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Abstract. We survey some recent results on variational and evolution problems con-
cerning a certain class of convex 1-homogeneous functionals for vector-valued maps re-
lated to models in phase transitions (Hele-Shaw), superconductivity (Ginzburg-Landau)
and superfluidity (Gross-Pitaevskii). Minimizers and gradient flows of such functionals
may be characterized as solutions of suitable non-local vectorial generalizations of the
classical obstacle problem.
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1. Introduction

In this note we survey some results obtained in [8, 6, 2] on variational and evolution
problems concerning a certain class of convex 1-homogeneous functionals for vector-valued
maps related to models in phase transitions (Hele-Shaw), superconductivity (Ginzburg-
Landau) and superfluidity (Gross-Pitaevskii). It has been recognized that minimizers and
gradient flows of such functionals may be characterized as solutions of suitable vectorial
generalizations of obstacle-type problems, where the constraints are non-local in nature.

This motivated us to investigate the general structure and qualitative properties of such
solutions in analogy with classical obstacle problems, trying in particular to characterize
situations where the non-local constraint is saturated, as well as qualitative properties of
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the corresponding coincidence sets, and interpreting their physical meaning according to
the considered model.

The functionals we are interested in have the general form

J(u) =
∫

Ω
|A(x)·Du)| = sup

{∫
Ω
u · div(A(x)t · ξ) dx : ξ ∈ C1

c (Ω; Rkq), |ξ| ≤ 1
}
, (1.1)

where Ω ⊂ Rn, u ∈ L1(Ω; Rk) and A ∈ C1(Ω,Rqn). The functional J is convex and
1-homogeneous, and in case u ∈ BV (Ω; Rk), i.e. Du = ν|Du| is a Rnk-valued measure
with total variation |Du| and |ν| = 1 |Du|-a.e., the functional J(u) represents the total
variation of the measure A(x) · ν|Du| xΩ.

1.1. Some examples. A first important example is given by the weighted Total Varia-
tion functional (see e.g. [4, 10, 11, 12, 15])

J0(u) =
∫

Ω
ρ(x)|Du| = sup

{∫
Ω
u · div(ρ(x)ξ) dx : ξ ∈ C1

c (Ω; Rn), |ξ| ≤ 1
}
, (1.2)

defined for u ∈ L1(Ω) and a regular nonnegative weight ρ(x) ≥ 0. Further examples are
given, for u ∈ L1(Ω; Rn) a vector field, by

J(u) =
∫

Ω
|∇ · u|,

i.e. the total variation of the divergence of u, and, in case n = 3, by

J(u) =
∫

Ω
|∇ × u|,

i.e. the total variation of the curl of u. More generally, if u(x) ∈ ΛkRn for x ∈ Ω, i.e. u
is a k-differential form, we may consider

Jk(u) =
∫

Ω
ρ(x)|du| = sup

{∫
Ω
u · d∗(ρ(x)ξ) dx : ξ ∈ C1

c (Ω; Λk+1Rn), |ξ| ≤ 1
}
, (1.3)

so that Jn−1 corresponds to the (weighted) total variation of the divergence, and J1 to
the (weighted) total variation of the curl in case n = 3, and J0 yields again the weighted
TV functional.

1.2. Gradient flows. Given an initial datum u0 ∈ L2(Ω; Rk), the L2-gradient flow for
J(u) is defined by the differential inclusion

ut ∈ −∂J(u) t ∈ [0,+∞) , (1.4)

where ∂J denotes the subgradient of the convex functional J . The general theory of [9]
guarantees the existence of a global weak solution u ∈ H1([0,+∞), L2(Ω; Rk)) of (1.4).
The (weighted) Moreau-Yosida regularization of the convex functional J , which yields a
discrete approximation scheme for (1.4) is given by

I(u) = J(u) + λ

∫
Ω
|u− u0|2g(x) dx , (1.5)

with u0 : Ω→ Rk square integrable with respect to the measure g(x) dx, where g(x) ≥ 0
is a nonnegative regular weight function and λ > 0 a parameter. For n = 2, k = 1 and
f(x) = g(x) ≡ 1, (1.5) corresponds to the Rudin-Osher-Fatemi Total Variation based
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denoising model [21]. Anisotropic versions of TV functionals and applications to active
contour and edge detection have been studied in [12]. Related homogeneous functionals
for the description of landsliding have been also studied in [15, 10].

