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ABSTRACT. We study a class of systems of reaction-diffusion equations in
infinite cylinders. These systems of equations arise within the context of
Ginzburg-Landau theories and describe the kinetics of phase transformation
in second-order or weakly first-order phase transitions with non-conserved or-
der parameter. We use a novel variational characterization to study existence
of traveling wave solutions under very general assumptions on the nonlineari-
ties. These solutions are a special class of the traveling wave solutions which
are characterized by a fast exponential decay in the direction of propagation.
Our main result is a simple verifiable criterion for existence of these traveling
waves. We also prove boundedness, regularity, and some other properties of the
obtained solutions, as well as several sufficient conditions for existence or non-
existence of such traveling waves, and give rigorous upper and lower bounds
for their speed. In addition, we prove that the speed of the obtained solutions
gives a sharp upper bound for the propagation speed of a class of disturbances
which are initially sufficiently localized. We give a sample application of our
results using a computer-assisted approach.

1. INTRODUCTION

This paper is concerned with the study of traveling wave solutions of reaction-
diffusion systems of gradient type

ug = Au+ f(u), f(u) = =V, V(u). (1.1)

Here, v = u(z,t) €e R™, V:R" - R, z = (y,2) € 2 = QxR Q c R*!
is a bounded domain, so ¥ is an infinite cylinder. Either Neumann or Dirichlet
boundary conditions can be chosen:

(n-Vu)|gs =0, or ulyy =0, (1.2)

where n is the outward normal to 0% (in fact, one could treat more complicated
boundary conditions in a similar way).
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Equation (1.1) is a prototypical equation in the theory of phase transition ki-
netics. Systems undergoing second-order or weakly first-order phase transitions are
characterized by the presence of a “soft mode” near the transition temperature.
This allows to introduce the concept of the “order parameter” to describe the ther-
modynamic state of the system near the transition point [27]. The order parameter
is generally a vector field and can physically describe, e.g., the magnitude of the
spontaneous polarization, magnetization, or a structural change in a crystal. If the
order parameter is a non-conserved quantity, as is the case in ferroelectrics and
ferromagnetics, for example, the relaxation of the soft mode toward equilibrium
may be modeled as a simple gradient low down the Ginzburg-Landau free energy
(see, for example, [7,24,29])

"y = _‘fs_f, Flu] = /(% > IVul + V(u))da:. (1.3)

Here Fu] is a free energy functional, in which V(u) is local thermodynamic poten-
tial, typically obtained via a Taylor expansion and symmetry arguments (see, for
example, [28,44]), and the gradient term penalizes spatial variations of the order
parameter [27,28] (for the effect of anisotropy, see the end of Section 6).

We note that equations of Ginzburg-Landau type can sometimes be systemat-
ically derived from the more “microscopic” theories, such as kinetic Monte Carlo
models, etc. (see, e.g., [8,14,25]). For example, the scalar (m = 1) Ginzburg-Landau
equation can be derived by performing a gradient expansion of the nonlocal evolu-
tion equation obtained for the long-range Ising model subject to Glauber dynamics
near the phase transition point [8]. Let us also point out that the choice of the
boundary conditions is also dictated by the physics at the surface and is, therefore,
problem-dependent. For example, in the context of coarse-grained spin systems
with long-range interactions mentioned above the Dirichlet boundary conditions
will be more appropriate, as opposed to the more conventional choice of Neumann
boundary conditions in Ginzburg-Landau-type problems.

As an example, if u; are the three components of the magnetization vector in a
ferromagnetic crystal with cubic symmetry near Curie temperature, and h; are the
components of the applied field, the kinetics of u may be described by the following
Ginzburg-Landau equation:

. 8u,
ot

= gAu; + h; + au; — buz3 — cu; Zu?, (1.4)
i#]

where a, b, g, 7 are all positive constants, and ¢ > —%, in three space dimensions
[28]. Note that Ginzburg-Landau-type equations often arise as results of normal
form expansions near bifurcation points for partial differential equations (see, for
example, [11]). Let us also point out that scalar reaction-diffusion equations, which
automatically fall into the category of gradient systems, arise in a wide variety of
applications, most notably in biology [36].

Traveling wave solutions are special solutions of Eq. (1.1) of the form u(y, z,t) =
u(y, z—ct) with ¢ € R, which describe uniformly translating “phase change regions”,
moving with speed c¢. In the following, with no loss of generality we will only
consider the solutions moving from left to right, so we assume ¢ > 0 everywhere
below. This is an important class of solutions of Eq. (1.1) which is believed to
describe the long-time asymptotics of the solutions of the initial value problem for
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Eq. (1.1) with sufficiently localized initial data (for recent developments, see [38—
40]). In fact, it was recently shown that under certain assumptions only a special
class of traveling wave solutions can be selected as the long-time asymptotic solution
for the initial value problem [35]. These so-called variational traveling waves are
characterized by a fast exponential decay ahead of the traveling wave solution and
admit an interesting variational characterization which allows to establish a number
of their properties. This paper will be concerned with the problem of existence of
such traveling wave solutions.

Substituting the traveling wave ansatz into Eq. (1.1), we obtain the following
elliptic problem for u:

Tos + AT+ clis + f(T) =0, (1.5)

with the boundary conditions from Eq. (1.2). Let us point out that this equation
has attracted a great deal of attention, starting with the early works in [18,26]. In
particular, the case of scalar equations (i.e., m = 1) has been extensively analyzed
(see [5,16,48] for reviews, and more recent work in [6,22,30,32]). Much less is known
about the solutions of Eq. (1.5) for systems (m > 1). So far general existence results
were limited to the case of monotone systems for which the maximum principle
holds [47], and gradient systems with bistable nonlinearities in one space dimension
[10,33,34,37,43]. Here we are going to establish existence of certain solutions for
Eq. (1.5) with the gradient-type nonlinearity under very general assumptions. Our
main existence result is contained in the following theorem (for definitions and
statements of hypotheses, see Section 2).

Theorem 1.1. Under hypotheses (H1)—-(H3), there existsct > 0 andu € HY, (3; R™),
a % 0, satisfying Eq. (1.5) with ¢ = ct. Furthermore, 4 is a classical solution,
a(z) € K for all x € £, and |u(y,z)| < Ce=** for some C >0 and X > 0.

Let us give a summary of our results here. In Section 2 we introduce the func-
tional spaces, the exponentially weighted Sobolev spaces of vector-valued functions
H!(Z;R™), and the main variational problem, problem (P), to be analyzed. Here
we present the three main hypotheses on the nonlinearity in Eq. (1.5) and discuss
their significance. Then, in Section 3, under the assumption of existence, we es-
tablish a number of properties of the minimizers of problem (P). In particular, we
establish boundedness, regularity, and global gradient estimates of the solutions,
as well as uniqueness of the speed of the solutions. Going further, in Section 4 we
introduce a constrained variational problem, problem (P’), which will be used to
establish existence of minimizers for problem (P). Here we show that existence of
solutions for problem (P’) implies that for problem (P).

Then, in Section 5 we prove existence of minimizers for problem (P’). This result
is established via a sequence of lemmas associated with the properties of the expo-
nentially weighted Sobolev spaces H(Z;R™). We first obtain a uniform estimate
that allows to get information on the exponential decay of functions obeying the
constraint and uniform estimates on the || - ||1,.-norm. The crucial piece of the
proof is establishing lower semicontinuity of the considered functional. This is done
by estimating the measure of “bad” sets, the sets 2, (z), for functions in balls in
H!(Z,R™), as 2 — 400, via an application of Local Isoperimetric Inequality and
the Co-Area Formula.

In Section 6 we establish several criteria of existence and non-existence of the
considered type of the traveling waves. We also prove a number of properties of
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the minimizers, such as their one-dimensionality in the case of Neumann boundary
conditions, or the fact that for the potentials V' that depend only on the magnitude
of the vector u the minimizers are essentially scalar (up to a constant vector). We
conclude this section by proving that in a certain class of solutions of the original
parabolic problem the speed of the minimizers is in fact a sharp upper bound on
the speed of propagation of disturbances. Finally, in Section 7 we consider a two-
variable Ginzburg-Landau model as a sample application, for which we explicitly
verify various assumptions of the analysis using a computer-assisted approach.

Notations. Throughout the paper, u; denote the components of u € R™; C*, C§°,
C*> denote the usual spaces of continuous functions with k& continuous derivatives,
smooth functions with compact support, continuously differentiable functions with
Holder-continuous derivatives of order & for a € (0, 1) (or Lipschitz-continuous when
a = 1), respectively. Unless it is otherwise clear from the context, “-” denotes a
scalar product and |- | the Euclidean norm in R” (occasionally, when there can
be no confusion, we use this notation to denote the same quantities in R™). The
symbol V is reserved for the gradient in R", while V, stands for the gradient in
Q C R*! (we use V, to denote the gradient in R™). Similarly, the symbol A
stands for the Laplacian in R™, and A, for the Laplacian in Q. By a classical
solution of Eq. (1.5) we mean a function u € (C%(X) N C'(X))™ that satisfies this
equation with a given value of ¢ € R and the boundary conditions in Eq. (1.2). For
any domain w C Q, the quantity |w| denotes the Lebesgue measure of w C R*~1
(with the convention that || = 1 for n = 1), and |0w| that of the boundary of w.
The numbers C, K, M, A, etc., will denote generic positive constants.

