < ¢(n) < clnl and ¢~ ¢] < ¢°(8) < cl¢]

for any 1 and £ in RY . We refer to [7, 9] for the main properties of ¢ and ¢°.
Being convex and 1-homogeneous, ¢° (and ¢) is also subadditive, so that the
function (z,y) — ¢(x — y) defines a distance, the “¢-distance”. For E C RY and
z € RV, we denote by dist?(z, E) := inf,cp ¢(z — y) the ¢-distance of z to the set
E, and by
do () = dist®(z, E) — dist®(z, RV \ E)

the signed ¢-distance to OF, negative in the interior of E and positive outside its

closure. One easily checks that

|d%(z) — d(y)| < d(x—y) < clz—y|

for any z,y € RV, so that (by Rademacher’s theorem) d% is differentiable a.e. in
RN . The former inequality shows moreover that Vd§,(z)-h < ¢(h) for any h € RV,
if z is a point of differentiability: hence d)"(Vd%(a:)) < 1. In this note we will
always assume that ¢ and ¢° are at least in C2(RY \ {0}). In this case, one shows
quite easily that d% is differentiable at each point  which has a unique ¢-projection
y € OF (solving minyepp ¢(z — y)). Then, Vdy () is given by Vo((z — y)/dy(z)),
so that ¢°(Vdd']iJ (x)) = 1. See [7, 9] for details.

The Cahn-Hoffman vector field ny is a vector field on OF given by ng(z) =
V¢ (ve(x)) = V¢°(Vd%(m)) a.e. on OE. Here, vg is the (Euclidean) exterior
normal to OE. If E is smooth enough, then Vd% does not vanish near 0F so that
one can define ny(x) = V¢°(Vd% (z)) in a neighborhood of OF.



Then, we define the ¢-curvature of OF by k4 = divng. The ¢-curvature flow is
an evolution E(t) such that at each time, the velocity of OE(t) is given by

V = —Kg Mg, (3)

where ny is the Cahn-Hoffman vector field and k¢ is the ¢-curvature. It is shown
that, in some sense, it is the fastest way to diminish the anisotropic perimeter
Jor @°(vg) dHN 1. If ¢, ¢° are merely Lipschitz (when, for instance, the Wulff
shape {¢ < 1} is a convex polytope), then ng can be nonunique and the anisotropy
is called crystalline [28, 7]. We refer to [14] for a proof of convergence of Merriman-
Bence-Osher’s scheme in the crystalline case.

The anisotropic variant of (1) is the following characterization of the anisotropic

mean curvature flow: letting d(z,t) = d%, . (z), the smooth set E(t) evolves by

B(t)
anisotropic curvature if

%l (z,t) = divVe®(Vd(x,t)), (4)

for any (z,t) with d(z,t) = 0. One therefore introduces the following definition of

(strict) super- and subflows, which is simplified from [15]:

Definition 2.1 Let E(t) C RV, t € [to,t1]. We say that E(t) is a superflow of (4),
if there exists a bounded open set A C RN | with Usy<i<r, OE(t) x {t} C A x [to, 1],
and § > 0, such that d(z,t) = dg)(z) € C*([to, t1]; C*(A)), and

Z_‘:(m,t) > divVe¢®(Vd)(z,t) + 6, (5)

for any x € A and t € [to,t1]. We say that E(t) is a subflow whenever § < 0 and

the reverse inequality holds in (5).

Considering now a time discrete evolution scheme E — T, E (T, E needs not be
defined for all sets F, in our applications, it will be sufficient to define it for closed
sets with compact boundary), parametrized by the time step h > 0, we introduce

the following definition of consistency:

Definition 2.2 The scheme T}, is consistent if and only if for any superflow E(t),
to <t <ti1, in the sense of Definition 2.1, there exists hg such that if h < hg, then
ThE(t) D E(t + h) for any t € [to,t1 — h], while for any subflow, the same holds

with the reverse inclusion.

This definition means that given a superflow, it will also go faster than the dis-
cretized evolutions, as soon as h is small enough. The following results follows from
the theory of barriers, see [5, 6, 8, 15].

Proposition 2.3 Assume T}, is a consistent scheme, in the sense of Definition 2.2
above, which is also monotone: for any E,F C RV, E C F = T,E C T,F. Let

Eo C RN be a closed set with compact boundary such that the generalized anisotropic



curvature flow E(t) starting from Eg is uniquely defined (no fattening). For any
t > 0 let Ey(t) :== TH/MEy. Then, for anyt as long as E(t) is not empty, OE(t) —
OE(t) in the Hausdorff sense.