1.3. Formulation for differential forms. For u a k-differential form on Ω, define

Ik(u) = Jk(u) + λ

∫
Ω
|u− u0|2g(x) dx ,

with u0 a k-form in L2(g(x) dx). Functionals like Ik enter in the description of some
phenomena in condensed matter Physics such as superconductivity and superfluidity
(e.g. Bose-Einstein condensation). For instance, in case n = 3, λ = 1, u0(x) = ω(xdy −
ydx), Ω = {ρ(x) ≥ 0} and g(x) = ρ(x), the functional I1 arises as a reduced model
describing, in suitably scaled units, the vortex density distribution in a trapped Bose-
Einstein condensate rotating around the z-axis with an angular velocity ω > 0. Here u
corresponds to a superfluid current density, so that its exterior differential (corresponding
to the curl) describes the vorticity of the superfluid. The derivation of this model as
a limiting description of the Gross-Pitaevsky energy functional in certain asymptotic
regimes has been rigorously proved in [5, 6] through a Γ-convergence analysis valid for
general Ginzburg-Landau type models. In axisymmetric domains (see [2]) the superfluid
current can be expressed, in cylindrical coordinates, by u = v(r, z)dθ, so that the situation
is actually described by a weighted TV regularization functional I0(v), defined on Ω̃ =
Ω ∩ {θ = cost.} with g(r, z) = r−1ρ(r, z).

Finally, the functional In−1, corresponding to the discretization of the L2-gradient flow
ut = −∂Jn−1(u), has been studied in [8], where some rigorous connection with a (weak
formulation of the) Hele-Shaw model in phase transitions has been established.

In the following sections we will analyze some properties of Jk and Ik focusing mainly
on the cases k = 1 and k = n− 1.

2. Gradient flow of Jk

In order to analyze the gradient flow (1.4) for the functional Jk one is led to consider
first the approximating scheme (1.5) given, fixing ε > 0, by the minimum problem (we
consider for simplicity uniform densities ρ = g = 1)

min Ik(u) = Jk(u) +
∫

Ω

1
2ε
|u− f |2 dx, (2.1)

for a given k-form f ∈ L2(Ω,Λk(Rn)). The Euler-Lagrange equation corresponding to
(2.1) is

f − u
ε
∈ ∂Jk(u) .

Notice that since Jk is convex positively 1-homogeneous we have η ∈ ∂Jk(u) if and
only if

Jk(u) = 〈η, u〉 and 〈η, w〉 ≤ Jk(w) ∀ η ∈ ∂Jk(u), ∀w ∈ L2(Ω; ΛkRn) . (2.2)

In particular, the convex conjugate function J∗k corresponds to the indicatrix function
J∗k (η) = 0 if sup〈η, w〉 ≤ J(w), and J∗k (η) = +∞ otherwise. An element η ∈ ∂Jk(u)
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may be represented as η = d∗v (in the distributional sense), for a (k + 1)-form v such
that |v| ≤ 1 a.e. in Ω and (∗v)T = ∗(vN ) = 0 on ∂Ω, where d∗ correspond to the
adjoint operator to d with respect to the Hodge star duality, and ωT (resp. ωN ) denotes
the tangential (resp. normal) component of a form ω on ∂Ω: in particular we have
(∗ω)T = ∗(ωN ), and the boundary condition (∗v)T = 0 corresponds to the vanishing of
the normal component of v on ∂Ω. Moreover, the condition Jk(u) = 〈η, u〉 =

∫
Ω v · du

implies that v = du/|du| (and in particular |v| = 1) whenever du 6= 0. We may hence
write the Euler-Lagrange equation (2.1) as

f − u
ε

= d∗v in Ω and (∗v)T = 0 on ∂Ω. (2.3)

Accordingly, the gradient flow (1.4) corresponds to the differential system

ut = d∗v in Ω and (∗v)T = 0 on ∂Ω (2.4)

under the constraints |v| ≤ 1 and Jk(u) =
∫

Ω v · du valid for any time t > 0.