2. PRELIMINARIES AND VARIATIONAL FORMULATION

In this section, we introduce a few basic definitions and state our main assump-
tions. Throughout this paper it is assumed that Q is a bounded domain with
boundary of class C?. We now list some assumptions on the regularity and growth
of V(u).

(H1): The function V : R™ — R satisfies
VeC'®R™), V(0)=V,V(0)=0, |V(u)|<Clul? (2.1)

for some C.
(H2): There exists a convex compact set £ C R™ which contains the origin,
such that V € C1(K) and for all u & K

V(u) 2 V(I (u)), (2.2)

where I : R™ — R™ is the projection on the set K, i.e., IIx(u) is the
closest point to u which lies in K.
Naturally, the mapping Ik is well-defined, since K is convex.
Remark 2.1. Our existence results remain valid if V' depends explicitly on y,

provided that V (-,u) € C°(Q) and hypothesis (H1) holds uniformly in Q; moreover,
instead of Eq. (2.2) in hypothesis (H2), we can assume the weaker condition

(V- VuV)|ac 20, (2.3)

where v is any outward normal to 9K.
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Indeed, even if V is defined only within X, we can always consider the following
continuous extension of V(u) to the whole of R™:

V() = V(I (u) + VoV (I (w) - (u— Me(w)). (2.4)

Indeed, V(u) is Lipschitz continuous on the whole R™ and, furthermore, is contin-
uously differentiable up to the boundary of K [13]. Clearly, by Eq. (2.3) hypothesis
(H2) holds for V. Also, since I is 1-Lipschitz, V satisfies the growth condition
[V (u)| < Clul?, and so hypothesis (H1) is also met by V.

We note that in the context of Eq. (1.1) the set K, together with an assumption
like the one in Eq. (2.3), plays the role of an invariant region, and its existence
is generally required for global existence of solutions for the initial value problem
associated with Eq. (1.1) (see, for example, [41,42]).

We now introduce the definition of the exponentially weighted Sobolev spaces
we will be working in:

Definition 2.2. Forc > 0, denote by H}(X; R™) the completion of the restrictions
of (C(R™))™ to ¥ with respect to the norm

m
lullf e = llullZae) + IVlliew),  lulllae) = Z/Ee“|u,~|2dx.
i=1

For Dirichlet boundary conditions, replace C$°(R™) with C§°(X) above.

The weight appearing in the definition of spaces H!(X; R™) arises quite naturally
in the context of propagation for Eq. (1.1) [17,35]. Indeed, Eq. (1.1) written in
the reference frame moving with speed ¢ loses a variational structure of Eq. (1.3)
because of the appearance of the term containing a first derivative. However, by
multiplying this equation by an appropriate weight (e®*) we get an equation which
again has a variational structure [35].

Let us mention an important general property of the spaces H} (; R™) which is
an analogue of the Poincaré inequality and will be needed to establish the existence
result.

Lemma 2.3. For all u € H}(X; R™), we have

i/eczin:u2d;t:</eczin:(6ui>2dzzc (2.5)
4 /s i=1 s i=1 9z ‘ .

Proof. The proof follows from the estimate in Eq. (5.1) of Lemma 5.1 below, in the
limit R — —o0. O

For u € H!(Z; R™) define two functionals

Befu] = / (% 3 Vil + V<u)) da, (2.6)

i=1

T.[u] = % /E eé (%1;")2 dz. (2.7)

Clearly, by hypothesis (H1) both functionals are well-defined for all u € H}(Z; R™).
At least formally, Eq. (1.5) describing the traveling wave solutions of Eq. (1.1)
is the Euler-Lagrange equation associated with the functional ®. [35]. A major
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difficulty, however, is the fact that the speed ¢ of the traveling wave is also part of
the solution and must, therefore, be determined simultaneously. Our approach to
this question is via the following variational problem:

(P):  Find a non-trivial minimizer u € HCIT(Z;R’") of ®.+ for some ¢t > 0.
Now the speed ¢ = ¢! is part of the solution of problem (P), and we have
Proposition 2.4. Let @ be a solution of problem (P), with u(zx) € K for allz € X.
Then @ satisfies Eq. (1.5) weakly in H(Z;R™) with ¢ = cf.

Proof. Observe that by hypotheses (H1) and (H2) for u € K the functional ®.;[u]
is of class C* on H (X;R™). Therefore, if @ is a minimizer of ®.t, then for any
¢ € H,(%;R™)

m — —
otz 0u; Oy; = BV(U)
. . i | dx =0, 2.8
/26 2 ( %% 02 + V@, - Vypi + B, ;| dz (2.8)
which is a weak version of Eq. (1.5) with ¢ = ¢f. O

We point out that under hypotheses (H1) and (H2) we will further prove regu-
larity of the solutions of problem (P) (see Section 3 below). So these solutions are
classical solutions of Eq. (1.5). Let us also mention that several other variational
approaches to traveling waves exist [3,20,23,48].

Before turning to the analysis of problem (P), let us introduce the following two
constants

Vo = po + liminf V(u) = min 2V (u)

—_ _ = —_" 2.9
wl—0  Jul? uwek |ul? ’ (29)

where po is the smallest eigenvalue of —A,, and the liminf is taken over u € K.
Clearly, in view of hypothesis (H1), both are well-defined. These quantities play a
crucial role for the existence of solutions of problem (P), as we will show below. To
motivate their introduction, let us consider in more detail the decay of the solutions
of Eq. (1.5) at plus infinity (see also [35]). To this end, let us linearize Eq. (1.5)
around u = 0 at large z. Then the solutions of Eq. (1.5) that decay as z — +o0 are
expected to be approximately a superposition of functions uy(y,2) = e ***uvg(y),
where Ay satisfy

M —chp — v =0, (2.10)
and v (y) € R™ and vy € R are the eigenfunctions and the eigenvalues defined by
m
0%V (u)
~Byui+ Y Hy 0oy = v, Higw) = 35, (2.11)

j=1
where H;;(u) is the Hessian of the potential V' (u) (here we assume that V' is twice
differentiable at the origin), provided Re Ay > 0. We note that v can, in turn, be
broken up into a sum of the eigenvalue py of —A, in 2 with the boundary conditions
from Eq. (1.2), and the eigenvalues of a symmetric matrix H;;(0), implying that vy,
are all real, bounded from below, and increasing as k — oo.

Equation (2.10) can be trivially solved to give

¢tV + 4y,
2 b

Xif(e) = (2.12)
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FIGURE 1. A qualitative form of the dependences )\ki(c) for vy <
n<0o<wm<...

so for each v # 0 there is at least one solution with Re Ay > 0. Thus, in the case
of twice differentiable V' (u) the value of vy determines the slowest possible rate of
decay of the solutions of Eq. (1.5) at plus infinity, corresponding to the plus sign
in Eq. (2.12), while p_ gives a lower bound for vp.
We now state the third assumption needed to establish existence of solutions of
problem (P).
(H3): There exist ¢ > 0 such that ¢? + 41y > 0, and u € H(Z;R™),u £ 0,
such that ®.[u] < 0.

Let us explain the meaning of this assumption. The condition ¢ + 4vg > 0
ensures the weak lower semicontinuity of the functional ®. on H!(Z;R™) (see
Proposition 5.5), hence it is crucial in proving existence of minimizers for ®.. The
condition ®.[u] < 0 for some u # 0, guarantees that the minimizer it is not identi-
cally equal to zero. Due to Proposition 3.5, this assumption is necessary in order
to have traveling wave solutions of Eq. (1.5) lying in H!(Z; R™).

Observe that, if vg > 0, the first condition in (H3) is automatically satisfies, and
the second condition can be expressed only in terms of z-independent functions (see
Proposition 6.2). On the other hand, if vg < 0, there exists a finite set of ks, for
which v, < 0. In turn, for those k’s and ¢ > —4vy > —4v;, there are two values
of A\x = Af > 0 that solve Eq. (2.10), with \; < £ < A}, see Eq. (2.12). As an
illustration, consider the case vy < 11 < 0 < v» < ..., in Fig. 1. Here we show
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schematically the locations of the curves )\ki as functions of ¢ for the first four values
of k. Since the solution of problem (P) belongs to H] (;R™), it must decay faster
than e~#/2 (hatched area in Fig. 1), and so all the solutions of Eq. (1.5) decaying
asymptotically as e~ # at plus infinity are automatically excluded. Hence, the
hypothesis (H3), together with existence of solutions of Eq. (1.5), implies the exis-
tence of traveling waves with fast exponential decay. These are special solutions of
Eq. (1.5), since generically one would expect the decay with the slower rate e~
at some k for which v, < 0 (see also [11,30,35,39,45]). Under hypothesis (H3) we
will be looking for the traveling waves moving with speed ¢! > ¢ > 2\/=1 when
vy < 0 (see below), this region corresponds to the cross-hatched area in Fig. 1.

3. PROPERTIES OF MINIMIZERS

Before proceeding to the construction of solutions to problem (P), we investigate
a number of their properties. First, observe that both ®. and I'. transform similarly
under translations.

Lemma 3.1. Letu € H(Z;R™) and u,(y, z) := u(y,z—a). Then, u, € H:(Z;R™)
also, and

D Ju,] = e“*®.u] and T Ju,] = e“T.[u]. (3.1)

From this Lemma, which is verified by direct inspection of the respective func-
tionals, we get the following important

Proposition 3.2. If @ is a solution of problem (P), then ®.i[u] > 0 for all u €
HL (Z;R™) and ®.+[a] = 0.