In the next sections, we prove consistency (and monotonicity), first for the
(anisotropic) Merriman-Bence-Osher scheme, then for the Almgren-Taylor-Wang
scheme, yielding, by Proposition 2.3, convergence to the generalized solution, when

unique.

3 The Merriman-Bence-Osher algorithm

More than ten years ago, Merriman, Bence and Osher [24] proposed the following
algorithm for the computation of the motion by mean curvature of a surface. Given
a closed set E C RV, they let T,E = {u(-,h) > 1/2}, where u solves the heat
equation with initial data u(-,0) = xg, the characteristic function of E. They
then conjectured that Ejp(t) := T,Et/ "E would converge to E(t), where E(t) is the
(generalized) evolution by mean curvature starting from E.

The proof of convergence of this scheme was established by Evans [17], Barles
and Georgelin [3]. Other proofs were given by H. Ishii [19] and Cao [11], where the
heat equation was replaced by the convolution of xg with a more general symmetric
kernel. Extensions and variants are found in [20, 27, 26, 29, 22].

As easily shown by formal asymptotic expansion, the natural anisotropic gener-
alization of the Merriman-Bence-Osher algorithm is as follows. Given E a closed set
with compact boundary in RV, we let Th(E) = {z : u(x,h) > 1/2} where u(x,t)

is the solution of

%(m,t) € div (¢°(Vu)6¢°(Vu))(a:,t) t>0, z€ RV, ©
u(-,0) = xE (t=0).

The funtion u(z,t) is well defined and unique by classical results on contraction
semigroups [10]: if E is compact, it corresponds to the flow in L%(RY) of the
subdifferential of the functional u — [y ¢°(Vu)?/2dz if u € H'(RY), and +o0
otherwise. On the other hand, if RN \ E is compact, one defines u by simply letting
u = 1 4+ v where v solves the same equation with initial data yg — 1.

We first observe that the monotonicity of this scheme is obvious. Indeed, it
follows from the comparision principle for equation (6)). Let us now prove the

following:
Proposition 3.1 T}, defined as above, is consistent in the sense of Definition 2.2.

Proof. Let E be a superflow on [tg,#1], in the sense of Definition 2.1, and let A be
the associated neighborhood of OE(t), t € [to, t1].



We introduce the function vy : Rx [0, +00) — [0, 1] that solves the following (1D)

heat equation

oy 0%y
5(577—) - 6{-2 (67 )7 §€R7 T>07 (7)
7(§,0) =Y (E), R, (1=0).

where Y = X[o,40) is the Heavyside function. It is well known that ~ is given by

R )

In particular, one readily sees that it is self-similar: indeed, the change of variables

s' = s/+/T yields

or) = [T ey — () Zo (L)
vl ) = (5

Fix t < to. The simplest idea would be to introduce the function v(z,7) :=
v(—d(z,t + 7),7), defined in A for small 7. It satisfies {v(-,7) > 1/2} = E(t + 7)
and one has (using (5))

ov oyod Oy 67
b A P
or ~ “ogot  or S ag ¢ Ve (VD) +5) - 5.

Also: Vv = —(0v/0€)Vd, so that ¢°(Vv) = (07/9€) and V¢° (V) = =V¢°(Vd),
hence
9y 0%y
Here, we have used the fact that ¢° is even and one-homogeneous, V¢° is odd
and zero-homogeneous, ¢°(Vd) = 1, and Vd - V¢°(Vd) = ¢°(Vd) = 1 (by Euler’s
identity). Using 0v/01 = 8%y/0€?, we find:

OV < divg* (Vo) Vé® (Vo) — 5‘3? .

or
Hence, v is a good candidate to be a subsolution of (6), with initial data v(x,0) =

div ¢°(Vo)Ve° (Vv) = —divg Vo (Vd) =

Xe() (). If this were the case, we would get that v < u (where u solves (6) with
initial data xp()), so that {v(-,h) > 1/2} C {u(-,h) > 1/2}, in other words,
E(t+ h) CTyE(t), which is our consistency. However, we cannot show that this v
is less than u at the boundary of A (for instance), for t < ¢t +7 < ¢t + h. This is why
we define v in a slightly more complicated way: we let v(z,7) := y(—d(z,t + 7) +
d7,7) — nh, where n < §/+/27 is fixed. Since now dv/d7 differs from the previous
time derivative by §0y/0¢, one still has