2.1. Dual formulation. Equation (2.3) is equivalent to

u ∈ ∂J∗k
(
f − u
ε

)
, (2.5)

where

J∗k (η) := sup
w∈L2(Ω,ΛkRn)

∫
Ω
η · w dx− Jk(w) =

{
0 if ‖η‖∗ ≤ 1
+∞ otherwise

and

‖η‖∗ = sup
{∫

Ω
η · w dx : Jk(w) ≤ 1

}
.

Note that

Jk(w) + J∗k (η) ≥
∫

Ω
w · η dx

for all w, η. The equality holds iff
∫

Ω η ·w dx = Jk(w), and in such case we have ‖η‖∗ ≤ 1.
Letting u be a minimizer of (2.1) and η = (f − u)/ε we get from (2.5)

η − f

ε
+

1
ε
∂J∗k (η) 3 0 (2.6)

which shows that η is the unique minimizer of

min
η
J∗k (η) +

ε

2

∫
Ω

∣∣∣∣η − f

ε

∣∣∣∣2 dx =
ε

2
min
‖η‖∗≤1

∫
Ω

∣∣∣∣η − f

ε

∣∣∣∣2 dx. (2.7)

This corresponds to the dual problem of (2.1), which can be interpreted as the L2-
projection of f on the convex set {‖η‖∗ ≤ ε}. In particular, we deduce the existence of a
critical threshold εc below which minimizers are necessarily trivial (see also [18] for the
same result in the case of the Total Variation model corresponding to J0). This can be
summarized in the following

Proposition 2.1. The k-form u ≡ 0 is a minimizer of (2.1) if and only if

ε ≥ εc := ‖f‖∗ . (2.8)
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2.2. Non local obstacle-type problems. Note that ‖η‖∗ <∞ implies that∫
Ω
ηw = 0

for all w such that dw = 0. By Hodge decomposition, this implies that η = d∗g for some
(k + 1)-form g, with gN = 0 on ∂Ω. It follows that

‖η‖∗ = supR
Ω |dw|≤1

∫
Ω
d∗g · w dx

= supR
Ω |dw|≤1

∫
Ω
g · dw dx+

∫
∂Ω
w ∧ ∗gN = supR

Ω |dw|≤1

∫
Ω
g · dw dx. (2.9)

We then get the following characterization of the norm ‖ · ‖∗:

‖η‖∗ = inf
d∗g=η

gN |∂Ω=0

‖g‖L∞(Ω,Λk+1(Rn)). (2.10)

We may hence view the norm ‖ · ‖∗ related to the dual convex function J∗k as a non-
local L∞ norm and, accordingly, the dual problem (2.7) can be interpreted as a non-local
vector-valued version of the classical obstacle problem, which reduces to the classical one
in the case k = n − 1, since in (2.9) we may choose n-forms dw such that the functions
∗dw approximate a Dirac mass located where the essential supremum of |g| is attained.

Let us briefly deduce (2.10). Indeed, it is immediate to show the ≤ inequality. On
the other hand, by the Hahn-Banach Theorem, there exists a differential form g′ ∈
L∞(Ω; Λk+1(Rn)), with d∗g′ = d∗g = η (in the distributional sense) such that

‖η‖∗ = supR
Ω |dw|≤1

∫
Ω
g · dw dx = supR

Ω |ψ|≤1

∫
Ω
g′ · ψ dx = ‖g′‖L∞(Ω;Λk+1(Rn)).