Proof. The first statement is an obvious consequence of the fact that @ is the

minimizer, if the second statement holds. To prove the latter, we first note that
inf ®.+[u] <0, since zerois in HY (£;R™). On the other hand, if ®.[u] < 0

u€H (ZiR™)

for some u € HY (X;R™), then ®.i[uq] < ®.t[u], where u, € HY, (X;R™) is as in

Lemma 3.1, with a > 0, hence there are no minimizers of ®;. d

In other words, the assumption about the existence of a non-trivial u € H}!(¥; R™)
such that ®.[u] < 0 in hypothesis (H3) is in fact necessary, since the solution of
problem (P) has this property for ¢ = ¢! by Proposition 3.2.

Next we establish a priory bounds on 4 and V4 for the solutions of problem (P).

Proposition 3.3. If 4 is a solution of problem (P), then
(i) a(z) € K for all x € X.
(ii) @ € (C?*(Z)N CHZT))™ and Vi € (L= (X))™.
(iii) For all x = (y,2z) € ¥ we have |a(y,z)| < Ce ** for some C > 0 and
A>0.

Proof. (i) Let Ilx : R™ — R™ be the projection on the convex set K, as in
hypothesis (H2). Recall that [13]

I (u) = u — dic (u) Vi (u), (3.2)
where di(u) is the distance of v € R™ from the set K. Then, if we replace @
by @ := Ik (a) € H:(Z;R™), we have V(@) < V(@) by (2.2) and Y}, |Vi,|?> <
>, |Va,|? since M is a 1-Lipschitz function. Let W C T be defined as W :=
{z € £: @(z) ¢ K} and assume, by contradiction, that W has positive measure.
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Then, since the function dx (@) is not constant on W, there exist a set W' C W
of positive measure and a constant § > 0 such that |Vdi(a(x))| > § a.e. on W',
Approximating % with smooth functions in H!(X; R™) and differentiating (3.2), we
obtain

m m
/ e’ Z |V |* dz < / e” Z |Vi;|? dr,
W= W=

which implies ®.[@] < ®.[t] and contradicts the minimality of @. So, @(z) € K
for a.e. © € 3. Then, the statement of the Proposition follows from the regularity
result below.

(ii) Since by the above result @ € (L°°(X))™ and f is continuous on the essential
range of @, we have f; € L (%), for any p > 1 and for all 1 < i < m. So, choosing
p sufficiently large and applying the De Giorgi-Nash theory to each component @;
of i, we obtain that @; € C%*(X), 1 < i < m with some a € (0,1) (see, for
example, [19, Theorem 8.22]). Then, since f € C%!(K) by hypothesis (H2), it
follows from Schauder theory [19] that u € (C%%(X))™

To obtain C1+* regularity of 4 up to the boundary of ¥ and a uniform estimate
for Vi, we apply to each component u; the classical W?2P (p > n) regularity theory
(see, e.g., [1,31]), which can be easily adapted to the case of a fixed slice of the
cylinder ¥. We shall give the proof in detail in the case of Dirichlet boundary
condition; for Neumann boundary conditions, using the the estimates of [1] (see
also [31]) instead of the estimates of [19], and recalling that 0% is uniformly of class
C?, the same proof can be easily adapted.

By setting v; := @;e°*/2, one can see that after a change of variables Eq. (1.5)
with @ € H!(3;R™) is equivalent to

2
Av; — %Uz‘ = fi(@e="? v € H'(X), v|ox =0, (33)

where H'(X) is the usual Sobolev space.

For fixed z1,22,%1,%2 € R, with [, 22] C (21,22), consider the slices Xy :=
Qx(21,2) and g := Qx (31, %) of the cylinder ¥. Since @; € L®(X) (by part (i),
the right-hand side of Eq. (3.3) is in () for all p > 1. By standard regularity
theory (see, e.g., [19, Theorem 8.12 and Theorem 9.16]), we deduce v; € W27 (%,).
Moreover, the apriori estimate given by [19, Theorem 9.13] to Eq. (3.3) on the
domains ¥y and ¥, yields

IA

fi(@)es/? |

s i 4
C (Ilv lze(sy) + LP(Eo)) -4

= ¢ (| L”@O))

where C' depends on the parameters n, p, ¢ and the geometry of %o, £¢. Since both
i, fi(a) € L (X), we can set M = max{||ﬂ,~||Loo(g), ||f,~(ﬂ)||Loo(g)} to obtain

llvillyy2.0 (Z0)

fi(@)es/?

Ui€cz/2|

.+
Lr(Xo)

”'Uz'”WZ,p(z)O) <2MC

el < 2MC|Sole2,
LP(E())
By choosing p > n/2 and applying [19, Theorem 7.26], we deduce that

lviller y) < 2MCS|So| = ~5 e/, (3.5)
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where S = S(n,p) is the Sobolev imbedding constant. Hence, coming back to the
function u and using the inequality in Eq. (3.5) we get that @; € C*(Xp), and for
any (yJ Z) € 2:0

—cz —cz C\ —cz
IVai(y,2)| = |V(vie /%) <le /QVvi|+§|€ 24

< (2 + C)Mcs|i0|%—%-ﬁ-lec(zz—:h)/z — 017

where the constant C’ is invariant with respect to translations of the slice along z.
So, translating the slices 3, ¥o simultaneously along z, we obtain the estimate for
all z € 3.

(iii) Now we prove the uniform exponential decay of u as z — +o00. Suppose,
to the contrary, there exists a sequence zy = (yi, 2r) € X, such that zp — 400
and |@(zg)|e*** — oo for all A > 0. Since 99 is Lipschitz continuous, ¥ satisfies
the uniform interior cone property. So there exists a cone Cx, (with finite height)
such that each point x; € ¥ is the vertex of a cone Cj congruent to Cy that
lies in £. Up to a subsequence, we can further assume that C; N C; = @ for all
i # j. By the previous result, we have V& € (L®(X))™", so |a(z)| > 1|a(z)|
for all z € Cy, where C}, is a smaller cone similar to Cj, with the same vertex and
|Ck| = min{|C|, e|a(xx)|"} for some € > 0 (recall that n = dim X). By assumption
we have |u(zy)| > e~ *** for all k > N for some integer N, and also we can choose
N large enough that |Cy| > ee~™*#*. But this implies

o

oo
T t € i
e luffdz > ) / e *luffdr > £ 37 el AR = og
/E k=1 C 4

k=N

for A = ¢'/(2 4+ n), which contradicts the fact that @ € HY, (3;R™). O

Let us point out that the obtained value of A = ¢! /(2 +n) in the proof above is
not at all sharp. It should be possible to obtain better estimates for A by studying
the asymptotic behavior of solutions of Eq. (1.5) at plus infinity. However, forn < 3
it is possible to get a sharp estimate on the rate of decay of the solution. Indeed,
since the right hand side of (3.4) with p = 2 is uniformly bounded by the L?;-norm
of the solution (recall also hypothesis (H2)) on %, it follows that [|v;[|y2.0(5) < C
for some constant C' > 0. Hence from the Sobolev embedding Theorem we get
villgo(sy < € implying |u(y, z)| < Ce=¢'#/2, which is sharp.

A crucial property of the considered variational problem is uniqueness of the
speed c! (this point was already briefly discussed in [35]).

Proposition 3.4. The value of c' in the solution of problem (P) is unique.

Proof. Assume by contradiction that there exist c; > cJ{, together with a(!) ¢
H',(%;R™) and @® € HY,(S;R™) such that
1 2

_(1a2)
Aat? + du

_(1’2) = ().
p, + f@>?)=0
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Let us first show that @(? ¢ H; (;R™). Since b > ¢!, we have
1

+o0 i 0 i +oo +
/ /eclz|ﬂ(2)|2dydz / /eclz|ﬂ(2)|2dydz+/ /eclz|ﬂ(2)|2dydz
—oo JQ —o0 JQ 0 Q

M|Q i

< |’r |+/ /ecgz|ﬂ(2)|2dydz
l o Jo

M9

}

< +/ eC;z|a(2)|2d:c < 00,

®
for some M > 0, where we took into account that the solutions of problem (P)
are uniformly bounded by Lemma 3.3. Since, in turn, by Proposition 3.3 we have
Va2 € (L°(X))™" as well, this argument can be repeated for the gradient. So
a® € HY, (Z;R™).

1

In order to get a contradiction, let us scalar multiply Eq. (1.5), with @ = @® and
c= cg, by eclzag—f) and integrate over ¥. This is justified since @(?) is a classical
solution of Eq. (1.5) by Proposition 3.3, hence we can integrate the expression over
the domain X g := Q X (—R, R) and then let R — 400 on a suitable sequence. After
a number of integrations by parts, we obtain

m  o-(2) 2,-(2) =(2)
t ou; o0°u; ou; 9
0 = c1z i i t i A —( ) (q(2)
/E . =1 8‘2 < azQ + 02 82: + 'yuz + fl (u ) dm
_ ] 4 2] — e ) .
which implies that [2®] < 0, contradicting Proposition 3.2. O

We now extend the result in Proposition 3.2 to any classical solution @ of Eq. (1.5)
which lies in H} (Z; R™).

