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Abstract. We study a class of timelike weakly extremal surfaces in flat Minkowski
space R1+n, characterized by the fact that they admit a C1 parametrization (in general
not an immersion) of a specific form. We prove that if the distinguished parametrization
is of class Ck, then the surface is regularly immersed away from a closed singular set of
euclidean Hausdorff dimension at most 1 + 1/k, and that this bound is sharp. We also
show that, generically with respect to a natural topology, the singular set of a timelike
weakly extremal cylinder in R1+n is 1-dimensional if n = 2, and it is empty if n ≥ 4.
For n = 3, timelike weakly extremal surfaces exhibit an intermediate behavior.

1. Introduction

In this paper we study timelike extremal surfaces in (1+n)-dimensional flat Minkowski
space. In particular, we focus on extremal immersions of a cylinder R × S1 into R1+n,
which arise in models of closed cosmic strings and have been extensively studied in the
physics community (see [7, 19, 2] and references therein), as well as in the more recent
mathematical literature [17, 15, 16, 14, 13, 4, 11, 18], and have recently been proved
[5, 11] to describe the dynamics of topological defects in various relativistic field theories
in certain scaling limits.

As for many geometric problems, timelike extremal surfaces present various kinds of
singularities. For instance, it has been shown in [4] that a closed convex string in R2

with zero initial velocity shrinks to a point in finite time, while its shape approaches
that of a circle. An analogous phenomenon can be found in other geometric evolutions
such as the planar curvature flow [10] and the hyperbolic curvature flow of convex curves
[12]. However more complicated singularities can occur during the evolution (typically
the formation of cusps), and a partial classification has been provided in [8], where the
authors study self-similar singularity formation. A theory of generalized extremal surfaces
in the varifolds sense (see [1]) has been recently proposed in [5, 6].

In [18] it has been shown that any (immersed) timelike extremal cylinder in R1+2

necessarily develops singularities in finite time. In the same paper, the authors conjecture
that this does not hold in R1+n for n ≥ 3, where existence of smooth timelike extremal
cylinders is expected. On the other hand, there exist globally smooth timelike extremal
surfaces with noncompact slices in R1+2, which are small perturbations of timelike planes
[15, 14].

The arguments of [18] rely heavily on a particular representation of extremal immersed
cylinders, which we call the orthogonal gauge, known for a long time in the physics
literature and first proved to be valid, as far as we know, in [4]. This representation
also yields global weak solutions in the sense of [5, 6]. The main goal of this paper is to
estimate the dimension of the singular set of these weak solutions, which have the good
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property that they are images of C1 maps (in general not immersions) of a specific form,
see (2.7), (2.8) below. In particular we prove that, if the map is of class Ck, then the
dimension of the singular set is bounded above by 1 + 1

k , and the bound is sharp. The
upper bound on the dimension turns out to follow immediately from a classical refinement
of Sard’s Theorem, due to Federer [9], so the construction of examples of extremal surfaces
attaining this bound is the harder part of this result.

We also show that the singular set is generically empty when n > 3, confirming the
conjecture of [18] in such dimensions. More precisely we show that, generically for n > 3,
given a closed curve Γ immersed in Rn and a velocity field v : Γ → Rn, with |v| < 1
and orthogonal to Γ, there exists a smooth globally immersed timelike extremal surface
containing Γ and tangent to (1, v). For n = 3, roughly speaking, both globally smooth
immersed solutions and solutions that develop singularities occur for large sets of initial
data (that is, sets with nonempty interior.)

We start in Section 2 by quickly recalling some properties of the orthogonal gauge,
including existence and (restricted) uniqueness of solutions of a Cauchy problem for
timelike extremal surfaces. We also present some examples in Section 4 showing that
uniqueness may fail without the restrictions imposed in Section 2.

2. Timelike extremal surfaces in the orthogonal gauge

Given an open interval I ⊂ R, and an immersion ψ : I × R→ R1+n, possibly periodic
with respect to the second variable, for an open set U ⊂ I×R we define the Minkoswkian
area of ψ(U) to be ∫

U

√
|g| , g := det(gij), gij := (∂iψ, ∂jψ)m

where (·, ·)m denotes the Minkowski inner product. This functional is also sometimes
called the Nambu-Goto action. The surface parametrized by ψ is said to be timelike
if g < 0 everywhere, and a timelike surface is extremal if ψ is a critical point of the
Minkowskian area functional with respect to compactly supported variations.

It is noted in [18] that any timelike immersion of a surface into R1+n can be reparametrized
locally to have the form

ψ(t, x) = (t, γ(t, x)). (2.1)

Here we will consider the initial value problem for timelike extremal surfaces with initial
data of the form

γ(0, x) = γ0, γt(0, x) = v0, (2.2)

where γ0 ∈ C1(R;Rn) is an immersion and v0 ∈ C0(R;Rn) satisfies v0 · γ′0 = 0 and
|v0| < 1 everywhere. We call such a pair an admissible couple, and we say that an
admissible couple is periodic if γ0 and v0 are periodic with the same period, which implies
in particular that γ0 parametrizes a closed curve. We remark that if γ0 is an embedding,
or more generally if v0 ◦γ−1

0 is single-valued on Image(γ0), then the initial condition (2.2)
can be restated in the form

γ0 parametrizes {x ∈ Rn : (0, x) ∈M}, and (1, v0(x)) ∈ Tψ(0,x)M for every x ∈ R.
(2.3)
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Two admissible couples (γ0, v0), (γ̂0, v̂0) are considered to be equivalent if there is a C1

diffeomorphism λ : R → R such that (γ0, v0) = (γ̂0, v̂0) ◦ λ. Equivalent couples encode
exactly the same geometric data, and to any timelike surface M , whose t = 0 slice is
an immersed curve, one can assign an (equivalence class of) admissible couples, indeed
possibly multiple equivalence classes if the curve is not embedded.

