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C. J. Garćıa-Cervera§

May 15, 2008

Abstract

We identified the effect of the geometry imposed by the shape of
the Wigner-Seitz cell or confinement domain in the strong segregation
limit of diblock copolymer melts with strong composition asymmetry.
A variational problem is proposed describing the distortions of the
chain paths due to the geometric constraints. For cylindrical phases,
we computed the geometric excess energies on hexagonal, square, and
triangular domains in the plane orthogonal to the cylinder axis. Our
results explicitly demonstrate that the hexagonal lattice of cylinders
has the lowest energy for a fixed Wigner-Seitz cell area among the three
possible periodic lattices covering the plane.

Block copolymers are a well-known class of smart materials that can
produce a wide variety of complex equilibrium microstructures.1–4 Since
the late 70’s, these systems have received significant attention by theorists,
and many of the copolymer system phases are now well explained on the
basis of energy minimization arguments.5–13 Further advances in computa-
tional techniques allowed studies of the phase behavior in block copolymer
systems with the help of direct numerical solution of models which explicitly
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incorporate statistical mechanics of polymer chains, providing a connection
between the observed microstructures and the underlying microscopic ma-
terial parameters.14–22 More recently, a renewed interest in block copolymer
systems was stimulated by the studies of geometrically constrained systems,
such as block copolymers confined to the surface of a substrate or the inside
of nanopores.23–25 Numerical studies of these systems showed a rich variety
of microstructures with very intricate geometries.26–29

An important regime in which the self-organizing behavior of block
copolymer systems becomes especially pronounced is the strong segrega-
tion limit, in which monomers of different types segregate almost completely
into non-overlapping regions of space. In the case of diblock copolymers, the
first theory of the strong segregation limit was proposed by Semenov, who
computed the phase coexistence boundaries for several types of microphases
with simple geometries.10 His results were essentially corroborated by the
computational studies of self-consistent mean-field models and extended un-
der a number of simplifying assumptions to include more exotic phases.12–15

Nevertheless, the original Semenov’s theory crucially relies on approximat-
ing the Wigner-Seitz cell of the corresponding periodic structure by a disk of
the same area in the case of cylindrical phases, or a ball of the same volume
in the case of spherical phases. Thus, Semenov’s theory neglects the effect of
the cell geometry and, therefore, cannot distinguish between the structures
which are characterized by different unit cell types (as, e.g., body-centered
cubic versus face-centered cubic lattices of spheres). This point becomes
even more critical when considering the effects of confinement, since the
domain shape must be truly important in such problems.

In this note, we propose an extension of the strong segregation theory
for block copolymer systems which includes the effect of geometric con-
straints on the chain configurations. Specifically, we investigate the case of
diblock copolymers with strong composition asymmetry, in which most of
the “unpleasant” features of the strong segregation limit19 are under con-
trol, allowing us to concentrate on essentially the only remaining issue of the
effect of the geometry. We formulate a variational problem that gives the
excess energy due to geometric factors and, in particular, allows to discrim-
inate between different lattice types with the same unit cell volume in the
case of periodic microstructures. To illustrate the latter point, we explicitly
compute the excess energies for cylindrical phases on three fundamental two-
dimensional lattices and demonstrate that, as intuitively and experimentally
expected, the hexagonal lattice has the lowest energy.

Consider a system of linear polymer chains consisting of N monomers of
type A bonded covalently with fN monomers of type B, with f � 1. If each
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A- and B-monomer has excluded volume v, then f is basically the volume
fraction of the B-monomer. We introduce the Flory interaction parameter χ,
the Kuhn statistical length b, and the root-mean-square end-to-end distance
R ' b

√
N . The confinement domain (or the Wigner-Seitz cell for periodic

structures) is denoted by Ω ⊂ R3.
In the strong segregation regime χN � 1 the A- and B-monomers lo-

cally segregate into disjoint subsets ΩA and ΩB of Ω, with a sharply defined
interface Γ = ∂ΩA ∩ ∂ΩB containing the A-B junctions. Based on this ob-
servation and the Gaussian chain model, Semenov computed the free energy
of the system as a sum of three contributions:

F = Finterface + Fcore + Fcorona. (1)

Here, Finterface is the interfacial energy given by

Finterface = σ

∫
Γ

dA, σ =
σ0kBTχ1/2b

v
, (2)

where σ0 is a dimensionless parameter of order 1, kB is the Boltzmann
constant and T is temperature. Next, Fcore is the energy of the small B-
monomer core, assumed to be radially symmetric:10,12,19

Fcore =
3π2kBT

8vN2b2f2

∫
ΩB

z2(r) dr, (3)

where z(r) is the distance from r to Γ. Finally, Fcorona is the energy of
the corona composed of the A-monomers filling ΩA. Both calculations of
Fcore and Fcorona rely on the strongly stretched Gaussian chain assumption.
However, the computations differ crucially, since the surface Γ, as seen from
ΩA, is convex, while from the side of ΩB it is concave. A parabolic brush as-
sumption can be used to compute Fcore, while one needs to take into account
the exclusion zone to compute Fcorona.10,12,19,30–33 In the original Semenov’s
theory, the domain Ω is replaced with a cylindrical or spherical region of the
same volume, and the Alexander-de Gennes brush assumption34,35 is used
to compute the energy. This, however, does not affect the leading order
contribution to the energy at small volume fractions, since the energy is
dominated by the singularity near the interface.10,30,32,36

We will now compute the corona energy, taking also the geometric effects
into account. We start with the self-consistent mean-field theory in which
each polymer molecule is treated as a Gaussian chain with the position
r0 ∈ Γ of the A-B junction uniformly distributed on the interface (the latter
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is justified for f � 1). Then the corona free energy is (up to an additive
constant)

Fcorona

kBT
= −ν

∫
Γ

(
ln
∫

ΩN
A

e−HA/kBT
N∏

n=1

drn

)
dA. (4)

Here, r1, . . . , rN denote the positions of the A-monomers, r0 is the position
of the A-B junction, ν is the density of the A-B junctions on Γ, and HA is
the Gaussian chain Hamiltonian:

HA =
3kBT

2b2

N∑
n=1

(rn − rn−1)2

+
N∑

n=1

ϕA(rn)−
∫
ΩA

ϕA(r)dr

νv
∫
Γ dA

, (5)

where ϕA is the self-consistent field (a Lagrange multiplier) enforcing the
average monomer density to be v−1 everywhere in ΩA.

In the strong segregation limit the chains are highly stretched, i.e. we
have |rN − r0| � Rg, so one would naturally want to use the method of
steepest descent to evaluate the integral in (4). However, to proceed further
we note a general difficulty that in the strong segregation limit the integral
in (4) is not dominated by the global minimizer of HA, the fluctuations
of the end-point positions rN actively contribute to the free energy of the
chains.19 Nevertheless, when Γ is convex, as seen from ΩA, an exclusion
zone must form around ΩB which is free of the chain ends.10,30 Moreover,
for f � 1 this exclusion zone must occupy most of ΩA, pushing chain ends
close to the cell boundary. In the case when Ω is a disk an exact solution
to the problem shows that the exclusion layer extends to the fraction of
2/π ' 0.64 of the disk radius, and in fact the majority of the chain ends
are located within about 6% of the outer boundary.30 For a sphere the
distribution of chain ends is even tighter, with the dead layer extending to
about 0.76 of the radius, with the majority of the ends within about 4% of the
outer boundary.33 Therefore, for sufficiently small values of f a very good
approximation to the problem with an exclusion zone should be given by the
Alexander-de Gennes brush,34,35 in which all chain ends are assumed to lie
on the outer boundary ∂Ω.32 In the following, we adopt this approximation
to eliminate the need to deal with the precise chain end statistics. We also
note that this assumption is expected to be asymptotically exact when the
free end of the A-chains is capped by sticky end-groups37,38 or by a short
block of C-monomers which is immiscible with either A- or B-blocks.
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Under the assumption of Alexander-de Gennes brush for the corona, the
integral in (4) is dominated by the minimizers of HA with r0 ∈ Γ fixed and
rN restricted to ∂Ω:

Fcorona ' ν

∫
Γ

min
{r1,...,rN−1}

HA dA(r0). (6)