Fix now ϕ0 such that d∗ϕ0 = η. We can write g = ϕ0 + d∗ψ, so that (2.10) becomes

‖η‖∗ = min
ψ: (ϕ0+d∗ψ)·νA=0

‖ϕ0 + d∗ψ‖L∞(A). (2.11)

The Euler-Lagrange equation of (2.11) is a kind of generalization of the infinity Laplacian
equation (see e.g. [7, 20])

d∞(ϕ0 + d∗ψ) = 0.

Indeed when k = n− 2, by duality, problem (2.11) becomes

min
ψ∈W 1,∞

0 (Ω)
‖∇ψ + ϕ0‖L∞(Ω), (2.12)

whose corresponding Euler-Lagrange equation is

〈(∇2ψ +∇ϕ0)(∇ψ + ϕ0), (∇ψ + ϕ0)〉 = 0, (2.13)

which is a non-homogeneous ∞-Laplacian equation reminiscent of the Aronsson problem
[1]. For such class of equations it is not known if there are conditions on ϕ0 guaranteeing
uniqueness of solutions.
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2.3. Some properties of the gradient flow of Jn−1. When k = n− 1 we can identify
by duality a square integrable (n − 1)-form in Ω with a vector field u ∈ L2(Ω,RN ), so
that Jn−1 is equivalent to the functional

Jn−1(u) :=
∫

Ω
|∇ · u| dx (2.14)

that is, the total mass of ∇ · u as a measure.
The gradient flow of Jn−1 is actualy equivalent to a constrained variational problem

for a function w such that ∆w = ∇ · u. Consider indeed the formulation{
ut = ∇v
u(0) = u0

(2.15)

where v satisfies |v| ≤ 1 and

JN−1(u) +
∫

Ω
u · ∇v = 0.

It is well-known that the solution of (2.15) is unique and that −∇v(t) = ∂0JN−1(u(t)) is
the right-derivative of u(t) at any t ≥ 0 [9]. Given the solution (u(t), v(t)) of (2.15), we
let w(t) :=

∫ t
0 v(s) ds, which takes its values in [−t, t]. It holds u(t) = u0 +∇w(t), and

the function w(t) solves the following obstacle problem (see [8]):

min
{

1
2

∫
Ω
|u0 +∇w|2 dx : w ∈ H1

0 (Ω) , |w| ≤ t a.e.
}
. (2.16)

Observe that in case we additionally have ∇ · u0 ≥ α > 0, this obstacle problem is
known to be an equivalent formulation of the Hele-Shaw flow [14, 16] (see also [17] for a
viscosity formulation). Therefore, it turns out that the flow of Jn−1 provides a (unique)
global weak solution to the Hele-Shaw problem, under suitable regularity assumptions on
the initial datum u0. Moreover this formulation allows to consider quite general initial
data u0, for which for instance ∇·u0 may change sign, or be a measure. Further regularity
properties of the function w(t) and the evolution law of the contact set are deduced via
comparison principles (see [8] for details).

3. The functional I1

Let us turn to analyze the functional I1 which expresses a Moreau-Yosida regularization
of the functional J1(u) =

∫
Ω ρ|du|, i.e. the total (weighted) mass of the exterior differential

of a square integrable 1-form u. In the case N = 3 (and ρ = 1) it corresponds to the total
mass of the curl of a vector field u ∈ L2(Ω; RN ) as a measure. This type of functional arises
as a reduced description of vortex density in superfluids and respectively superconductors
corresponding to asymptotic regimes of the three dimensional Gross-Pitaevskii model of
Bose-Einstein condensates (resp. the Ginzburg-Landau model for 3-d superconductivity)

3.1. Asymptotics for the Gross-Pitaevskii model. Consider a Bose-Einstein con-
densate with mass m confined in a domain Ω ⊂ R3 by a smooth trapping nonnegative
potential 0 ≤ a ∈ C∞(R3), a(x) → +∞ as |x| → +∞, and subjected to a forcing Φε

that in general depends on a scaling parameter ε. In the model case corresponding to a
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rotation around the z-axis, one has Φε := 1
2cε(x1dx