Our approach is based on the observation, classical in the physics literature and
straightforward to verify (see [19, 4]), that if γ ∈ Ck(I × R;Rn), k ≥ 1 satisfies

|γx|2 − |γt|2 = 1 (2.4)

γx · γt = 0 (2.5)

γtt − γxx = 0 (2.6)

for all (t, x) ∈ I×R, then ψ(x, t) = (t, γ(t, x)) is a solution of the Euler-Lagrange equations
associated to the Minkowski area functional wherever g 6= 0, and hence is an extremal
immersion near such points. This holds in the distributional sense if k = 1 and classically
if k ≥ 2. In view of (2.4)-(2.5), we will call such a parametrization the orthogonal gauge.

The general solution γ of (2.4) - (2.6) has the form

γ(t, x) =
a(x+ t) + b(x− t)

2
(2.7)

where a, b ∈ C1(R;Rn) are maps satisfying

|a′| = |b′| = 1 in R. (2.8)

Indeed, (2.7) is just d’Alembert’s formula, and once γ is known to have the form (2.7),
then the constraints (2.4), (2.5) are easily seen to be equivalent to (2.8).

Given a function γ(t, x) = 1
2(a(x + t) + b(x − t)), with a, b satisfying (2.8), we shall

write in the sequel ψ(t, x) := (t, γ(t, x)) and M := Image(ψ). We also define the singular
set of M as

Sing := {ψ(t, x) : rank(∇ψ)(t, x) < 2} = {ψ(t, x) : γx(t, x) = 0}.

We have that M is timelike and regularly immersed in an open neighborhood of every
point of M \ Sing, while, at every point of Sing, the orthogonal coordinate system
degenerates and, as we will prove in Theorem 3.1 below, M fails to be timelike. A
stricter notion of singular set is

Sing∗ := {p ∈ Sing : lim
q∈M,q→p

τ(q) does not exist},

where τ(·) is the (spatial) tangent

τ(p) =
γx
|γx|
◦ ψ−1(p)

defined wherever it makes sense, which is at points p ∈M \Sing where the set { γx|γx|(t, x) :

ψ(t, x) = p} consists of exactly one element.
We note that the definitions of Sing and Sing∗ both have the drawback that they

depend on the parametrization of M .
We collect some known results in the following
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Proposition 2.1. Given an admissible couple (γ̂0, v̂0) ∈ Ck × Ck−1, there exists an
equivalent admissible couple (γ0, v0) and a map γ ∈ Ck(R × R;Rn) of the form (2.7),
(2.8), such that the initial condition (2.2) holds. In addition,

1. ψ(t, x) = (t, γ(t, x)) is timelike and an immersion in a neighborhood of every point
where γx 6= 0, and it is neither timelike nor an immersion at points where γx vanishes.

2. ψ is an extremal immersion wherever it is a immersion, and in particular this holds
for (t, x) in a neighborhood of {0} × R.

3. If ψ̂ is any extremal immersion of the form ψ̂(t, x) = (t, γ̂(t, x)) for (t, x) ∈ I × R
for some interval I ⊂ R containing 0, and if (γ̂(0, ·), γ̂t(0, ·)) is equivalent to (γ0, v0), then

ψ is a reparametrization of ψ̂, and thus ψ(I × R) = ψ̂(I × R).
4. M = Image(ψ) can be identified with a global weak solution of the extremal surface

equation, in the sense of [5, 6].

This proposition implies in particular the local existence of a smooth timelike extremal
surface M satisfying the initial condition (2.3) for an admissible couple (γ0, v0) such that
v0 ◦ γ−1

0 is single-valued, as well as the global existence of a weak solution.
We show in Proposition 4.1 below that the restriction of the uniqueness assertion 3 to

the class of surfaces parametrized by maps to the form (2.1) is in fact necessary; without
this condition, uniqueness can fail.

Proof. Given any admissible couple (γ̂0, v̂0), we can always find an equivalent couple
(γ0, v0) such that

|γ′0|2 + |v0|2 = 1. (2.9)

Letting γ denote the solution of the wave equation (2.6) with initial data (2.2), it is
easy to check (see for example (2.12) and (2.13) below) that γ satisfies (2.7), (2.8), thus
proving the existence of an extremal immersion for the admissible couple (γ0, v0).

The proof of 1 is given in the proof of Theorem 3.1 below. The only subtle part is
checking that M is not timelike at ψ(t, x), if γx(t, x) = 0; everything else follows easily
from the definitions and (2.7).

Concerning 2, we have already noted that a straightforward computation shows that
ψ is an extremal immersion wherever it is an immersion, and it follows from 1 that ψ is
an immersion in a neighborhood of {0} × Rn.

Finally, conclusions 3 and 4 are established in [4] and [5, 6] respectively. They are
proved for γ which is periodic in the x variable, but both facts are essentially local
(due to finite propagation speed) and so the proofs work without change in the general
case. �

Remark 2.2. In [15, Theorem 4.1], global existence of C2 solutions is proved for an
equation that, like (2-4)-(2-6), is equivalent to the equation for timelike extremal surfaces
as long as the surfaces associated to the solutions remain immersed. In this result, the
orthogonal gauge is not imposed, and the equations considered are thus nonlinear.