0
a—z < div¢°(Vo)V¢® (Vo). (8)
at any (z,7) € A x [0, h], hence v is a subsolution of (6). At 7 = 0, v(z,0) =
XE(t) () —nh < XE(t) ().
Let u solve (6) with initial data xp(. First of all, we observe that since d €

C*([to, t1]; C*(A)), OE(t) is a C? compact hypersurface, continuous in time. Hence



there exists p > 0, independent of ¢, such that each point z € 0E(t), E(t) satisfies
an interior and exterior Wulff shape condition of radius p: there exist z € E(t)
and 2’ ¢ E(t) with {¢(- — 2) < p} C E(t) and {¢(- — 2') < p} N E(t) = 0, while
¢z — 2) = ¢(x — 2') = p. One may always assume that {|d(-,s)| < p} C A for all
s € [to,t1]. Let B = {|d(-,t)| < p}. If h is small enough (independently of t), one
also may assume that |d(z,t + 7) — d(z,t)| < p/2 in B for any 7 € [0, h], so that
dist?(DE(t 4+ 7),0B) > p/2. We assume h < p/(46). Let z € dB with d(x,t) = p:
then d(z,t+7) > p/2 for any 7 € [0, h], so that —d(z,t+7)+7 < dh—p/2 < —p/4,
and v(z,7) < y(—p/4,7) — nh for any 7 € [0, h]. Hence v(z,7) < y1(—p/(4/T)) —
nh < y1(—p/(4v'h)) —nh which is negative if h is small enough. This shows that if
h is small enough, v(z,7) < 0 < u(z,7) for any 7 < h and = € 9B N {d(-,t) = p}.
If now = € OB with d(z,t) = —p, we use the fact that u > w, where w solves (6)
with initial data wo = X{4(.—z)<,}- One shows that w(y,7) = U(¢(y — 2)/p,7/p*)
where U(|z|,7) = U(z,7) and U is the (radial) solution of the heat equation
U /ot = AU with initial datum XB,, the characteristic function of the unit ball.

It is well-known that

; 1 ly — 2
Uly,7) = / exp (—7 dz
\/47TTN {lzI<1} 4t

so that

1 22
U@,7) = 1— / exp (——) dz.
Var™ Jiz121/v7 4

Hence, u(z,7) > 1 — (l/mN) f{\z|>p/\ﬁ} exp(—22/4)dz > 1 — cexp(—p/(4Vh))
for some constant ¢ > 0, and any 7 € [0, h]. Hence, for 7 € [0, h], v(z,7) —u(z,7) <
cexp(—p/(4Vh)) — nh: clearly, this is negative if h is small enough (depending
only on p). We have shown that v is below u on 8B x [0, h], if h is small enough
(uniformly in ).

By standard results on parabolic equations, we find that v < u on Bx[0, h] and in
particular v(-, h) < u(-,h) in B. Hence, {v(-,h) > 1/2} C {u(-,h) > 1/2}. Observe
that v(z,h) > 1/2 iff —d(z,t + h) + 5h > (y(-,h)) "1 (1/2 + nh) = V2mnh + o(h),
that is, d(z,t+h) < (vV2mn—8)h+o(h) =: op. If h is small enough, oy, > 0, so that
z € E(t+ h) = d(z,t+ h) < on & v(z,h) > 1/2: we deduce E(t + h) C ThE(t),

which was our claim. The proof of consistency with subflows is identical. Ol

See [14] for a proof of consistency and convergence which works in more general
situations (namely, the crystalline case). See also K. Ishii [21]’s recent paper on an
optimal estimate on the rate of convergence of Merriman-Bence-Osher’s algorithm,

in the isotropic case, where the proof of convergence is very close to ours.



4 The Almgren-Taylor-Wang algorithm

In Almgren, Taylor and Wang’s paper [1], the transformation T, E is defined as a

solution of
1
in Py(F) + + dy|(z) d 9
i Po(F) + 5 [l d, )
where now, FAE is the symmetric difference of the two sets F' and E and Py(F)
is the anisotropic perimeter. This is rigorously defined by fRN ¢°(Dxr), where the
anisotropic total variation is given by

#°(Dv) =

RN
sup {/ v(z)dive(z)dz : ¢ € CXRY;RY), p(¥(z)) <1Vz € ]RN} .
RN

The same approach to curvature motion has also been proposed by Luckhaus and
Sturzenhecker [23], in the isotropic case.