2 − x2dx
1), and a(x) grows at least

quadratically in |x|. The Gross-Pitaevskii functional in the ε-scaling regime reads

Gε(u) :=
∫

R3

1
2
|∇u|2 − Φε · ju+

1
ε2

(
|u|4

4
+ a(x)

|u|2

2
)

where u is a complex-valued wave function whose modulus describes the superfluid den-
sity, Φε = | log ε|Φ for some fixed Φ and the j(u) = i

2(udū− ūdu) measures the superfluid
current. A stable condensate may be described by a (local or global) minimizer of Gε in
the function space

H1
a(R3; C) := H1

a := completion of C∞c (R3; C) with respect to ‖ · ‖a, (3.1)

where the norm ‖ · ‖a is defined by ‖u‖2a :=
∫

R3 |du|2 + (1 + a)|u|2. Define also

H1
a,m(R3; C) := H1

a,m := {u ∈ H1
a :

∫
|u|2 = m}.

In order to study the behavior of minimizers of Gε in H1
a,m it is convenient to rewrite the

energy as follows: define

ρ(x) := (λ− a(x))+, w(x) := (λ− a(x))−, for λ such that
∫

R3

ρ dx = m. (3.2)

The last condition clearly determines λ uniquely. The function ρ is called the Thomas-
Fermi density in the physics literature, and gives to the leading-order the condensate
density, in the limit ε → 0. Since

∫
λ|u|2 = λm for all u ∈ H1

a,m, it follows that u
minimizes Gε in H1

a,m if and only if u minimizes

Gε(u) :=
∫

R3

1
2
|∇u|2 − Φε · ju+

1
4ε2

(ρ− |u|2)2 +
w

2ε2
|u|2 (3.3)

in H1
a,m. We will henceforth write the Gross-Pitaevskii functional in the more convenient

form (3.3), and define Ω = {x ∈ R3 : ρ(x) > 0}. The following convergence result is a
consequence of the analysis in [5, 6].

Proposition 3.1. Assume that Φε = | log ε|Φ, with Φ ∈ L4
loc(Λ

1R3) and that |Φ(x)|2 ≤
Ca(x) outside some compact set K. Assume that uε minimizes Gε in H1

a,m. Then

|uε| → ρ in L4(R3)

for ρ defined in (3.2), and there exists j0 ∈ L4/3(Λ1Ω) such that

| log ε|−1juε ⇀ j0 weakly in L4/3(R3).

Moreover, j0 = ρv0, where v0 is the unique minimizer of

G(v) :=
∫

Ω
ρ

(
|v|2

2
− v · Φ +

1
2
|dv|

)
. (3.4)

in the space

L2
ρ(Λ

1Ω) :=
{
v ∈ L1

loc(Λ
1Ω) :

∫
Ω
ρ|v|2 dx <∞

}
. (3.5)

(We set G(v) = +∞ if dv is not a Radon measure or if ρ is not |dv|-integrable.)
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This convergence results for the Gross-Pitaevskii functional parallel those obtained
in [5] for the Ginzburg-Landau functional. The functional G of the limiting variational
problem corresponds to I1, and the 1-form v measures the asymptotic superfluid current
and hence its curl, corresponding to dv, gives a measure of the leading-order vortex
density of the superfluid. From the analysis of G (compare with the analysis of I1 leading
to Proposition 2.1) one may thus characterize when minimizers of the limiting problem
are vortex-free to the leading order, and the magnitude of the critical threshold of the
forcing (resp. the first critical magnetic field in the superconductivity case) above which
there is vortex nucleation, by obtaining a description of minimizers of G as solutions of a
nonlocal vector-valued obstacle problem of the type of (2.7).