We record some standard formulas. Differentiating (2.7) we obtain

γx(t, x) =
a′(x+ t) + b′(x− t)

2
(2.10)

γt(t, x) =
a′(x+ t)− b′(x− t)

2
. (2.11)
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Letting t = 0 in (2.10) - (2.11) and recalling (2.2), we deduce that

a′(x) = γ′0(x) + v0(x) (2.12)

b′(x) = γ′0(x)− v0(x) (2.13)

We define a cylinder to be a set M ⊂ I ×Rn that can be written globally as the image
of a map ψ of the form (2.1), where γ(t, ·) is periodic with fixed period E for every t ∈ I.

It is straightforward to check that if one starts with a representative (γ̂0, v̂0) of a
periodic admissible couple such that (2.9) does not hold, with (γ̂0, v̂0) periodic of period
L, then an equivalent couple (γ0, v0) that satisfies (2.9) is periodic with period

E0 :=

∫ L

0

|γ̂′0(x)|√
1− |v̂0(x))|2

dx.

Then a + b is periodic, and we see from (2.12), (2.13) that a′, b′ are periodic as well,
all with period E0. Hence, if (γ̂0, v̂0) is a periodic admissible couple, then the surface
associated to (γ̂0, v̂0) by Proposition 2.1 is a cylinder.

Notice that, given a solution γ, the corresponding couple (a, b) is uniquely determined
up to additive constants. In particular, the othogonal gauge provides a one-to-one corre-
spondence between the set of all equivalence classes of admissible couples and the set

X :=
{

(a, b) ∈ C1(R;Rn)× C1(R;Rn) : a′ + b′ never vanishes, |a′| = |b′| = 1
}
/ ∼

where (a, b) ∼ (c, d) iff there exist x0 ∈ R, z0 ∈ Rn and σ0 ∈ {±1} such that

c(x) = a(σ0x+ x0) + z0 d(x) = b(σ0x+ x0)− z0 for all x ∈ R.

Similarly, equivalence classes of periodic admissible couples are parametrized by

Xper =
{

[(a, b)] ∈ X : a′, b′, a+ b periodic with the same period
}

where [·] denotes an equivalence class. When (a, b) ∈ Xper, we shall denote by E0 the
common period of a, b.

We shall consider the topology induced by C1(R;Rn)×C1(R;Rn) on X (or equivalently
on the set of admissible couples) and we refer to it as the X-topology. We say that a
property holds generically if it holds for all admissible couples out of a closed set with
empty interior with respect to this topology.

3. Generic regularity

In this section we study the regularity properties of extremal surfaces, which hold
generically with respect to the X-topology. We start with a general regularity result
which follows directly from the orthogonal gauge parametrization.

Theorem 3.1. Given an admissible couple (γ0, v0), there exists a global timelike extremal
surface M of the form (2.1), containing Γ0 = Image(γ0) and tangent to (1, v0), if and
only if

a′(s) 6= −b′(σ) for all s, σ ∈ R. (3.1)

If (a, b) ∈ Xper then M is an extremal cylinder.
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We have only defined timelike for immersed surfaces. A surface M given as the image
of a map ψ may be smooth even where ψ is not an immersion. In this case, we say that
M is timelike at a point p ∈M if TpM exists and is timelike, and in addition the spatial
unit tangent τ is continuous at p.

Proof. Assume (3.1). Then it is clear from the form (2.7) of γ that γx never vanishes,
and from the form (2.1) of ψ, it follows that that Sing = ∅ and hence that ψ is a global
immersion. It follows from (2.4) that |γt| < 1 whenever γx 6= 0, and from this it is easy
to check that ψ is a timelike immersion everywhere.

If (3.1) fails, then γx(t, x) = 0 for some (t, x) ∈ R×R, and by (2.4) we have |γt(t, x)| = 1.
We will show that M is not timelike at ψ(t, x). This is clearly the case if p ∈ Sing∗, so we
assume that p 6∈ Sing∗. Then we can define a spatial tangent τ(p), and TpM is spanned
by (0, τ(p)) and (1, γt(t, x)). Thus it suffices to show that

τ(p) · γt(t, x) = 0, (3.2)

since then it is easy to check that TpM contains no timelike vectors.
To prove (3.2), fix a sequence (tk, xk) in M \ Sing such that pk := γ(tk, xk)→ γ(t, x).

(We prove in Theorem 5.1 below that H2(Sing) = 0, so such a sequence exists.) Then
since τ is continuous at p,

τ(p) := lim
k

γx(tk, xk)

|γx(tk, xk)|
, γt = lim

k
γt(tk, xk). (3.3)

We write γ(t, x) = 1
2(a(x+ t) + b(x− t)) as usual, and we use the notation

mk := a′(xk + tk), nk := −b′(xk − tk).

If we define n0 = a′(x + t) then, using the (3.3) and the fact that γx(t, x) = 0, we find
that

mk and nk → n0, as k →∞, and n0 = γt(t, x). (3.4)

Then γx(tk, xk) = mk − nk and n0 = γt(t, x), so (3.2) reduces to showing that if (3.4)
holds and |nk| = |mk| = 1 for all k, then

|(mk − nk) · n0| = o(|nk −mk|) as k →∞.

Writing θk := cos−1(mk ·n0) and ϕk := cos−1(nk ·n0), it is not hard to see that |nk−mk| ≥
| sin θk − sinϕk| ≥ 1

2 |θk − ϕk| for k sufficiently large, and then it suffices to check that

| cos θk − cosϕk| = o(|θk − ϕk|)

for θk, ϕk → 0, which is clear.
�

Notice that condition (3.1) is equivalent to say that the two curves a′,−b′ : R→ Sn−1

do not intersect.
The following result has been proved in [18].

Corollary 3.2. Let n = 2 and let (γ0, v0) be a periodic admissible couple. Then the
curve Γ0 = Image(γ0) cannot be immersed in a global timelike extremal cylinder tangent
to (1, v0).
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Remark 3.3. We emphasize that the corollary applies only to extremal cylinders. The
proof does not rule out the possibility of smooth timelike extremal surfaces in R1+2 that
are locally (but not globally) cylindrical, see Proposition 4.1 below.