Proposition 3.5. Let u € H(Z;R™) be a classical solution of Eq. (1.5). Then
.[a] = 0. (3.7)

Proof. We scalar multiply as above Eq. (1.5) by ecz% and integrate over ¥. The
result then follows exactly as in Eq. (3.6). O

Observe that @ in Proposition 3.5 may or may not be a solution of problem (P).
In the first case we have ¢ = ¢! and all the critical points of ®. in H}(Z;R™)
are solutions of problem (P). In the second case we have ¢ < cf, and @ is only
a critical point of ®., and not a minimizer. This means that the solutions of
Eq. (1.5) obtained by solving problem (P) are the fastest moving traveling waves
within a class of sufficiently rapidly decaying solutions. This also means that, under
hypotheses (H1) and (H2), if there exists a traveling wave solution u € H!(X;R™)
with speed c satisfying ¢ + 41y > 0, then problem (P) has a solution. This follows
from the fact that in this case u is the function whose existence is required by
(H3) [35].

4. CONSTRAINED MINIMIZATION PROBLEM

To proceed with establishing existence of solutions for problem (P), let us make
a simple, but crucial observation about the translational invariance of Eq. (1.5) in
the z-direction, which leads to a natural loss of compactness. From the variational
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viewpoint, under the assumption of existence of a non-trivial u € H!(Z; R™) such
that ®.[u] < 0 in hypothesis (H3), which is necessary for existence of solution of
problem (P), one cannot expect any kind of coercivity for the functional ®.[u],
since the sequence of u, (z,y) := @(z —n, y) has the property that ®.[u,] < 0, while
||un||1,c = oo by Proposition 3.2.

To deal with this issue, we introduce an auxiliary variational problem. Define

Be:={u€ H:(Z;R™) : T.[u] = 1}. (4.1)
Then consider the following constrained variational problem:
(P’):  Find u. € B, satisfying: P [u;] = iZI;lf . [u] <O0.
It is easy to see that the constraint B, gives a natural way to fix translations along
the axis the cylinder. In particular, the functional ®, becomes coercive on B, (see
Lemma 5.2).
In the following, we will show that existence of solutions of problem (P’) implies

the same for problem (P). Let us begin by proving that the solutions of the problem
(P’) also lie within K.

Lemma 4.1. Let u. be a solution of problem (P’). Then u(z) € K for a.e. x € X.

Proof. We use the same projection argument as in Proposition 3.3. Namely, suppose
that u.(z) is not in K on a set of non-zero measure. Then, repeating the arguments
of Proposition 3.3, we get ®.[d] < P.[u.] < 0, where & := Ix(u.). Similarly,
Tc[uc] > T'c[a] > 0, where the last inequality follows from the fact that ®.[a] < 0.
So, by Lemma, 3.1 there exists a constant a > 0 such that @4(y, 2) := 4(y,z — a) is
in B., and ®.[d,] < D.[a]. Therefore, u, is not a minimizer of problem (P’), leading
to contradiction. O

The following Proposition establishes the connection between the solutions of
problems (P) and (P’).

Proposition 4.2. If u. is a solution of problem (P’), then
a(y, 2) = uc(y, 2¢/1 — ®.fu]) and cf =cy/1— @ Ju, (4.2)
are those for problem (P).

Proof. First of all, as in Proposition 2.4, we have ®. and T, of class C* on H!(Z; R™).
Let DT [u]v be the Fréchet derivative of T, at u acting on v. Since

DF[u]u—/ 022(6“'> r=2 VYuebB.,

we get DI'.[u] Z 0 on the constraint. Thus, applying the Lagrange Multiplier
Theorem (see, for example, [9, Section 3.5]) we obtain that

/ cts Z ( 6ucz 8901 +V Yl - Vycp, n 6V(Uc)cpz> dz = 0. (43)

0z Ou;

where p is the Lagrange multiplier.

Let us now show that pu < 1. Indeed, suppose the opposite is true. Fix a > 0,
and consider u,(z) := e °*?u.(z) € K a.e. (recall that K is convex, and 0 € K).
Then, for v = u, — u. € H(Z;R™) the Fréchet derivatives of ®. and I'. on u,
satisfy

D® [uc]v = pDT.[uJv < 2(e °*/% - 1) <0, (4.4)
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where we recalled that u. € B.. Therefore, since ®. is of class C!, there exists a
sufficiently small a > 0 such that ®.[us] < ®.[u.] < 0. Now, consider @,(y, 2) :=
ua(y,2 — a). A straightforward calculation then shows that 4, € B.. However,
by Lemma 3.1 and the fact that ®.[u,] < 0, we obtain that ®.[a,] < P.[u],
contradicting the fact that u. is a minimizer.

So, p < 1, and from Lemma 4.1 and the argument of Proposition 3.3 we deduce
that u. € (C?(X))™ and satisfies

072 oz

Now, we scalar multiply Eq. (4.5) by ecz% as in Proposition 3.4, and integrate
over Y. to obtain

(1—pw) (62uc + c%> + Ayuc + f(uc) =0. (4.5)

cz m 6uc,i 82uc,i 0 BV(U/C) 6uc’i
0 = /Ee i_zl[(l—u) Pl o+ Vs Ve + 5t et o

= co(p— ®cfucl),
where we recalled that I'.[u.] = 1. This means that
w= "I)c[uc]- (4.6)
To show that @ and ¢! are the solutions of problem (P), first fix u € HY, (Z;R™)
and introduce @(y,¢) = u (y, ﬁ), which is possible since g < 1. Then

+oo +o00
/ /eccvﬁdydg = /1 —,u/ /ectzufdydz, (4.7
—oo JQ —o0 JQ
+o0 400 :
/ / €|V ;| dyd( V1- ,u/ / e *|Vyu|*dydz,  (4.8)
—oo JQ —oo JQ

oo di;\” 1 too o o (0u)\?
oc (2 S o'z (Sl L@
[ fes(5) e = = [ [ (5) s as)
Therefore, & € H!(Z;R™), and

® i [u] _/+oo/ €' li dui 2+|V uil*| +V(u) | dydz =
ct - - 0 2 i az yUq Y =
1 oo / 1 & di;\” A
e | 1- ( ’>+va,~2 +V(a) | dyd¢ =
1 - -
Now we claim that if the solution of problem (P’) exists, then
. [ia] > pl[a). (4.11)

Indeed, if T'.[a] = 0, then by Lemma 2.3 and hypothesis (H1) we have ®.[d] = 0
also, so Eq. (4.11) holds trivially. On the other hand, if T'.[a] > 0, then there exists
a constant a € R such that the translated function @,(y,z2) := 4(y,z — a) of @
is in B.. Hence, ®.[i,] > ®.[u.] = pl'.[i,], and by Lemma 3.1 the inequality in
Eq. (4.11) holds for 4, with equality achieved when 4 = u.. Hence, by Eq. (4.10)
we have ®.+[u] > 0 for all u € HL(Z;R™), and @ gives the solution of problem
(P). O
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5. EXISTENCE OF CONSTRAINED MINIMIZERS

To proceed in the proof of existence of constrained minimizers, we need to es-
tablish some compactness properties of the sublevel sets of ®.. Since we will work
in the weak topology of H!(3;R™), which is a Hilbert space, it is enough to show
that &, has bounded sublevel sets (i.e. it is coercive). This, however, may be
false for general ®., even after eliminating translations in some way. As a simple
example, consider ®.[u] = 1 [ e*(u2 — u? + u)dz, with u : R - R It is easy
to see that this functional is not coercive on H!(R) when ¢ = 2. Indeed, consider
a sequence of functions u, € H!(R) defined as u,(z) = e~1+1/"% for z > 0 and
un(z) = 1 for z < 0. Clearly, the sequence (u,) is not bounded in H!(R). However,
a straightforward calculation shows that ®.[u,] = (3n2 +5n +2)/(2n(n+2)) < 0o
This difficulty in fact is not merely technical, and puts certain limitations on the
applicability of our variational approach. In particular, as can be seen from the
example just mentioned, it cannot be used to characterize the minimal speed of
traveling waves in systems with Fisher-type nonlinearities (see also Proposition 6.1
and [35]).

Even if coercivity of ®. may not hold in general, in Lemma 5.2 we show that it
does hold if we consider the intersection of the sublevel sets of ®, with the set B, de-
fined in (4.1). So, establishing existence for problem (P’) amounts to proving weak
sequential lower semicontinuity of ®.. Here, again, there is a difficulty, since X is an
unbounded domain and V (u) is allowed to be negative, so the standard theory [12]
does not apply. In the following we will establish sequential lower semicontinuity
of the functional ®, under the assumption ¢? +4v, > 0 from hypothesis (H3). This
assumption is also essential, as it is possible to construct sequences in H!(X;R™)
on which ®. “jumps up”, if this condition is not satisfied (see Proposition 5.5).

We begin by proving the following lemma about a Poincaré-type inequality in
the weighted Sobolev space H(Z;R™).

Lemma 5.1. Let u € H(X;R™). Then

C2 too sz2dd<+(x> czm
Z/ /Q Zuiyz_/R /Q ;

(6%) dydz, (5.1)
i=1

/Zu y, R)dy < e " /+Oo/geczi( i>2dydz, (5.2)

R —

~.

for any R € R.
Proof. Let us first prove Eq. (5.1)

c +oo 1 +oo
—/ /ecz 2dydz = ——e€° / “(y, R)dy — / /e u, dydz
2/ 2
1/2
+o0 oo
i) ([ [ (5 we)
R

which implies (5.1).
Turn to Eq. (5.2) now. Since

+oo 1 Ou;
>
/ / ( cu; + \/_8 ) dydz > 0,
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we get
+oo +oo . +oo
/ / (6%) dydz > —2/ /eczu,-%dydz—c/ /eczu?dydz
R Q 0z R Q
= e [ u, Ry,
Q
which gives Eq. (5.2). O

The following Lemma estimates the norm of V,u on B, and, via Lemma 2.3,
establishes coercivity of the functional ®. on B..