It is shown in [13, 12, 4] that a monotone selection of T, E can be built in the
following way: one fixes a bounded open set ! DD E, and one lets w be the (unique)

minimizer of )
| u) + g wle) — @) do. (10)

then, F = {w < 0} is a solution of (9), as soon as the domain  is large enough.
Clearly, letting Ty E be this solution defines a monotone operator, since £ C E' =
dy > d%, so that w > w' (being w' the solution of (10) with E replaced with
E'), and TpE C T,E'. On the other hand, it is also shown in [13, 12, 4] that this
choice gives the largest solution, whereas {w < 0} would be the smallest (yielding
uniqueness, up to a negligible set, whenever |{w = 0}| = 0, which is "generically"
true in some sense). The proof of consistency we will next give would also work with
this second choice, yielding convergence of any selection of Almgren-Taylor-Wang’s

scheme to the generalized solution, when unique. We now show:
Proposition 4.1 T}, defined as above, is consistent in the sense of Definition 2.2.

Proof. Let E be a superflow on [tg, 1], in the sense of Definition 2.1, and let A be
the associated neighborhood of E(t), t € [to, 1]

Observe that as in the previous section, there exists p > 0 such that {d(-,t) <
p} C A at any time t € [to, 1], and OE(t) satisfies both an interior and exterior
Walff shape condition of radius p.

We fix t € [to,t1), and let B = {d(-,t) < p}. Consider ¢ : R — R a smooth
increasing function with ¢(s) > s and ¢ (s) = s for |s| < /2. We set, for z € B,
v(z) := ¥ (d(z,t + h)). Then, from (5), it follows

v(z) —dpey(z) _ dz,t+h)—d(z,t) 1 [*ad
> =—-| =
7 > b n ) B (z,t+7)dr
1 t+h
> 5 divVe®(Vd)(z,t+7)dr + 6.
t



Let now w be a modulus of continuity for div V¢°(Vd) in {|d| < p}: we find

M > div Vg*(Vd)(z,t +h) + 6 — w(h).
Observe that for any z € B it holds Vu(z) = ¢'(d(z,t + h))Vd(z,t + h), so
that (recall that V¢° 0-homogeneous), V¢°(Vu(z)) = V¢°(Vd(z,t + h)) hence
divV¢° (Vd)(z,t + h) = divV¢°(Vv)(z). Therefore, if h is small enough so that
w(h) <6, we get

v(z) — dE() (z)

h

Let w solve (10), with £ = E(t). We will show that we may choose 9 in order to

> div V¢°(Vu)(z).

have v > w on 9B, so that v is a supersolution for the problem

min { / ¢°(Du) + 1 (w(z) — dpu)(z))’dz : u=w on aB} (11)
B 2h Jp

(which is solved by w). We will deduce that v > w in B, so that {w < 0} D {v <

0} = {d(-,t + h) < 0}, that is, Th(E(t)) 2 E(t + h).

First of all, d is uniformly continuous in time, so that if h is small enough, one
has d(z,t + h) > 3p/4 if d(z,t) = p. If M > diam Q, then one shows that M > w
in 2. We may choose a function ¢ with ¢(3p/4) > M, so that v(z) > M > w(x) if
d(z,t) = p.

On the other hand, since E(t) satisfies an interior Wulff shape condition of radius
p, one has d% < ¢(- —x) — p at any point z € OB with d(x,t) = —p. The analysis
in [12, 15] shows that the solution of (10) with d% replaced with ¢ takes the value
2NVh/v/N +1 at the origin. We deduce that w(z) < 2Nv/h/v/N + 1—p: hence, if
h is small enough, we get w(z) < —3p/4. We can choose 9 such that 1(s) > —3p/4
for any s, so that v(z) > w(z) if d(z,t) = —p. We conclude that v > w on 9B.
Hence v is a supersolution for (11), which implies T; s (E(t)) 2 E(t + h).

E(t+ h). U

If E(t) is a subflow, we can reproduce the same proof to show that Ty ;4 (E(t)) C

While a (much more difficult) proof of consistency with smooth flows is already
found in Almgren, Taylor and Wang’s paper [1], our proof is more easily adapted
to other situations: in [15], we consider the case of a flow driven by anisotropic

curvature with an additional time-dependent forcing term, possibly discontinuous.
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