Proof. By Theorem 3.1 it is enough to show that there exist s, σ ∈ [0, E0] such that

a′(s) + b′(σ) = 0.

As |a′| = |b′| = 1 and ∫ E0

0
a′(s) ds =

∫ E0

0
−b′(σ) dσ , (3.5)

the supports of the curves a′ and −b′ are two connected arcs of S1, which necessarily
intersect. The thesis then follows from Theorem 3.1. �

Corollary 3.4. Let n = 3 and let (γ0, v0) be a periodic admissible couple. If Γ0 =
Image(γ0) can be immersed in a global timelike extremal cylinder tangent to (1, v0), then
the same holds for any periodic admissible couple (γ̂0, v̂0), sufficiently close to (γ0, v0) in
the X-topology.

Conversely, if Γ0 cannot be immersed in a global timelike extremal cylinder tangent to
(1, v0), then generically the same holds for any couple (γ̂0, v̂0) sufficiently close to (γ0, v0).

Proof. The first assertion follows immediately from the fact that the set of couples (a, b)
satisfying (3.1) is open in Xper.

The second assertion follows by noticing that the set of couples (a, b) such that the
support of a′ intersects at least two connected components of the complement in S2 of the
support of −b′ is an open set in Xper, while the set of couples (a, b) such that the support
of a′ intersects only one connected component of the complementary of the support of
−b′ is a closed set with empty interior. �

Remark 3.5. If we consider data (γ0, v0) parametrized byX2 := Xper∩
(
C2(R)× C2(R)

)
,

endowed with the stronger topology induced by C2(R)×C2(R), then Γ0 can generically be
immersed in a global E0-periodic surface tangent to (1, v0), which is a timelike extremal
surface away from a discrete set of singular points, parametrized by the finite set Sing.
Moreover, the cardinality of the singular set Sing is invariant for small perturbations
of (γ0, v0) in the X2-topology. Indeed, we observe that the couples (a, b) such that the
curves a′ and −b′ have a finite number of transversal intersections is a dense open set in
Xper with respect to the X2-topology, and the number of intersections is locally constant.
Hence the curve γ given by (2.7) parametrizes a E0-periodic timelike extremal cylinder
tangent to (1, v0), away from a singular set which is finite in [0, E0]×R3, and the number
of singularities is invariant for small perturbations of (γ0, v0).

An example of admissible couple in R3 which is immersed in a global timelike extremal
cylinder has been given in [18]. More generally, we prove in Lemma 3.6 below that any
curve in S2 whose convex hull contains a neighborhood of the origin can be realized as
the set of tangent vectors of a closed curve a such that |a′| = 1. Hence one can easily
find pairs a, b : R→ Rn, n ≥ 3 of periodic curves with the same period, such that a′ and
−b′ trace out disjoint curves in Sn−1. By Theorem 3.1, each such pair yields an example
of a globally smooth timelike extremal cylinder.
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Lemma 3.6. Assume that c : S1 → Sn−1 is a smooth closed curve such that 0 belongs
to co(Image(c)), where co(·) denotes the convex hull. Then there exists a closed curve
a : S1 → Rn, of the same smoothness as c, such that Image (a′) = Image (c).

Proof. We write c as a 2π-periodic function from R to Sn−1. By assumption there exist
points 0 < x0 < . . . < xn ≤ 2π such that

0 ∈ int (co{c(x0), . . . , c(xn)}) (3.6)

Let p : R→ R be a smooth increasing function such that p(x+ 2π) = p(x) + 2π,

p(xi) = xi, and
dkp

dxk
(xi) = 0 for every k ∈ N and i = 0, . . . , n.

Then, given positive numbers `0, . . . , `n, let Li :=
∑i

j=0 `j and define

c̃(x) :=



c(p(x)) for 0 ≤ x ≤ x0

c(x0) for x0 ≤ x ≤ x0 + L0

c(p(x− L0)) for x0 + L0 ≤ x ≤ x1 + L0

...
...

c(xn) for xn + Ln−1 ≤ x ≤ xn + Ln

c(p(x− Ln)) for xn + Ln ≤ x ≤ 2π + Ln.

We claim that one can choose positive (`i) so that
∫ 2π+Ln

0 c̃(x) dx = 0. Indeed, since∫ 2π+Ln

0
c̃(x) dx = 0 =

∫ 2π

0
c(p(x))dx+

n∑
i=0

`ic(xi),

the claim follows from (3.6).

We now fix (`i) as above and define ĉ(x) := c̃
(

(2π+Ln)x
2π

)
. Then a(x) :=

∫ x
0 ĉ(y)dy, for

0 ≤ x ≤ 2π, defines a closed curve with the the required properties. �

Corollary 3.7. Let n > 3 and let (γ0, v0) be a periodic admissible couple. Then Γ0 can
be generically immersed in a global timelike extremal cylinder tangent to (1, v0).

Proof. The assertion follows as before from the fact that the set of couples (a, b) satisfying
(3.1) is open in Xper, while the set of couples (a, b) such that the curves a′,−b′ : [0, E0]→
S2 intersect is a closed set with empty interior. �

Remark 3.8. A related question is what happens if we assume γ0 to be an embedded
curve in Rn and ask if it is contained in a global embedded timelike extremal surface in
R1+n. It is easy to check that Corollary 3.2 still holds in this case, and we expect that
Corollaries 3.4 and 3.7 also hold, with similar proofs.