Lemma 5.2. Let V satisfy hypotheses (H1) and (H2), and let u € B.. Then

- 8|p—
/ 3 [VyuiPde < 28,u] + 2= (5.3)
x i=1 ¢
where p_ is defined in Eq. (2.9).
Proof. By Egs. (2.9) and Lemma 2.3, we have
/ eV (u)dr > — |N | / cz Z uidr > — 2'“ | / czz (6“1)
Hence, for I'.[u] = 1 we have
l cz 2 _ cz 4|/J/_|
e Vyul*dz < ®.[u] eV (u)dx < & )
2 » » C2
which is equivalent to Eq. (5.3). O

We now turn to the question of lower semicontinuity. Let us introduce the
following notation:

b m
®.[u, (a,b)] = / /Qecz (% Z |Vu;)? + V(u)) dydz. (5.4)
a =1

We will analyze the behavior of ®.[u,(—oc, R)] and ®.[u, (R, +o0)] on a weakly
converging sequence and take the limit R — +o0o. To this end, we first establish
the sequential lower semicontinuity of ®.[u,(—o0, R)] for all R € R, with respect
to the weak topology of H}(¥;R™).

Lemma 5.3. LetV satisfy hypotheses (H1) and (H2), and let u, — u in H:(Z;R™).
Then,
lim inf ®.[uy, (—o0, R)] > ®.[u, (—o0, R)]

n—oo

for any R € R.

Proof. This follows by standard semicontinuity results (see, for example, [12, Propo-

sitions 2.1, 2.2]) by considering v := e°*/2y € H'(Z;R™) and using the fact that

by hypothesis (H2) V (u) is bounded from below, and fio Jo eFdydz < . O
To proceed, we need to establish the following key estimate.

Lemma 5.4. Let V satisfy hypotheses (H1) and (H2), and let 2 +4vy > 0. Then,
for any € > 0 and C > 0 there exists R = R(e,C) such that

. [u, (R, +00)] > —
for any uw € HX(Z;R™) such that ||ul|1,. < C.
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Proof. Since (C§°(R™))™ is dense in H!(X; R™), in the following arguments we can
assume that u € (C§°(R™))™. We prove this Lemma via a sequence of steps.
Step 1. In view of Eq. (5.1) we have

®.[u, (R, +00)] /+oo/ (( +,u0>2u +V( ))dydz, (5.5)

where, as in Eq. (2.9), po > 0 is the smallest eigenvalue of —A, in  with the
corresponding boundary conditions. From the definition of vy in Eq. (2.9), for any
€ > 0 there exists § > 0 such that for all |u| < §

1 m
25 Zz_;(l/o — fto — €)u;

Therefore, if ¢? + 4vg > 0, the integrand in Eq. (5.5) is nonnegative for all |u| < 6,
with some positive 4.

Note that if n = 1, then from Eq. (5.2) follows that v — 0 uniformly as R —
+00, 80 from the argument above immediately follows that ®.[u, (R, +00)] > 0 for
sufficiently large R, and the statement of the Lemma is proved (see also [30]). So
in the following we will assume that n > 2.

Step 2. Define

o2 == (§ +h0) Y 0205) - V() 5:5)
and introduce
Q1 (2) ={y € Q:v(y,z) > 0}. (5.7)

By the result of Step 1, we have |u(y, z)| > 6 whenever y € Q4 (z). Therefore

M—W<Z/ %@<2/ 2y, 2 (5.8)

Combining this with Eq. (5.2) and taking into account that I'.[u] = 1, we obtain
that
26—62
|04 (2)] < 5 0 as z— +o0. (5.9)
Step 3. Now we want to estimate the integral in Eq. (5.5). First, observe that
v(y, z) = 0 whenever y € 904 (2z) N Q. From Egs. (5.5) and (5.6) we have

+oo
@ [u, (R, +00)] > —/ / e“vdydz. (5.10)
Q4(2)

Let us introduce the level sets (for simplicity of notation, we suppress the z-
dependence in the definition)

w(t) ={y € Q4(2) : v(y, 2) > t}. (5.11)

In view of Eq. (5.9) we have |w(t)| < |4 (2)| < 1|Q] for sufficiently large R. Then,
by Local Isoperimetric Inequality [15] there exists a constant Co which depends
only on € and not on w, such that (recall that dimQ =n —1)

|w|2—3f < CqlOwol, Owg = Ow N (L. (5.12)
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Then, using the Cavalieri Principle and then the Co-Area Formula [15], we obtain

/ vdy:/ |w(®)|dt < |Q+(z)|ﬁ/ |w(t)|%dt
Q4 (2) 0 o

< Calfy ()| [ oun0ld = Colnn ) [ Vyeldy. (.13
0

Q+ z
Let us now multiply the last integral in Eq. (5.13) by e and integrate over
(R, +00). Then, using the definition of v in Eq. (5.6), Chain Rule, hypothesis (H1)

and Schwarz inequality, we obtain
+oo 2
</ / eCZ|VyU|dydz>
R Q4 (2)
+o0 2
= ( / / e dydz)
R Q4 (2)

too m 1/2 m 1/2 2
<M / / e”? (Z uf) Z |Vyu;|? dydz
R Q+(Z) ; .

i=1 7j=1

+oo m
< M/ / e’ Zuzdydz/ / e~ Z |Vyui|*dydz
Q+(Z) Q

i=1 +(2) i=1

+o0 m
/eCZZ|Vyu,~|2dydz, (5.14)

oo JR

where M is a constant independent of R and u, and in the last step we used Eq. (5.1)
and the fact that u € B.. Combining this with Eqgs. (5.9) and (5.13), obtain

too 1/2
[ eczvdydzmﬂ(/ [ 3w dydz) . 515)
Q4 (2)

where K is a constant independent of R and w.

Finally, by assumption the integral in the right-hand side of Eq. (5.15) is bounded
by C, so its left-hand side can be made arbitrarily small by choosing large enough
R. In view of Eq. (5.10), this proves the statement of the Lemma. O

m

Sl [CRISPRE P

i=1

Combining the two Lemmas above, we obtain the following

Proposition 5.5. Let V satisfy hypotheses (H1) and (H2), and let c® + 4vg > 0.
Then, the functional ®. is sequentially weakly lower semicontinuous on H(X; R™).

Proof. Let u, — u in H}(Z;R™). Hence, (u,) is bounded in H!(X;R™), and by
Lemmas 5.3 and 5.4

hnnl)lnfCI) [un] > linrr_1>ior<1jf{<1>c[un, (—o0, R)|} + linn_l)ioréf{éc[un, (R, +00)]}
‘1)6[“7 (—OO, R)] -
(I)c[u] - (I)c[ua (Ra +OO)] -6 (516)

for large enough R. Now, by noting that ®.[u, (R, +00)] < € for sufficiently large
R, Eq. (5.16) leads to

\%

lirginf B [uy] > Bclu] — 2,
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and since € > 0 is arbitrary, we conclude that ®.[u] < liminf, ,oc ®c[un]. O

We notice that the assumption ¢ + 49 > 0 is also necessary to ensure the
lower semicontinuity of ®.. Indeed, assume by contradiction that ®. is sequen-
tially weakly lower semicontinuous with ¢? + 41y < 0, and consider the sequence
un, € HY(Z; R™), defined as un(y, 2) := L\/(F?i)e—cz/z—zz/n2, where vg # 0 is an eigen-
vector of the operator —A, + V2V (0), corresponding to the eigenvalue v (here we
assume for simplicity that V is twice differentiable in 0). It is easy to see that the
sequence (u,) is bounded in H!(Z;R™) and converges weakly to 0. However, a
simple calculation shows that
. VT o 2
= Y 4 =
Jim @ [uy] 4\/Q(c + 4vp) o dy < 0= &.[0],
which gives a contradiction.
We are ready to prove our main existence result.

Proposition 5.6. Let V satisfy hypotheses (H1) and (H2), and suppose that there
exists u € B, such that ®.[u] < 0, for some c satisfying ¢* +4vo > 0. Then problem
(P’) has a solution.

Proof. Let (u,) be a minimizing sequence for problem (P’), i.e u, € B. with
® [u,] — infp, ®.. By assumption, infp, &, < 0, and without the loss of gen-
erality we may assume that ®.[u,] < 0. Since I'.[u,] = 1, from inequality (2.5) we
get that [ e*|u,|*dz < &. Also, from Lemma 5.2 we get a similar bound for the
norm of V,u. Thus, the sequence (u,,) is bounded in H}(X) and therefore, up to a
subsequence, it converges weakly to some u € H!(X).

If infz, &, = 0, we deduce that u in the assumption of this proposition is a min-
imizer. Therefore, let us assume that infz, ®. < 0. Then, by lower semicontinuity
of @, established in Proposition 5.5 we have ®.[u] < infg, ®, < 0, so u Z 0. Also,
since by standard semicontinuity results [12]

1 =liminf ' Ju,] > T¢fu] > 0,

n—oo

we can, by using Lemma 3.1, choose a > 0 such that
Toug) =1 with  wu,(y, 2) := uly, z — a).
Since infp, ®. < 0 and a > 0, we derive
@] = e B.fu] < Bfu] < inf .,
with the first inequality being strict when a > 0. Therefore, a = 0, meaning that
T.Ju] =1 and ®.[u] = infp, ®., so u solves problem (P’). O

Let us point out that, for one-dimensional problems (n = 1), in which the func-
tional T, generates an equivalent norm in H}(R), the minimizing sequence (u,,)
converges to u strongly in H!(R).