Let us now state more precisely a necessary and sufficient condition on Φ and ρ for
minimizers of the limiting functional G to be vortex-free, by which we mean that dv0 = 0
in Ω. Denoting by

(v, w)ρ :=
∫

Ω
ρ v · w dx, ‖v‖ρ := (v, v)1/2

ρ ,

respectively the inner product and norm on the Hilbert space L2
ρ(Λ

1Ω), let Pρ denote the
orthogonal projection with respect to the L2

ρ inner product onto (ker d)ρ, where

(ker d)ρ := L2
ρ-closure of {ϕ ∈ C∞(Λ1Ω) : dϕ = 0, ‖ϕ‖ρ <∞}. (3.6)

We will also write P⊥ρ for the complementary orthogonal projection. Note that if w ∈
Image(P⊥ρ ) = (ker d)⊥ρ , then

∫
(ρw)·ϕ = 0 for all ϕ ∈ (ker d)ρ ⊃ ker d. Thus ρw ∈ (ker d)⊥,

and so it follows from the standard (unweighted) Hodge decomposition that

∀ w ∈ (ker d)⊥ρ , ∃β ∈ H1
N (Λ2Ω) such that w =

d∗β

ρ
and

∫
Ω

|d∗β|2

ρ
= ‖w‖2ρ. (3.7)

Thus if Φ ∈ L2
ρ, there exists βΦ ∈ H1

N such that d∗βΦ ∈ L2
ρ and

Φ = PρΦ +
d∗βΦ

ρ
. (3.8)

We have the followig result (see [6]):

Theorem 3.2. Suppose that Ω is a bounded, open subset of R3 and that 0 ≤ ρ ∈ C1(Ω)
and Φ ∈ L4

loc(Λ
1R3) ∩ L2

ρ(Λ
1Ω) are given. Let βΦ ∈ H1

N (Λ2Ω) be such that P⊥ρ Φ = d∗βΦ
ρ ,

and let β0 minimize the functional

β 7→ 1
2

∫
Ω

|d∗β|2

ρ
(3.9)

in the space {
β ∈ H1

N (Λ2Ω) :
d∗β

ρ
∈ L2

ρ(Λ
1Ω), ‖β − βΦ‖ρ∗ ≤

1
2

}
, (3.10)

where

‖β‖ρ∗ := sup
{∫

Ω
β · dw : w ∈ C∞(Λ1Ω̄),

∫
Ω
ρ|dw| ≤ 1

}
. (3.11)
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Then v0 = PρΦ + d∗β0

ρ is the unique minimizer of G(·) in L2
ρ(Λ

1Ω). Moreover,∫
Ω

(βΦ − β0) · dv0 =
1
2

∫
Ω
ρ|dv0| . (3.12)

Finally, dv0 = 0 if and only if ‖βΦ‖ρ∗ ≤ 1
2 .

Note that (3.12) states that the action of the vorticity distribution dv0 on the potential
β0 − βΦ is the largest possible given the constraint (3.10).

Observe that the form of the constraint in the limiting dual variational problem depends
on the dimension. In particular, in 2d, as in 3d, it is the case that if v0 minimizes G,
then dv0 = d(d

∗β0

ρ ), where the potential β0 minimizes the functional (3.9) subject to the
constraint (3.10). The difference is that in 2d, the potentials β are 2-forms on R2, and so
they can be identified with functions. Since it is not hard to check that {dω :

∫
Ω ρ|dω| ≤ 1}

is weakly dense in the set of signed measures µ such that
∫

Ω ρd|µ| ≤ 1}, the 2d constrained
problem reduces to minimizing (3.9) in the set{

β ∈ H1(Λ2Ω) : ‖1
ρ

(β − βΦ)‖L∞ ≤
1
2

}
. (3.13)

This is a classical (weighted) 2-sided obstacle problem, and for many Φ’s, using the
maximum principle, it in fact reduces to a one-sided obstacle problem. Thus we can view
the problem in Theorem 3.2 as a nonlocal, vector-valued analog of the classical obstacle
problem.