Remark 3.9. As the set of periodic admissible couples which can be immersed in a global
timelike extremal cylinder is parametrized by an open subset O ⊂ Xper, it is natural to
speculate on the number of connected components of O. While it is clear from Corollary
3.2 that O = ∅ if n = 2, it is not difficult to show that O has infinitely many connected
components if n = 3, 4, while O is connected if n > 4.



ON THE REGULARITY OF TIMELIKE EXTREMAL SURFACES 9

Indeed, if n = 3 and a′,−b′ are two disjoint closed curves in S2, then the winding
number of a′ around the image of −b′ is constant on connected components of O, and
one can easily find admissible couples with any prescribed winding number. If n = 4
the linking number in S3 of the curves a′,−b′ is constant on connected components of O,
and one can find admissible couples with any prescribed linking number. If n > 4 the
assertion follows from the fact the every knot is trivial in Sn.

4. Nonuniqueness of smooth extremal surfaces

In the following statement, we say that a surface M ⊂ R1+n is locally cylindrical if, for
every t0 ∈ R, there exists an open interval I ⊂ R such that t0 ∈ I and M ∩ (I × R2) is a
cylinder in I × Rn, i.e. it can be written in the form (2.1).

Proposition 4.1. If n ≥ 3 there exist two distinct globally C∞ timelike extremal surfaces
M1,M2 in R1+n, both locally cylindrical, such that M1 and M2 coincide when t ∈ [0, δ]
for some δ > 0, in the sense that{

(t, x) ∈M1 : t ∈ [0, δ]
}

=
{

(t, x) ∈M2 :∈ [0, δ]
}
. (4.1)

The surface M2 that we construct below has the property that it is locally cylindrical
but not globally cylindrical.

In general, in geometric evolution problems, self-intersections can give rise to nonunique-
ness. The proposition shows that, even if we require smoothness and impose the “locally
cylindrical” topological constraint, one can still take advantage of self-intersections to
generate examples of nonuniqueness.

Proof. For i = 1, . . . , 3 let ai, bi be distinct C∞ maps R → Rn, periodic with period 1,
such that |a′i| = |b′i| = 1 and such that

ai(x) = bj(x) = (x, 0, . . . , 0) for all i, j and all x ∈ [−δ, δ] for some δ <
1

2
. (4.2)

Assume in addition that

{(s, σ) ∈ R× R : a′i(s) + b′j(σ) = 0 for some i, j} = ∅ . (4.3)

This says that no b′j ever passes through any point that is antipodal to any point on any

a′i. It follows easily from Lemma 3.6 that this can be accomplished.
Now for any permutation π : {1, 2, 3} → {1, 2, 3}, let (aπ, bπ) and be periodic curves

R→ Rn with period 3, defined by

(aπ, bπ)(x) = (aπ(i)(x), bπ(i)(x)) for x ∈ [i− 1, i] mod 3.

Next, define γπ(t, x) := 1
2(aπ(x+ t) + bπ(x− t)),

Letting id denote the identity permutation, we claim that for every π,

γπ(t, ·) and γid(t, ·) parametrize the same curve for 0 ≤ t ≤ δ. (4.4)

Indeed, if t ≥ 0, we have

γπ(t, x) =

{
1
2(aπ(i)(x+ t) + bπ(i)(x− t)) if i− 1 ≤ x− t ≤ x+ t ≤ i mod 3
1
2(aπ(i+1)(x+ t) + bπ(i)(x− t)) if i− 1 ≤ x− t ≤ i ≤ x+ t mod 3 ,

(4.5)
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where addition of indices is understood mod 3. If 0 ≤ t ≤ δ, it follows from this and (4.2)
that

γπ(t, x) = (x− i, 0 . . . , 0) if i− 1 ≤ x− t ≤ i ≤ x+ t,

for every permutation π. Then one can see by inspection of (4.5) that (4.4) holds (in
fact it also holds for t ∈ [−δ, 0], by essentially the same argument). Next, note that (4.5)
implies that

γπ(1
2 , x) = 1

2(aπ(i+1)(x+ 1
2) + bπ(i)(x− 1

2)) if i− 1
2 ≤ x ≤ i+ 1

2 mod 3

and from this one can see that in general γid(1
2 , ·) 6= γπ(1

2 , ·) if for example π is an odd
permutation.

Finally, define ψπ(t, x) = (t, γπ(t, x)). Let M1 be the surface parametrized by ψid, and
let M2 be the surface that agrees with M1 when t ≤ δ, and for t ≥ δ/2 is parametrized by
ψπ(t, x) for some odd permutation π. This definition makes sense in view of (4.4). These
surfaces have all the stated properties. In particular, it follows from (4.3) and Theorem
4.1 that M1,M2 are both smoothly immersed and locally cylindrical.

(Indeed, note that since γπ and γid as constructed above are both periodic with period
3 in the t variable, we are free to switch back and forth at will between γπ and γid every
3 units of t.) �

Remark 4.2. When n = 2, a similar argument yields two functions γid, γπ of the form
(2.7), (2.8) that parametrize the same curve for |t| ≤ δ, but not for all t. These functions
γid, γπ fail to be global timelike immersions, see Theorem 5.1 below, but it is presumably
possible to arrange that the breakdown of uniqueness (for the image manifolds) occurs
before the breakdown of regularity.

Remark 4.3. In the proof of Proposition 4.1, if a1 = a2 = a3 and b1, b2, b3 are distinct,
then one can see from (4.5) that γid(t, ·) and γπ(t, ·) parametrize the same curve for every
t. This shows that the different admissible pairs can generate the same extremal surface.