6. FURTHER PROPERTIES OF MINIMIZERS

In this section we analyze problem (P) and its solutions in more detail. Our first
result, based on the application of Theorem 1.1, is a general non-existence result
for the solutions of problem (P) with sufficiently large ¢ (see also [30,35]).
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Proposition 6.1. Let V satisfy hypotheses (H1) and (H2), and let c®>+4(uo+p_) >
0, where po is the smallest eigenvalue of —A, in Q with boundary conditions from
Eq. (1.2), and p_ is given by Eq. (2.9). Then problem (P) has no solutions.

Proof. Let u € H;(X;R™) be a solution of problem (P). By Propositions 3.3 and
2.4 we know that u(z) € K and a(-,2) € (C%*(Q) N C*(Q))™. Since

[ Wit Py 2 o [ @20y zer
Q Q

we obtain, using Lemma 2.3,

<I>[u]>1§:/+oo/e“ s 2+( + p_)u; | dydz
a2 | ), 52 po + p-)u; | dy
S /+oo/ Czi‘Qdd 0
25\ thotpe € i:1u1~yz> ;

—0oQ
unless @ = 0. But this contradicts Proposition 3.2. O

Naturally, in view of the discussion at the end of Section 3 this implies that under
the assumptions of Proposition 6.1 there are no traveling wave solutions lying in
H!(Z;R™). A simple example of such a situation is the Fisher’s equation in one
space dimension, for which it is known that all the traveling wave solutions decay
at infinity with the rate e *-# (see Eq. (2.10) with v}, = 0) and, therefore, cannot
lie in H}(R) [2,30].

Let us point out that we will have yu_ > 0 if V(u) > 0 throughout K, so a
necessary condition for existence of solutions of problem (P), which is familiar from
the analysis of the one-dimensional scalar problem [16], is that V (u) < 0 somewhere
in K. In that case, if also pg + p— < 0, problem (P) may have solutions only with
¢ < Cmax, Where ¢max = 2/—po — p— [35].

Next we establish the following necessary and sufficient condition for existence
of traveling wave solutions for potentials with linearly stable equilibrium at u = 0.
Let us introduce the functional

m

Ev] = / (1 Z |Vyil® + V(’U)) dy —veH'(QR™), (6.1)
2 \2=

where H'(2; R™) is the Sobolev space of functions with values in R™ (for Dirichlet

boundary conditions, take H}(Q; R™) instead). Under the hypotheses (H1) and

(H2), this functional is known to have a minimizer ¥ € H'(Q; R™) (see [12]) which

satisfies the corresponding boundary conditions and such that

Ayo + f(v) = 0. (6.2)
Observe that for Neumann boundary conditions v is constant and is simply a mini-

mum of the potential V. It turns out that this functional can be used to characterize
the existence of solutions of Eq. (1.5).

Proposition 6.2. Let V satisfy (H1) and (H2), and assume vy > 0. Then Eq. (1.5)
has a solution @ € H!(Z; R™) if and only if

inf E[v] < 0, (6.3)

where the inf is taken over the functions v € H*(2; R™) that satisfy the boundary
conditions in Eq. (1.2).
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Proof. Let us first prove that this assumption is sufficient. If Eq. (6.3) is satisfied,
then choose a trial function

wa)={ 20 50 (6.4

where ¥ is a minimizer of E. Clearly, uy € H}(Z;R™) if A > £. Substituting this
into the definition of ®., we find that

®.fu] < LB + 35— /Z (02 +C)R2(y) + V@) dy,  (65)

where we used hypothesis (H1). Noting that E[v] < 0, for fixed A it is then possible
to choose ¢ so small that the right-hand side of this expression is negative. Then, uy
will satisfy hypothesis (H3), which assures the existence of a solution u of problem
(P) by Theorem 1.1.

Let us prove that the assumption (6.3) is also necessary. Suppose on the contrary
that E[v] > 0 for all v € H'(Q; R™). Then also

1 m
/ ec? (5 Z |Vyuil® + V(u)) dz >0
x i=1
for all u € H}(Z; R™). Using this and Lemma 2.3, we then obtain

u]>/ Z(m) da >—/ Zu da. (6.6)

Therefore, from Proposition 3.5 we conclude that there are no nontrivial solutions
of Eq. (1.5) which lie in H}(Z; R™). O

Notice that inequality (6.6) shows that, if Eq. (1.5) has a solution in H}(Z;R™),
then inf Efv] < 0, without any assumption on the sign of vg.
In the case of Neumann boundary conditions, we have the following result.

Proposition 6.3. Let @ be a solution of problem (P) with Neumann boundary
conditions. Then u depends only on the variable z.

Proof. Let us consider the function g : 2 — R defined as

— cz 1 & =12 _
o) = [ ¢ (2 S IV + v<u>> dz,
so that by Proposition 3.2 we have ®.[ua] = [, g(y)dy = 0. Assume first that
the function g is not constant a.e. in 2. Hence, we can choose § € ) such that
g(7) < 0. By Fubini’s Theorem, we can also assume that the function @(y,2) :=
u(y, 2) belongs to H!(Z; R™) . However, clearly ®.[a] < g()|Q2| < 0, contradicting
Proposition 3.2.

If the function g is constant a.e. on 2 but u depends on y, then we can choose
y € Q such that

/ |V, u(g, 2)? dz > 0.
R

Defining @ as above, we get ®.[d] < ®.[u] = 0, which gives again a contradiction.
O
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Next we establish the fact that the solutions of problem (P) are essentially scalar
functions, if the potential V' depends only on the modulus of u.

Proposition 6.4. Assume V(u) = V(Ju|), i.e. the function V depends only on the
modulus of u, and let u € HL(XZ;R™) be a solution of problem (P). Then, there
ezists a vector v € R™ and a function n € C%(X) N CL(T), n(z) > 0, such that
a(z) = n(z)v for any x € X.

Proof. Consider the non-empty open set ¥’ C ¥ on which |g] > 0. Introduce
n(z) = |u(z)| on ¥ and n(z) = a(z)/|a(z)| on ¥'. The latter has the meaning of
the director of the vector field u, and so we have |n| = 1. From these definitions
@=mnnin X' and Vi = 0 a.e. in Z\X'. So a straightforward calculation shows that

SO IVail? = Vol +0* ) [Vnl® > [Vl (6.7)
=1

i=1

Now consider @(z) = (n(z),0,...,0) € HX(Z;R™). If the last inequality in
Eq. (6.7) is strict, then

q)C[a] < @c[ﬂ],

since by assumption V(@) = V(n) = V(|a]) = V (@), and this contradicts the
minimality of 4. So, Vn = 0 in ¥’ and 4 is also a minimizer, and, therefore, is
regular by Proposition 3.3. Therefore, 7 is a classical solution of the scalar equation

An+en, —=V'(n) =0, (6.8)

and, furthermore, n(z) > 0. Then, we have in fact n(z) > 0 everywhere in ¥, and so
, +

¥/ = %. Indeed, define the function ¢*(z) = [%] , where [v]~ = — min{v, 0}

and [v]T = max{v,0}, for all z € &', and set c*(z) = 0 otherwise. Note that by

hypothesis (H2) we have ¢* € L>®(X). Then Eq. (6.8) can be rewritten as

An+en, — ct(z)n = —c (z)n <0.

So, by Strong Maximum Principle [19, Theorem 3.5], we conclude that n(z) > 0 for
all z € X. Tt then follows that n is a constant vector throughout ¥, which concludes
the proof. a

In other words, to find the solution of problem (P) under the above assumption,
one only needs to consider the scalar equation whose solutions lie in the considered
exponentially weighted Sobolev spaces. Notice that for constant sign solutions
of Eq. (6.8) precise estimates of the decay of the solution as z — 400 can be
obtained [46]. Since, in addition, our solutions lie in spaces H]}(X%;R™), it follows
that u = O(e—ngz), where A{ is defined in Eq. (2.12), for large positive z. Thus,
generally these solutions are special in the sense that they have a non-generic fast
exponential decay at +oo (see also [30]).

Our next group of results concerns the behavior of solutions of problem (P) as
2z = —00. Our main tool here is the familiar energy estimate for gradient systems.

Lemma 6.5. Letw € H, (3;R™) be a solution of problem (P), thenu, € (L*(%))™.
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Proof. Scalar multiplying Eq. (1.5) by 4, and integrating over g := Q x (=R, R),
R >0, we get

0 = Z/E ou; (8 u,_’_A uz+cT%u’+fz( )) "
- [ 5(5)
A(_;(@uz) Z|vyuz| - u)> ]RR, (6.9)

where we used the boundary conditions in Eq. (1.2) to erase the boundary term

/ (Vy@; - nos) % dodz.
80x(—RxR) 0z

Recalling that by Proposition 3.3 we have 4; € W1 (), passing to the limit in
the equality (6.9) for R — 400, we obtain the thesis. d

+

For any R € R, let g := Q x (R, R + 1). By the results of part (ii) of Propo-
sition 3.3 we have that the functions u; are uniformly bounded in W2?(Xg), with
p > n, independently of R. It then follows that @, is bounded and uniformly
continuous on ¥, hence from Lemma 6.5 we get

lim @,(y,z) =0 uniformly in y € Q. (6.10)
z—+o0
On the other hand, by Proposition 3.3 we know that @(z,y) — 0 uniformly in
y € ) as z — +00. Then, by the same W?2P(Xg) estimate and Sobolev imbedding
theorem we get
Zl}riloo |Vya(y,z)] =0 uniformly in y € Q. (6.11)
In the following Proposition we characterize the possible limits (i.e. the a-limit

set) of (-, z) for z = —oo (we refer the reader also to [21] for related results using
dynamical systems techniques).

