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Abstract

We consider an open connected set Ω and a smooth potential U which is positive in Ω and
vanishes on ∂Ω. We study the existence of orbits of the mechanical system

ü = Ux(u),

that connect different components of ∂Ω and lie on the zero level of the energy. We allow that ∂Ω
contains a finite number of critical points of U . The case of symmetric potential is also considered.

1 Introduction

Let U : Rn → R be a function of class C2. We assume that Ω ⊂ Rn is a connected component of
the set {x ∈ Rn : U(x) > 0} and that ∂Ω is compact and is the union of N ≥ 1 distinct nonempty
connected components Γ1, . . . ,ΓN . We consider the following situations

H N ≥ 2 and, if Ω is unbounded, there is r0 > 0 and a non-negative function σ : [r0,+∞)→ R such

that
∫ +∞
r0

σ(r)dr = +∞ and √
U(x) ≥ σ(|x|), x ∈ Ω, |x| ≥ r0. (1.1)

Hs Ω is bounded, the origin 0 ∈ Rn belongs to Ω and U is invariant under the antipodal map

U(−x) = U(x), x ∈ Ω.

Condition (1.1) was first introduced in [7]. A sufficient condition for (1.1) is that lim inf |x|→∞ U(x) > 0.

We study non constant solutions u : (T−, T+)→ Ω, of the equation

ü = Ux(u), Ux =
(∂U
∂x

)T
, (1.2)

that satisfy
lim
t→T±

d(u(t), ∂Ω) = 0, (1.3)

with d the Euclidean distance, and lie on the energy surface

1

2
|u̇|2 − U(u) = 0. (1.4)

We allow that the boundary ∂Ω of Ω contains a finite set P of critical points of U and assume
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H1 If Γ ∈ {Γ1, . . . ,ΓN} has positive diameter and p ∈ P ∩Γ then p is a hyperbolic critical point of U .

If Γ has positive diameter, then hyperbolic critical points p ∈ Γ correspond to saddle-center equilib-
rium points in the zero energy level of the Hamiltonian system associated to (1.2). These points are
organizing centers of complex dynamics, see [6].
Note that H1 does not exclude that some of the Γj reduce to a singleton, say {p}, for some p ∈ P . In
this case nothing is required on the behavior of U in a neighborhood of p aside from being C2.
A comment on H and Hs is in order. If P is nonempty u ≡ p for p ∈ P is a constant solution of (1.2)
that satisfies (1.3) and (1.4). To avoid trivial solutions of this kind we require N ≥ 2 in H, and look
for solutions that connect different components of ∂Ω. In Hs we do not exclude that ∂Ω is connected
(N = 1) and avoid trivial solutions by restricting to a symmetric context and to solutions that pass
through 0.

We prove the following results.

Theorem 1.1. Assume that H and H1 hold. Then for each Γ− ∈ {Γ1, . . . ,ΓN} there exist Γ+ ∈
{Γ1, . . . ,ΓN} \ {Γ−} and a map u∗ : (T−, T+) → Ω, with −∞ ≤ T− < T+ ≤ +∞, that satisfies (1.2),
(1.4) and

lim
t→T±

d(u∗(t),Γ±) = 0. (1.5)

Moreover, T− > −∞ (resp. T+ < +∞) if and only if Γ− (resp. Γ+) has positive diameter. If
T− > −∞ it results

lim
t→T−

u∗(t) = x−,

lim
t→T−

u̇∗(t) = 0,
(1.6)

for some x− ∈ Γ− \ P . An analogous statement holds if T+ < +∞.

Theorem 1.2. Assume that Hs and H1 hold. Then there exist Γ+ ∈ {Γ1, . . . ,ΓN} and a map
u∗ : (0, T+)→ Ω, with 0 < T+ ≤ +∞, that satisfies (1.2), (1.4) and

lim
t→T+

d(u∗(t),Γ+) = 0.

Moreover, T+ < +∞ if and only if Γ+ has positive diameter. If T+ < +∞ it results

lim
t→T+

u∗(t) = x+,

lim
t→T+

u̇∗(t) = 0,

for some x+ ∈ Γ+ \ P .

We list a few straightforward consequences of Theorems 1.1 and 1.2.

Corollary 1.3. Theorem 1.1 implies that, if ∂Ω = P , given p− ∈ P there is p+ ∈ P \ {p−} and a
heteroclinic connection between p− and p+, that is a solution u∗ : R → Rn of (1.2) and (1.4) that
satisfies

lim
t→±∞

u∗(t) = p±.

The problem of the existence of heteroclinic connections between two isolated zeros p± of a non-
negative potential has been recently reconsidered by several authors. In [1] existence was established
under a mild monotonicity condition on U near p±. This condition was removed in [8], see also [2].
The most general results, equivalent to the consequence of Theorem 1.1 discussed in Section 2.1, were
recently obtained in [7] and in [11], see also [3]. All these papers establish existence by a variational
approach. In [1], [8] and [2] by minimizing the action functional, and in [7] and [11] by minimizing the
Jacobi functional.
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Corollary 1.4. Theorem 1.1 implies that, if Γ− = {p} for some p ∈ P and the elements of {Γ1, . . . ,ΓN}\
{Γ−} have all positive diameter, there exists a nontrivial orbit homoclinic to p that satisfies (1.2), (1.4).