Remark 4.4. We now provide an example of nonuniqueness of (weakly) extremal sur-
faces, due to the appearance of singularities in the evolution. Let γ1(t, x) = 1

2(a1(x+ t) +

a1(x − t)) and γ2(t, x) = 1
2(a2(x + t) + a2(x − t)) be orthogonal parametrization of two

different global extremal cylinders M1 and M2, with a1, a2 arclength parametrizations of
the boundaries of two distinct uniformly convex, centrally symmetric planar sets, both
periodic with period E0. Symmetry implies that ai(x + E0/2) = −ai(x) for all x and
i = 1, 2, and thus

γi(E0/4, x) =
1

2

(
ai(x+ E0/4) + ai(x− E0/4)

)
= 0 for x ∈ R, i ∈ {1, 2}.

In other words, γ1, γ2 both have an extinction singularity at the origin at time t̄ := E0/4.
Note that the time derivatives at time t̄ of γ1 and γ2 are respectively given by a′1(x+ t̄)

and a′2(x+ t̄).
Define now γ(t, x) = γ1(t, s(x)) for t < t̄ and γ(t, x) = γ2(t, x) for t ≥ t̄, where s(x) is

a reparametrization of [0, E0] such that

a′1(s(x) + t̄) = a′2(x+ t̄)
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for all x ∈ [0, E0], i.e.
s(x) = −t̄+ (a′1)−1 ◦ a′2(x+ t̄).

It follows that the derivatives of γ are continuous at (x, t̄) for any x ∈ R, and hence γ
may be suitably extended to a C1 nonorthogonal parametrization of a global (weakly)
extremal cylinder M that agrees respectively with M1 and M2 on disjoint time intervals.

5. dimension of the singular set

Given γ(t, x) = (a(x+t)+b(x−t))/2, with a, b satisfying (2.8), and ψ(t, x) = (t, γ(t, x)),
we now prove some upper bounds on the size of the singular sets Sing and Sing∗ associ-
ated to the cylinder M = Image(ψ).

In the following theorem, which is one of the main results of this paper, “dim” always
means (Euclidean) Hausdorff dimension1.

Theorem 5.1. Assume that a, b ∈ Ck(R,Rn), with k ∈ N, with (a, b) ∈ X. Then,

1. H1+ 1
k (Sing) = 0 and dim(Sing∗) ≤ dim(Sing) ≤ 1 + 1

k .

2. It can happen that dim(Sing∗) = 1 + 1
k .

3. When n = 2 and (a, b) ∈ Xper, (at least) one of the following properties holds:

- there exists t0 such that γx(t0, x) = 0 for all x,
- Sing∗ is at least one-dimensional, and the set

{t ∈ R : ∃x ∈ R such that ψ(t, x) ∈ Sing∗}
contains an open interval.

Remark 5.2. In fact it is clear from the proof that conclusion 1 holds for any surface
that is given locally as the image of a Ck map, including any surface that can be written
locally in the form (2.7) with a, b ∈ Ck. In particular, this applies to noncompact surfaces,
as well as local cylinders of the type appearing in Proposition 4.1.

Also, we prove conclusion 2 for global cylinders, the most restrictive (topological) class
of functions considered in this paper, so it follows that it holds for other classes of surfaces
— noncompact, locally cylindrical — as well.

Note also that Remark 3.3 applies to conclusion 3.
It is natural to wonder whether the results we prove here for the weak solutions given

by the explicit formula (2.7) still hold in a larger class of weak solutions, and also whether
any analogous results hold for higher-dimensional extremal surfaces.

Conclusion 3 is a refinement of a result from [18]. Our proof gives more details than
[18] concerning the situation described in (5.4), since we found this point not completely
straightforward. The proof of 3 shows that, if for instance a is a nonconvex curve in R2

and b(x) = −a(x+ E0/2), then both the alternatives of conclusion 3 hold.
The rest of this section is devoted to the proof of Theorem 5.1.

Proof of 1. The estimateH1+ 1
k (Sing) = 0 follows directly from a refined version of Sard’s

Theorem, see Federer [9, 3.4.3]. �

1It is arguably slightly unnatural to characterize a singular set in Minkowski space by the Euclidean
Hausdorff dimension, but note that this quantity is invariant with respect to Lorentz transformations.
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Remark 5.3. In [3] one can find a version of Sard’s Theorem more refined than the one
cited above, which gives a necessary and sufficient condition for a set A ⊂ R to be the
set of critical values of some function in Ck,α(R,Rn). If a, b ∈ Ck,α for α ∈ (0, 1) and k
is a positive integer, these result implies that

H
1

k+α

(
Sing ∩

(
{s} × Rn

))
= 0 for every s ∈ R.

It is reasonable to conjecture, and may be even easy to prove, that under these hy-

potheses one has H1+ 1
k+α (Sing) = 0, but this does not immediately follow from [3].

However, straightforward modifications of the proof of 2 below show that it can happen
that dim(Sing∗) = 1 + 1

k+α , when a, b ∈ Ck,α.

Proof of 2. It is enough to construct an example when n = 2. In order to do it, we will
need the following result:

Lemma 5.4. For every positive integer k, there exists f ∈ Ck([0, 1];R) such that

dim(f(Σ)) =
1

k
, where Σ :=

{
x ∈ [0, 1] : f ′ changes sign near x

}
. (5.1)

The proof, which we defer to the end of this section, is a small modification of a classical
argument used by Federer to prove the sharpness of his refined version of Sard’s Theorem
which we cited in the proof of 1 above.

We may assume that the function f from Lemma 5.4 satisfies |f ′| ≤ 1
2 , since multiplying

a function by a constant does not change the dimension of the associated set Σ.
We define g ∈ Ck([0, 1]) such that g′ = (1−f ′2)1/2 for x ∈ [0, 1], and we fix two periodic

maps a, b ∈ Ck(R;R2), with the same period E0 > 3, parametrized by arclength and such
that

a(x) = (f(x), g(x)) for x ∈ [0, 1], b(x) = (0,−x) for x ∈ [−1, 2].