3.2. Rotational symmetry and weighted TV minimization. In the presence of
rotational symmetry, the functional G reduces to a simpler 2-dimensional model corre-
sponding to the weighted Total Variation minimization functional I0. More precisely,
assume that there exist Ω̃ ⊂ [0,∞) × R, ρ̃ : Ω̃ → (0,∞) and ϕ : Ω̃ → R such
that Ω = {(r cosα, r sinα, z) : (r, z) ∈ Ω̃, α ∈ R}, ρ(r cosα, r sinα, z) = ρ̃(r, z) and
Φ(r cosα, r sinα, z) = ϕ(r, z)dθ.

Then it is easy to see that the unique minimizer v0 of G is given in cylindrical coordi-
nates by v0 = w0(r, z)dθ, where w0 minimizes the functional (of the type I0)

Gred(w) :=
1
2

∫
Ω̃
ρ̃

(
|∇w|+ (w − ϕ)2

r

)
dr dz (3.14)

in the space of functions w : Ω̃→ R such that
∫

Ω̃
ρ̃
r w

2 dr dz <∞.
One can use duality to rewrite the problem of minimizing Gred as a constrained vari-

ational problem. For instance, one can verify that v0 minimizes Gred if and only if it
minimizes the functional

w 7→
∫

Ω̃

ρ̃

r
w2 dr dz (3.15)

subject to the constraint∫
Ω̃

ρ̃

r
(ϕ− w)ζ dr dz ≤ 1

2

∫
Ω̃
ρ̃|∇ζ| for all ζ ∈ C∞(Ω̃). (3.16)

For the velocity field represented by the 1-form v = w(r, z)dθ, the associated vorticity
2-form is dv = ∂rw dr ∧ dθ + ∂zw dz ∧ dθ. The vorticity vector field, that is, the vector
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field dual to dv, is then 1
r (∂rw êz − ∂zw êr), where êz and êr denote unit vectors in the

(upward) vertical and (outward) radial directions respectively. It is natural to interpret
integral curves of this vector field as “vortex curves”. Since the vorticity vector field has
no êθ component and is always tangent to the level surfaces of w, we conclude that vortex
curves have the form “θ = constant, w = constant”, at least for regular values of w. Thus
in the reduced 2d model, we interpret level sets of a minimizer w0, or more precisely sets
of the form ∂{(r, z) : w0(r, z) > t}, as representing vortex curves. For similar reasons,
one should think to the “vorticity measure ” as being given by ∇⊥w0, rather than ∇w0.

3.3. Contact curves and vortex curves. It is interesting to ask whether one can define
a useful analog of the “contact set” (as normally defined for classical obstacle problems)
for the variational problems with nonlocal constraints formulated in Theorem 3.2. We
address this question first for Bose-Einstein condensates in the presence of rotational
symmetry, as discussed above. Thus, we assume that w0 : Ω̃→ R minimizes the functional
(3.15) subject to the constraint (3.16). Starting from (3.16), an approximation argument
shows that if E is a set of locally finite perimeter in Ω̃, then∫

ρ̃

r
(ϕ− w0)χE dr dz ≤ 1

2

∫
ρ̃|∇χE |, (3.17)

where χE denotes the characteristic function of E. We say that ∂E is a contact curve if
equality holds in (3.17) (where ∂E should be understood as the 1-dimensional set that
carries |∇χE |).

Lemma 3.3. For a.e. t, ∂{w0 > t} is a contact curve.

It is natural to interpret ∂{w0 > t} as a “vortex curve”, so the Lemma states, heuris-
tically, that every vortex curve for w0 is also a contact curve.

Proof. By using rotational symmetry to rewrite (3.12) in the (r, z) variables, or by using
the fact that 0 = d

dtG
red(etw0)

∣∣
t=0

, we find that

1
2

∫
ρ̃|∇w0|+

∫
ρ̃

r
(w0 − ϕ)w0 dr dz = 0.