Proposition 6.6. Let @ € H', (3;R™) be a solution of problem (P), then there
ezists a sequence z, — —oo and a function v € (C%(Q) N C*(Q))™, satisfying the
same boundary conditions as u, such that

ngrfooa(,zn) = w in (C* ()™
Ayw+flv) = 0 in Q. (6.12)

Conversely, let v be any function such that limp o0 U(:, 2n) = v in (CHQ))™, for
some sequence z, — —oo. Then v € (C*(Q) N CY(Q))™, v satisfies the same
boundary conditions as 4, and Eq. (6.12) holds.

Proof. Let ¢ € H(Q; R™) be a test function (we further assume ¢ € Hg (; R™) if
we have Dirichlet boundary conditions). Scalar multiplying Eq. (1.5) by ¢(y) and
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integrating over ) R, We get

R+1
[ 4,20 TR
0 = l;/g@ady . +c;/§R¢,azdx
- Z/~ (Vy@i - Vydi — fi(a) ;) dz. (6.13)
i=1'>R

Since 4, — 0 in C°(Sg) for R — —oo, we have

Rg@wgf([/gm

1

du; 17 D
52 dy]R +c - o8 52 dx) =0. (6.14)
Note that the family of functions u(y, z + R) is equibounded in (C*(Xg))™, where
Yo := 2 x (0,1). Indeed, from the estimates of Proposition 3.3, we get a uniform
bound on @;(y,z + R) in W?P(X,), with p > n. So, by Ascoli-Arzeld Theorem
there exists a sequence R,, - —oo and a function ¥ such that @(y,z + R,) = 0 in
(C*(Z0))™. Moreover, since limpg_, oo @5 (y, 2 + R) = 0 uniformly on %y, we obtain
9, = 0, i.e. the function ¥ depends only on y. Setting v(y) := ¥(y, z), we then
obtain that lim, . a(-,2,) = v in (C1())™, e.g., for 2z, = R,.
From Egs. (6.13) and (6.14), it then follows

n—-+oo

= 1l u; - Vydi — fi(@)¢i) d
0= lim Z/(w Vybi - Fi@)p) do

=3 [ (V- Vi = 000 dy, (.15

for any ¢ € H'(Q;R™) (resp. for any ¢ € H}(Q; R™)), which implies v € (C*(Q)N
C'(Q))™, v satisfies the same boundary conditions as % on 952, and A,v+ f(v) = 0
in Q.

Conversely, let us assume that there exists a function v such that lim,, o (-, 2,) =
v in (C1(Q))™, for some sequence z, — —oc. Then, reasoning exactly as above
with R,, = 2, we obtain that v € (C?(Q)NC*(Q))™, v satisfies the same boundary
conditions as % on 0%, and Ayv + f(v) =0 in Q. O

We note that, by regularity of 4, a weak form of convergence (such as weak in
(L2(Q))™, e.g.) implies a stronger (C'(Q))™-convergence in the second part of
Proposition 6.6.

Let E[v] be the functional defined in (6.1) and introduce

W:={ve H(QGR™): v(y) €K for all y € Q, and E[v] < 0}.

Again, in the case of the Dirichlet boundary conditions replace H'(Q;R™) with
H}(Q;R™). Taking R = —z, in (6.9) and letting n — 400, from Proposition 6.6
and Egs. (6.10) and (6.11) we obtain the following

Corollary 6.7. Let v be as in Proposition 6.6. Then v € W, in particular, v # 0.

Under some extra assumptions on the critical points of E[v] it is possible to give
more precise information on the asymptotic behavior of the solutions of problem
(P) at z = —oc.
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Corollary 6.8. Assume that any critical point of E in W is isolated in the strong
topology of H'(Q; R™). Then the limit in Proposition 6.6 is a full limit, i.e.
lim @(-,z)=v in (C*(Q))™,
Z——00

with v e W.

Proof. Note that the mapping z +— 4(-,z) is a continuous mapping from R to
H'(Q;R™). Suppose that the full limit of (-, z) does not exist. By continuity of
this mapping, Proposition 6.6 and Corollary 6.7, there exists € > 0 and a sequence
2, — —oo such that e < ||a(:, 2;,) — v||g1(Qrm) < 2€, where v € W is some limit
from Proposition 6.6, and the 2e-neighborhood of v does not contain any other
elements of W. By regularity of 4 we can pass to a subsequence, still labeled (2},)
that converges strongly in H'(;R™). Therefore, if v' = lim,_ o @(,2},), then
€ < |[v" = v||g1 @rm) < 26 too. But, by Proposition 6.6 and Corollary 6.7 every
convergent sequence in (C1(€2))™ has a limit that is in W, which contradicts the
assumption that there are no elements of W in the 2e-neighborhood of v that are
distinct from v. |

Note that a sufficient condition for a critical point of E to be isolated is that it
is non-degenerate (i.e., that the second variation of E does not have zero eigenval-
ues). Also note that in the case of Neumann boundary conditions we know from
Proposition 6.3 that the function @ is independent of y € 2, which implies that the
function v is a constant. Therefore, we get the full limit in Proposition 6.6 simply if
we assume that any critical point of V' in the open set {u € R™ : V(u) < 0} C R™
is isolated.

We conclude this section by showing that, under suitable assumptions, the so-
lutions of Eq. (1.1) propagate along ¥ with asymptotic speed bounded by cf. Let
us note that to address this question in full generality we need a suitable existence
theory for the initial value problem given by Eq. (1.1). This, however, would go
beyond the scope of our paper. On the other hand, it is possible to show that a
large class of initial data for Eq. (1.1) will generate solutions in the class Q (%, Rt)
introduced in [35], a natural target space for the solutions of Eq. (1.1):

Definition 6.9. We will say that u € Q.(X,R"), ifu € C®°(Z x RY), u(z,t) € K,
and there exists A > 5 such that for any T > to > 0 and multi-index o there exists
a constant Co = Cy(to,T) such that |D%u(-,t)| < Co(1 + €™**) for all t € [to,T).

Notice first that in the context of Eq. (1.1) the set K has a meaning of an invariant
region, whose existence assures global in time existence of solutions for Eq. (1.1),
and by standard parabolic theory we get uniform bounds on the derivatives (see,
e.g., [31]). So, what the classes Q.(X, RT) control is mainly the rate of exponential
decay of the solution, quantified by the value of ¢. Notice that the assumption that
the solution of Eq. (1.1) lies in Q.(X,R") (even with arbitrary ¢ > 0) are easily
satisfied, for example whenever u(-,0) takes values in K and has compact support.

We now state our result.

Proposition 6.10. Suppose that problem (P) has a solution, and let u(x,t) €
Q.+(%,RT) be a solution of Eq. (1.1). Then, for any ¢’ > ct, it holds u(y,z +
c't,t) = 0 as t = 0o, uniformly on compact subsets of X.

Proof. Fix a constant ¢” such that ¢! < ¢ < 2\, with A from the definition of
Q.+(Z,RY), then u(-,t) € HL, (Z;R™). Differentiating ®.[u(y, z + ¢"'t,t)] in ¢ and

et
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integrating by parts, which is justified by the uniform estimates for u € Q.+ (%, R"),
we get for all £ > 0

d® . [u(y, z + 't t)] " Z i Ou; ’
— _ c z . . < 0. .
L / . 3 Au; + ¢ 52 + fz(u) dx <0 (6 16)

Since also ¢ > ¢f, we have 0 < ®.v[u(y,z + c"t,t)] < @ [u(y, 2,t0)], to > 0, and
by Lemma 3.1 we get

o fuly, z + c't,t)] = e (' =Ntg , [u(y,z + "t,t)] = 0 (6.17)

as t — oo. On the other hand, letting i(y,(,t) := u (y, g—,T,C, t) and retracing the
arguments of Egs. (4.7) — (4.9), we get @ € H, (Z; R™) and

ez 1 o Ou; 2 2
CDCII[U]Z‘/Ee EZ E +|Vyu,|

=1

+ V(u)) dydz

CT T 1 7 Ol
= N ot ~ 12 .
=g |.c 2; (CT> ( ) +|Vyi@i)?| + V(@) | dyd¢
C“2 _ CT2 : CT B c,,2 _ CT2 5 c”2 _ cT2
- c'ct Let[a] + EQCJ{ [a] > 1ot I o2 Ler[u],

since @ [u] > 0 for all w € H; (3;R™) by Proposition 3.2. But then, using Lemma
2.3 we have

—t?
o [u(y,z + c't,t)] > ° / CZZU (y, 2 + c't, t)*dydz. (6.18)

Therefore, u(y, z + c't,t) = 0 in (L2, (X))™ as t — oo. Since u(-,t) € (L=(X))™ we
have Vu(-,t) € (L*(X))™" uniformly for any ¢ > to, with ¢t > 0 (see [31]), hence
u(y, z + ¢'t,t) — 0 uniformly on compact subsets of X. O

Let us emphasize that the result in Proposition 6.10 implies that the speed ¢!
obtained in problem (P) has a special significance for the solutions of the original
parabolic problem. Indeed, ¢! is the maximum speed with which solutions may
propagate (e.g., in the sense of the speed of the leading edge [35,38]). On the other
hand, observe that this is also a sharp upper bound, since existence of solutions of
problem (P) obviously implies existence of solutions of Eq. (1.1) which propagate
with speed cf.