Then

γx(t, x) =
1

2
(f ′(x+ t), g′(x+ t)− 1) if x+ t ∈ [0, 1], |t| ≤ 1

2
,

and since |g′− 1| ≤ Cf ′2, it follows that γx
|γx| is discontinuous at all points (t, x) such that

|t| ≤ 1
2 and x+ t ∈ Σ. We then deduce that

Sing∗ ⊃
{

(t,
f(x+ t)

2
,
g(x+ t)− (x− t)

2
) : x+ t ∈ Σ, |t| ≤ 1

2

}
=

{
(0,

f(s)

2
,
g(s)− s

2
) + (t, 0, t) : s ∈ Σ, |t| ≤ 1

2

}
.

If we let

A0 :=

{
1

2
(f(x), g(x) + x) : x ∈ Σ

}
,

then dim(Sing∗) ≥ dim(A0) + 1, since Sing∗ ⊂ R1+2 contains a copy of A0 ⊂ R2 trans-
lated along a line segment. Moreover, since 1

2f(Σ) is the projection of A0 on the x-axis,
we conclude from (5.1) that

dim(Sing∗) ≥ 1 + dim(A0) ≥ 1 + dim
(1

2
f(Σ)

)
= 1 +

1

k
.



ON THE REGULARITY OF TIMELIKE EXTREMAL SURFACES 13

We remark that, although the map γ constructed above is singular for t = 0, one
can easily modify the construction to arrange that γ is regularly immersed at t = 0 and
develops singularities as described above at a later time. Indeed, γ is a regular immersion
at t = 0 if a′ = eiα, b′ = −eiβ, and α < β < α + 2π, and this condition can be achieved,
while essentially preserving the above construction, by choosing E0 large enough, taking
a certain amount of care in how α is defined in [1, E0] and β in [2, E0 − 1], and then
replacing a(·) by a(· − E0/2). �

Proof of 3. Extend a′, b′ to E0-periodic maps from R to S1, and let α, β : R→ R be two
continuous functions such that

a′(x) = eiα(x), −b′ = eiβ(x). (5.2)

As in the proof of Corollary 3.2, a′ and b′ satisfy (3.5), which implies that the images of
a′ and −b′ are closed arcs with intersection of positive length. In particular, by adding
2πk to α for an appropriate integer k, we can assume that the set Image(α) ∩ Image(β)
contains an interval of positive length. It then follows that the function

F (t, x) := α(x+ t)− β(x− t)

takes both positive and negative values. For example, to find a point where F > 0, choose
s, σ ∈ R such that α(s) > β(σ), and let (t, x) = (1

2(s− σ), 1
2(s+ σ)).

We shall consider 2 cases:
Case 1. For every t0, the function x 7→ F (t0, x) does not change sign.

Then, since F assumes both positive and negative values, there must be some t0 such
that F (t0, x) = 0 for all x. It follows that γx(t0, x) = 0 for all x.
Case 2. There exists some t0 such that x 7→ F (t0, x) changes sign.

Then by continuity x 7→ F (t, x) changes sign for all t in a neighborhood of t0.
Fix such a t̄, and let S be a connected component of the set {x : F (t̄, x) = 0} such that

F assumes both positive and negative values in every neighborhood of S. As observed in
[18], it follows from (5.2) that the unit tangent τ = γx

|γx| is given by

γx
|γx|

(t̄, x) = sign

(
sin

(
1

2
F (t̄, x)

))
i e

i
2
G(t̄,x), G(t̄, x) := α(x+ t̄) + β(x− t̄) (5.3)

wherever γx 6= 0 (for simplicity of notation we identify R2 with C). Therefore, if S
consists of a single point (t̄, x), then limy→x

γx
|γx|(t̄, y) does not exist, which implies that

ψ(t̄, x) ∈ Sing∗.
Suppose now that S is an interval, say S = [s0, s1]. Then γx(t̄, x) = 0 for all x ∈ S, so

that x 7→ γ(t̄, x) is constant for x ∈ S. It follows that ψ(t̄, s0) ∈ Sing∗ unless

τ(t̄, s−0 ) = τ(t̄, s+
1 ), (5.4)

where τ(t̄, s−0 ) := limx↗s0 τ(t̄, x) and τ(t̄, s+
1 ) := limx↘s1 τ(t̄, x). (Condition (5.4) includes

the assertion that both limits exist.) Recalling that F changes sign near S, we deduce
from (5.3) that (5.4) can only occur if sign(F (t̄, s−0 )) = − sign(F (t̄, s+

1 )) and

1

2
(G(t̄, s1)−G(t̄, s0)) = π mod 2π. (5.5)
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Assume this holds and let

x0 := min
{
x ∈ S : |α(x+ t̄)− α(s0 + t̄)| = π

3

}
> s0 .

Since 0 = F (t̄, x) = α(x+ t̄)− β(x− t̄) for all x ∈ S, we get

F (t̄+ ε, x0 − |ε|) = α(x0 + t̄+ ε− |ε|)− β(x0 − t̄− ε− |ε|)
= α(x0 + t̄+ ε− |ε|)− α(x0 + t̄− ε− |ε|) 6= 0

for all ε such that x0 − 2|ε| > s0. The last inequality follows from the fact that |α(x0 +
t̄)− α(s0 + t̄)| = π/3, while |α(x0 + t̄− 2|ε|)− α(s0 + t̄)| < π/3, by the choice of x0.