Now, introducing

S =
Nb2

3kBT
HA, U = −N2b2

3kBT
ϕA, (7)

and then passing to continuous chains: rn ' r(n/N), where r : [0, 1] → ΩA

are continuous paths, we can write the corona energy as

Fcorona '
3kBTν

2Nb2

∫
Γ

∫ 1

0

∣∣∣∣drdt

∣∣∣∣2 dt dA, (8)

where each path r(t) minimizes

S =
∫ 1

0

{
1
2

∣∣∣∣drdt

∣∣∣∣2 − U(r)
}

dt (9)

with fixed endpoints.
Note that to be in the mechanical equilibrium the chains must come out

normally from the interface Γ. Then, from the constant monomer density
requirement near Γ one can get the initial conditions for the minimizers r(t),
given a potential U(r) enforcing the constraint:

r(0) = r0,
dr(0)

dt
= Nvν n(r0), (10)

where n is the outward (from ΩB) normal to Γ at r0 ∈ Γ.
We now point out a mechanical analogy, according to which r(t) can be

interpreted as the trajectory of a point particle with unit mass in R3 moving
under the action of potential energy U . The function S plays the role of the
action.39 Therefore, the equation of motion for r(t) becomes simply

d2r
dt2

= −∇U(r). (11)

Note that the initial condition in (10) then uniquely determines the point
at which the trajectory r(t) hits ∂Ω. We can also easily write down the
corresponding Hamilton-Jacobi equation:39

dr
dt

= ∇S(r),
1
2
|∇S|2 + U = U0, (12)
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where U0 is a constant which a posteriori turns out to be independent of the
initial point r0 of the trajectory that passes through r.

Note that we still need to determine the self-consistent field, now given
by U , enforcing the constant monomer density constraint, which in terms of
r(t) becomes

νN

∫
Γ

∫ 1

0
δ(r− r(t))dt dA = v−1, (13)

where δ(r) is the three-dimensional delta-function, and we assumed that
the family of trajectories r(t) foliates ΩA. On the other hand, observe that
it is, in fact, sufficient to find only the action S appearing in (12). The
Hamiltonian structure of equation of motion (11) imposes certain restrictions
on the possible trajectories r(t), in particular, it forces the dynamics of r
to be a gradient flow. In fact, it is easy to see that this gradient flow also
has to be divergence-free. Indeed, consider a tube formed by trajectories
originating on some closed curve in Γ enclosing an area A, and write down
the total number M of A-monomers contained in the cylinder between t = t0
and t = t0+τ cross-sections of that tube. One easily gets M = νNAτ , which
is clearly independent of t0. Hence, differentiating this quantity with respect
to t0, we see that the total flow in/out of the cylinder along the trajectories
must equal zero. In view of arbitrariness of t0, τ and A, we must have
∇ · (dr/dt) = 0 in ΩA.

The arguments above immediately imply that the action S must be a
harmonic function:

∆S = 0 in ΩA, n · ∇S = Nvν on Γ, (14)

where ∆ is the Laplacian, and we also used (10). On the other hand, the
boundary data on ∂Ω must be chosen in an unusual way: every trajectory
starting on Γ at t = 0 and flowing up the gradient of S must reach ∂Ω at
t = 1. This condition can also be reformulated as:∫

|dr|
|∇S(r)|

= 1 on every field line of S. (15)

It is also easy to see from (13) that

Nvν

∫
Γ

∫ 1

0

∣∣∣∣drdt

∣∣∣∣2 dt dA =
∫

ΩA

|∇S|2 dr. (16)

With this, the expression for the corona energy becomes

Fcorona '
3kBT

2vN2b2
D[S], D[S] =

∫
ΩA

|∇S|2 dr. (17)
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Figure 1: The minimal action paths for the hexagonal (a), square (b), and
triangular (c) lattices of cylinders. The gray-shaded regions indicate the
computational domain in each cell. Black circles indicate the minority do-
mains.