Using the coarea formula, we then get∫ ∞
−∞

(
1
2

∫
ρ̃|∇χ{w0>t}| +

∫
ρ̃

r
(w0 − ϕ)χ{w0>t} dr dz

)
dt = 0. (3.18)

It follows from (3.17) that

1
2

∫
ρ̃|∇χ{w0>t}| +

∫
ρ̃

r
(w0 − ϕ)χ{w0>t} dr dz ≥ 0

for every t, and then (3.18) implies that the equality holds for a.e. t. �

It is probably not true that every contact curve for the minimizer w0 is also a vor-
tex curve, in the generality that we consider here, due to the possibility of degenerate
(nonlocal) obstacles, as in the classical obstacle problem. One might hope, however, that
the vortex curves and contact curves coincide under reasonable physical assumptions (for
example Φ = r2dθ, corresponding to a rotation of a condensate around the z axis).
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In the work [2] we have investigated (also numerically) further properties of the con-
tact set: in particular we prove that vortex curves are smooth, of finite length, and meet
orthogonally the boundary of Ω̃ (see [19], and compare also with [13] in the supercon-
ductivity case). Moreover, the level set corresponding to supw0 is necessarily flat, hence
the union of vortex curves forms a proper subset of Ω̃. In the peculiar case of Ω̃ being
an ellipsoid with suitable eccentricity, following [3] one can also prove that the level set
corresponding to inf w0 is also flat, whence one deduces the existence of a vortex-free
zone around the rotation axis.

The situation is more complicated for Bose-Einstein condensates in a general domain
Ω ⊂ R3 without rotational symmetry, since in this case the analogs of vortex curves and
contact curves may not in fact be curves and do not in general admit a very easy concrete
characterization. Abstractly, they may be described as follows: if we write Z to denote
the closure (in the sense of distributions) of

{dα : α ∈ L2(Λ1Ω),
∫

Ω
ρ|dα| ≤ 1},

then one can think of the set extrZ of extreme points of (the convex set) Z as analogous
to the objects — distributional boundaries of sets of finite weighted perimeter — used
above to describe vortex and contact curves. Indeed, by the arguments in Remark 3 of
[22] and general convexity considerations, one can show that extrZ is a nonempty Borel
subset of a suitable metric space, and for any T in the vector space generated by Z (that
is, the space ∪λ>0λZ), there is a measure µT on extrZ such that

T =
∫

extrZ
ω dµT (ω) (3.19)

and ∫
Ω
ρ d|T | =

∫
extrZ

(∫
Ω
ρ d|ω|

)
dµT (ω). (3.20)

We remark that in the closely related situation of divergence-free vector fields on Rn, a
concrete characterization of elements of the analog of extrZ as “elementary solenoids” is
established in [22].

With this notation, an analog of Lemma 3.3 is

Lemma 3.4. Let β0 be the minimizer of the constrained variational problem (3.9),
(3.10)), so that v0 = PρΦ + d∗β0

ρ is the minimizer of G(·). Then∫
Ω

(βΦ − β0) · dω ≤ 1
2

∫
Ω
ρd|ω|. (3.21)

for every ω ∈ Z. We say that ω ∈ extrZ is a “generalized contact curve” if the above
condition holds with equality.

Furthermore, let µdv0 denote a measure on extrZ satisfying (3.19), (3.20) (with T
replaced by dv0). Then µdv0 a.e. ω is a generalized contact curve.

The proof is exactly as in Lemma 3.3, except for the fact that (3.19), (3.20) are used
instead of the coarea formula. Then (3.21) follows immediately from the fact that β0

satisfies (3.10), and the last assertion is a consequence of (3.12).
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It would presumably be possible to adapt the results of [22] to the closely related situ-
ations considered here, in order to obtain concrete descriptions of extrZ, although we are
not sure that this would add much insight. It would also be interesting to know whether,
if we consider the model case of uniform rotation about the z axis (for Bose-Einstein)
or a constant applied magnetic field (for Ginzburg-Landau), the complexities sketched
above do not in fact occur, and the vortex curves and contact curves for minimizers can
in fact be identified with curves of finite length; this seems likely to be the case.
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