From the equality F (t̄, x) = 0, for these ε it also follows that

F (t̄− ε, x0 − |ε|) = −F (t̄+ ε, x0 − |ε|).
In particular, the function ε 7→ F (t̄+ ε, x0 − |ε|) changes sign at ε = 0.

Fix now y0 < s0 such that F (t̄, y0) 6= 0 and

|α(y + t̄)− α(s0 + t̄)| < π

3
for all y ∈ [y0, s0].

For all ε sufficiently small, F (t + ε, y0 + |ε|) has the same sign as F (t̄, y0). Thus, for all
ε in an interval of the form (−δ, 0) or (0, δ), the function x 7→ F (t̄ + ε, x) must change
sign between y0 + |ε| and x0− |ε|. For such ε, the interval (y0 + |ε|, x0− |ε|) must contain

a connected component Ŝ = [ŝ0, ŝ1] of {x : F (t̄ + ε, x) = 0} such that F assumes both

positive and negative values in every neighborhood of Ŝ. Moreover, our choice of y0 and
x0 guarantees that, possibly reducing δ, we have

π > |α(ŝ1 + t̄+ ε)− α(s0 + t̄)|+ |α(s0 + t̄)− α(ŝ0 + t̄+ ε)|
> |α(ŝ1 + t̄+ ε)− α(ŝ0 + t̄+ ε)|

=
1

2
|G(t̄+ ε, ŝ1)−G(t̄+ ε, ŝ0)|

where the last equality follows from the fact that F (t̄ + ε, s) = 0 in [ŝ0, ŝ1]. Thus (5.5)
cannot hold, and hence for all ε in the interval that we have found, ψ(t̄+ ε, ŝ0) ∈ Sing∗,
thus completing the proof of 3. �

Finally we give a proof of Lemma 5.4.

Proof of Lemma 5.4. We divide the proof into three steps.
Step 1. We first recall Federer’s proof that for any k ∈ N and µ ∈ (0, 1

k ), there exists

g ∈ Ck([0, 1]) such that

Hµ
({
g(x) : g′(x) = 0

})
> 0. (5.6)

For σ ∈ (0, 1) we will write Cσ to denote the “middle σ” Cantor-type set, so that

Cσ = ∩∞`=1 ∪i∈{0,1}` Cσ(i)

where, for every ` and every i ∈ {0, 1}`, Cσ(i) is a closed interval of length (1−σ
2 )`,

and Cσ(i1, . . . , i`, 0), Cσ(i1, . . . , i`, 1) are obtained by removing from Cσ(i1, . . . , i`) a cen-
tered open interval of length σ(1−σ

2 )`. As usual we start with Cσ(0) = [0, 1
2(1 − σ)] and

Cσ(1) = [1
2(1 + σ)2, 1], and we label the intervals so that Cσ(i1, . . . , i`, 0) lies to the left

of Cσ(i1, . . . , i`, 1).
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Fix now ν and δ > 0 such that (k + δ)µ = ν < 1, and let α, β ∈ (0, 1) satisfy(
1− α

2

)µ
=

(
1− β

2

)ν
=

1

2
.

These numbers are chosen so that Cα and Cβ have dimension µ and ν respectively, and
Hµ(Cα),Hν(Cβ) > 0.

Notice that there is a natural map g0 : Cβ → Cα, characterized by

g0(Cβ ∩ Cβ(i)) = Cα ∩ Cα(i) for every ` ∈ N and i ∈ {0, 1}`.

As Federer noted in [9, 3.4.4], g0 extends to a Ck map g : [0, 1] → [0, 1] by a routine
application of the Whitney extension Theorem. The point is that, given x, y ∈ Cβ, we can

fix ` ∈ N and i ∈ {0, 1}` such that x, y ∈ Cβ(i), but x and y belong to different subintervals
of Cβ(i). Then g0(x) and g0(y) both belong to Cα(i), and from this information one can
easily check that

|x− y| ≥ β(
1− β

2
)`, |g0(x)− g0(y)| ≤ (

1− α
2

)` = (
1− β

2
)(k+δ)`.

As a result we get

|g0(x)− g0(y)| ≤ C(
1− β

2
)δ`|x− y|k = o(|x− y|k),

hence Whitney’s Theorem yields a Ck extension of g as required.
It is also clear that g′ = 0 in Cβ, so that every point of Cα is a critical value of g, and

(5.6) holds.
Step 2. We modify the above construction to produce a function f ∈ Ck([0, 1]) such

that, for a fixed µ < 1
k , we have

Hµ(f(Σ)) ≥ 0 where Σ :=
{
x ∈ [0, 1] : f ′ changes sign near x

}
. (5.7)

To do this, we fix α, β as above and define f0 : Cβ → Cα, characterized by

f0(Cα ∩ Cα(i)) = Cβ ∩ Cβ(i∗) for every ` ∈ N and i ∈ {0, 1}`,

where for every k and every i ∈ {0, 1}k, we define i∗ by

i∗j = ij if j is odd, i∗j = ij + 1 mod 2 if j is even.

Then, as in the classical argument described above, f0 extends to a Ck function f :
[0, 1] → R. In addition, we have the inclusion Cβ ⊂ Σ, since every interval Cα(i) for i
odd contains points such that x < y and f(x) < f(y), whereas for i even Cα(i) contains
points such that x < y and f(x) > f(y).

Step 3. For every m > k, let fm be a function satisfying (5.7) with µ = 1
k −

1
m , and

extend fm so that f ′m = 0 on R \ [0, 1]. We define

f(x) :=
∞∑
k=1

hmfm
(
2m+1(x− 2−m)

)
for a sequence (hm) decreasing to zero fast enough so that the series converges in Ck.
Then f ∈ Ck and satisfies (5.1). �
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