Finally, let us note that in general the free energy functional in Eq. (1.3) may
include the effect of anisotropy [27,28], i.e. the gradient square term in F[u] can be
replaced by a quadratic form generated by a symmetric positive-definite constant
matrix G. Then the analogue of Eq. (1.1) becomes

ug = V- (GVu) = V,V(u). (6.19)

Similarly, the boundary conditions for this equation should be modified from Eq. (1.2)
and become

(l/ - Gvu)|3g =0 or u|32 =0. (6.20)

One can naturally ask whether the above problem admits traveling wave solutions,
too. Indeed, it is not difficult to see that Eq. (6.19) with the boundary conditions
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from Eq. (6.20) can be reduced to Eq. (1.1), with the boundary conditions from
Eq. (1.2), by the linear change of variables

¢ =GV

In this way we obtain a problem of the type considered above on a modified cylinder
¥', which can then be treated in the same fashion.

7. AN APPLICATION

In this section, we consider a sample application problem, for which various
assumptions of the theorems above can be explicitly verified, and demonstrate the
practical utility of our methods. For a particular example we will use a computer-
assisted approach to obtain the necessary estimates for existence. Note that with
a bit of extra work these types of results can be made completely rigorous. This,
however, is beyond the purpose of this section, which is to illustrate our theorems.
Below we will adopt the term variational traveling wave [35] to denote the traveling
wave solutions of Eq. (1.5) with speed ¢, that lie in H}(Z; R™).

As a sample problem, we will consider Eq. (1.4) with 7 =1, g = 1, a = 3,
b=1¢= %, hy = %, and he = 0. For simplicity, we will consider the case
m = 2 and n = 1 (implying that ¥ = R), so that the vector character of the
problem is preserved. Let us mention that in one space dimension existence of
traveling wave solutions in gradient systems can be also studied by topological
techniques [34,37,43].

Thus, with u = (u1,us), this problem has the following expression for the po-
tential V:

Vi(ug,uz) = —3uy — 3(ul +u3) + (uf +u3) + 3uiul. (7.1)

The plot of the level curves of V is presented in Fig. 2. An inspection of this
figure shows that V has one local maximum O(po, 0), four local minima Py (p4,0)
and Q+(p1, +q1), and four saddle points R4 (p2, £¢2) and S+ (ps, £q3), respectively
(see Fig. 2). It is easy to see that the set K := {(ur,us) € R? : V(uy,up) < 1}
has the required properties, being convex and satisfying Eq. (2.3). There is also a
rectangle Ky = {(u1,u2) € R? : p3 < uy < py, 0 <us < g3} which is also convex
and satisfies Eq. (2.3).

We are going to study existence of several types of traveling waves which con-
nect to different equilibria, namely to O, P_, and S;. Each such case leads to a
different variational problem, since in order to satisfy hypothesis (H1), one needs to
subtract from V its value at the equilibrium point reached at z = +00. So, we will
consider each such problem separately and establish existence and non-existence of
variational traveling waves, as well as the upper and lower bounds for the speed.
To simplify the notation, we will still say that u lies in H!(X; R™), tacitly assuming
that the equilibrium point is properly subtracted from wu.

Let us point out that if one sets us = 0, then the problem becomes scalar,
and existence of traveling waves connecting P, P_, and O is well-known (see,
e.g., [2,48]). These are the heteroclinic orbits PO, P, O, and P, P_, respectively,
and there exists a continuous family of solutions monotonically connecting P, and
P_ with O, and a unique solution going monotonically from P, to P_. Furthermore,
an exact solution for the traveling wave P, P_ can be found [4], giving ¢ = 0.393419
for this wave. These are natural candidates for the solutions of the variational
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Uy

FIGURE 2. The level curves of the potential V in Eq. (7.1). The
outermost contour corresponds to V = % and shows the boundary
of the set K. The set K, is enclosed by the dashed lines.

problems under consideration, so, in particular, we need to see whether we can
discriminate between them and the solutions of the vector problem.

We start by studying the case of the waves connecting to O. To begin, we com-
pute the value of vy, which in all considered cases is simply the smallest eigenvalue
of the Hessian at the equilibrium approached at z = +o00. A straightforward cal-
culation shows that at O we have vy = —2.94841 < 0. So, in order to be able to
apply Theorem 1.1, we need to find a trial function that makes the functional &,
nonpositive for ¢ > ¢g = 24/—1vy = 3.43419. We were not able to find such a trial
function.

On the other hand, at O we can estimate the value of y_ to be slightly greater
than —3. By Proposition 6.1, there are no variational traveling waves for ¢ >
¢1 = 3.4641. Therefore, our method can give solutions only in a narrow range of
3.43419 < ¢ < 3.4641, if any. Since also for ¢ < 2y/—v; = 3.40401 the solution
will approach O in an oscillatory fashion (see the discussion in [35, Section 3]),
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it will not be expected to lie in H!(R), either. This suggests that there are no
variational traveling waves that connect to O. In fact, we can prove that there are
no variational traveling waves satisfying hypothesis (H3) that lie entirely to the left
of O (that is, for which u;y < pg). Indeed, applying the Taylor formula, we have

V(ut,uz) = V(po,0) + 5{(=3 + 3af + §a3)(ur — po)*
+6a1ﬂ2(u1 —po)Uz + (—3 + %ﬁf + 3’11%)’&%},

where u; < @ < pg < 0 and u lies between 0 and usy. Clearly, the coefficients of the
first and the third terms in the curly brackets are greater or equal to —vy = —3+g D3-
Furthermore, since (u; — po)@in > 0 and dsus > 0, we then have V(ui,us) >
V (po,0)+3v0((u1 —po)? +u3), which implies that ®.[u] = 0 if and only if u = (po,0)
for all w € HY(R) with ¢® + 4y > 0, so Theorem 1.1 cannot be applied. Then,
in view of Proposition 3.5, this means non-existence of variational traveling waves
with these speeds. Note also that this argument can be strengthened to show that
all the solutions P_O with us = 0 are not variational traveling waves (see also [30]).
This is not unusual for the traveling waves invading an unstable equilibrium.

Let us now consider the waves that connect to P_. Here we get that vy =
0.994441 > 0, and we know from the case us = 0 that problem (P) has a solution.
The question is whether this solution is in fact one-dimensional, and what the
bounds on the speed are. To begin, we first find that for P_ the value of pu_
is slightly greater than —0.34. Again, by Proposition 6.1 this means that the
variational traveling waves connecting to P_ may exist only for ¢ < ¢; = 2/—p_ <
1.1662. To see whether there are variational traveling waves that move faster than
in the case uz = 0, we construct the trial function u = (u1,u2) defined as

ui(z,a,0) = p_+ 2(p4 —p_)(1 —tanhaz),
us(z,a,b) := bsech’az.

Next we evaluate ®. on u and minimize with respect to a and b. We then find a
(large enough) value of ¢ at which the minimum value of ®, is still negative. We
found that the choice of a = 0.5876,b = 1.6301 works with ¢ = 0.5240. So now,
applying Theorem 1.1, we can conclude that there exists a traveling wave solution
connecting to P_ that lies in X and has speed 0.5240 < ¢ < 1.1662. Observe that
this speed is higher than that of the scalar solution obtained earlier, so the latter
is in fact not a solution of problem (P). Also, by Corollary 6.8 the solution is a
heteroclinic orbit from P_ to either Q4+, St, or Py (the equilibria O and R4 have
higher potential than P_). Let us point out that our arguments can be easily made
rigorous (with a slightly smaller value of ¢) by performing a linear interpolation of
the above trial function, over finitely many intervals, then rationalizing the values
of u at the interpolation nodes, and then carrying out some simple, albeit tedious
analysis.

Finally, we turn to the solutions that connect to S; and lie in K. For S, we
obtain that vy = —0.588022, so in order for hypothesis (H3) to be satisfied, we need
to find a trial function for which &, < 0 with ¢ > 1.53365. We use the following
trial function u = (u1, us2):

P+ —Dps
ui(z,a,b) = p3+ 1—:_7;
ua(z,a,b) = e

oA (14 eb=)3/2"
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Once again, we fix ¢ and minimize ®.[u] with respect to a and b. As a result, we find
that the functional is negative for a = 1.1536, b = 0.8778, and ¢ = 1.61 > 1.53365.
Therefore, the assumptions of Theorem 1.1 are satisfied in K, and we obtain a
traveling wave solution connecting to S; that lies in ;. On the other hand, we
find pu_ to be slightly greater than —0.91, implying an upper bound for the speed
of the traveling wave to be ¢ < 2/—pu— < 1.91. Thus, the obtained solution will
have speed 1.61 < ¢ < 1.91. Again, by Corollary 6.8 this is a heteroclinic orbit
from S; to Pj;.
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