Let us note that existence and uniqueness of solutions to the proposed
problem is not guaranteed a priori for any given Ω and Γ. In view of (17),
one should, in fact, be interested in minimizers of D[S] which also satisfy the
condition in (15). Notice that the location of Γ relative to Ω is also part of
the minimization problem. A radial solution (presumably, the unique mini-
mizer) trivially exists when ΩB and Ω are concentric balls. One would then
expect from perturbative considerations that this solution should persist
when ∂Ω is slightly distorted away from a sphere.

In view of the assumption f � 1, the solution of (14) coincides to the
leading order with that of

∆S = |Ω|δ(r). (18)

Indeed, if ΩB is a ball of radius R centered at the origin, then 4πR2νNv =
|Ω| to the leading order in f , where |Ω| denotes the volume of Ω (same
argument applies in two dimensions). From this, one can see that since S
should behave as the free space Green’s function of the Laplacian near the
origin, D[S] will diverge as R → 0. The leading order singular term will only
depend on |Ω| and not the shape of Ω and is precisely what was calculated
by Semenov for the corona energy.10 On the other hand, for small but finite
values of R the solution will also contain an excess energy associated with
the geometry of Ω.

We applied our variational procedure to compute the excess energy in
the case of two-dimensional hexagonal, square, and triangular lattices of
straight cylinders ΩB of radius R and unit height. We note first that the
exact solution of the problem in a coaxial cylinder of the same volume |Ω|
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gives straightforwardly

D0 =
|Ω|2

4π
ln f−1. (19)

To compute the excess energy D −D0 for Wigner-Seitz cells corresponding
to the considered lattices, we implemented a finite element-based minimiza-
tion algorithm to find minimizers of D satisfying (15).40 The minimizing
trajectories in cells whose area is normalized to unity are presented in Fig.
1. From dimensional arguments, we find that for f � 1 we have

D −D0 ' CΩ|Ω|2, (20)

where the dimensionless constant CΩ depends on the geometry of the cell
only. Numerically, we found Chex ' 0.00922, Csq ' 0.0453, and Ctriang '
0.179 for the hexagonal, square, and triangular lattices, respectively. Note
that for fixed values of R and f both the interfacial energy Finterface, the core
energy Fcore, and the leading-order corona energy Fcorona obtained from (17)
with D replaced by D0 are the same. Therefore, to compare the energies of
different geometric arrangements of the B-domains, one needs to compare
the excess energies. From our calculation above we can immediately con-
clude that among the considered types of lattices of cylinders with the same
radius R and volume fraction f the hexagonal lattice is the most energet-
ically favorable in the limit f → 0, an intuitively expected result which is
put on a rigorous footing by our computations. Let us point out that our
approach should also be applicable to spherical phases to help identify the
minimizer among different types of three-dimensional lattices. We note that
the answer to this question in the strong segregation limit lies beyond the
scope of Semenov’s theory10 and its extensions.12,32 Let us also point out
that the method of Refs.12,13 cannot be applied here, since it ignores the
effect of the exclusion zone.

Let us note that our calculation is akin to the one performed by Fredrick-
son,36 who estimated the excess energy due to geometric factors for a hexago-
nal Wigner-Seitz cell in the strong segregation limit. Fredrickson used linear
elasticity and the Alexander-de Gennes assumption to study the extra con-
tribution to the elastic energy of the corona due to chain distortions. His
result, however, differs from ours quantitatively. In particular, we find the
excess energy obtained by us is greater than the one obtained by Fredrickson
by a factor of 1.5. We attribute this discrepancy to strong chain distortions,
which invalidate the linear elasticity approximation. Thus, at small f the
excess energy due to geometry of the Wigner-Seitz cell may have a larger
contribution than previously expected.
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To conclude, we have developed a variational characterization of the
leading geometric corrections to the Semenov’s strong segregation theory
in the case of strong composition asymmetries. Our theory thus should be
able to account for the effect of the confinement geometry on microstruc-
tures consisting of small droplets of the minority species and, in particular,
help identify the equilibrium lattice configurations of these droplets, as was
explicitly demonstrated in the case of cylindrical phases. Perhaps more im-
portantly, our theory provides a new way to study questions of metastability
and instability of nonequilibrium copolymer microstructures under external
perturbations.11,41–43
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G.O. gratefully acknowledge support by GNAMPA.
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