Proof. Let v∗ : R→ Ω ∪ {x+} be the extension defined by

v∗(T+ + t) = u∗(T+ − t), t ∈ (0,+∞), v∗(T+) = x+,

of the solution u∗ : (−∞, T+) → Ω given by Theorem 1.1. The map v∗ so defined is a smooth
non-constant solution of (1.2) that satisfies

lim
t→±∞

v∗(t) = p.

Corollary 1.5. Theorem 1.1 implies that, if all the sets Γ1, . . . ,ΓN have positive diameter, given
Γ− ∈ {Γ1, . . . ,ΓN}, there exist Γ+ ∈ {Γ1, . . . ,ΓN} \ {Γ−} and a periodic solution v∗ : R→ Ω of (1.2)
and (1.4) that oscillates between Γ− and Γ+. This solution has period T = 2(T+ − T−).

Proof. The solution v∗ is the T -periodic extension of the map w∗ : [T−, 2T+ − T−] → Ω defined by
w∗(t) = u∗(t) for t ∈ (T−, T+), where u∗ is given by Theorem 1.1, and

w∗(T±) = x±,

w∗(T+ + t) = u∗(T+ − t), t ∈ (0, T+ − T−].

The problem of existence of heteroclinic, homoclinic and periodic solutions of (1.2), in a context
similar to the one considered here, was already discussed in [2] where ∂Ω is allowed to include continua
of critical points. Our result concerning periodic solutions extends a corresponding result in [2] where
existence was established under the assumption that P = ∅.

The following result is a direct consequence of Theorem 1.2.

Corollary 1.6. Theorem 1.2 implies that, if all the sets Γ1, . . . ,ΓN have positive diameter, there exists
Γ+ ∈ {Γ1, . . . ,ΓN} and a periodic solution v∗ : R→ Ω of (1.2) and (1.4) that satisfies

v∗(−t) = −v∗(t), t ∈ R.

This solution has period T = 4T+, with T+.

Proof. The solution v∗ is the T -periodic extension of the map w∗ : [−2T+, 2T+] → Ω defined by
w∗(t) = u∗(t) for t ∈ (0, T+), where u∗ is given by Theorem 1.2, and by

w∗(t) = −w∗(−t), t ∈ (−T+, 0),

w∗(0) = 0, w∗(±T+) = ±x+,

w∗(T+ + t) = w∗(T+ − t), t ∈ (0, T+],

w∗(−T+ + t) = w∗(−T+ − t), t ∈ [−T+, 0).

In particular the solution oscillates between x+ and −x+ and this is true also when ∂Ω is connected
(N = 1).
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2 Proof of Theorems 1.1 and 1.2

We recall a classical result.

Lemma 2.1. Let G : Rn → R be a smooth bounded and non-negative potential, I = (a, b) a bounded
interval. Define the Jacobi functional

JG(q, I) =
√

2

∫
I

√
G(q(t))|q̇(t)|dt

and the action functional

AG(q, I) =

∫
I

(1

2
|q̇(t)|2 +G(q(t))

)
dt.

Then

(i)
JG(q, I) ≤ AG(q, I), q ∈W 1,2(I;Rn)

with equality sign if and only if

1

2
|q̇(t)|2 −G(q(t)) = 0, t ∈ I.

(ii)
min
q∈Q
JG(q, I) = min

q∈Q
AG(q, I),

where
Q = {q ∈W 1,2(I;Rn) : q(a) = qa, q(b) = qb}.

When G = U we shall simply write J ,A for JU ,AU .

We now start the proof of Theorem 1.1. Choose Γ− ∈ {Γ1, . . . ,ΓN} and set

d = min{|x− y| : x ∈ Γ−, y ∈ ∂Ω \ Γ−}.

For small δ ∈ (0, d) let Oδ = {x ∈ Ω : d(x,Γ−) < δ} and let U0 = 1
2 minx∈∂Oδ∩Ω U(x). We note that

U0 > 0 and define the admissible set

U =
{
u ∈W 1,2((Tu−, T

u
+);Rn) : −∞ < Tu− < Tu+ < +∞,

u((Tu−, T
u
+)) ⊂ Ω, U(u(0)) = U0, u(Tu−) ∈ Γ−, u(Tu+) ∈ ∂Ω \ Γ−

}
.

(2.1)

We determine the map u∗ in Theorem 1.1 as the limit of a minimizing sequence {uj} ⊂ U of the action
functional

A(u, (Tu−, T
u
+)) =

∫ Tu+

Tu−

(1

2
|u̇(t)|2 + U(u(t))

)
dt,

Note that in the definition of U the times Tu− and Tu+ are not fixed but, in general, change with u.
Note also that the condition U(u(0)) = U0 in (2.1) is a normalization which can always be imposed
by a translation of time and has the scope of eliminating the loss of compactness due to translation
invariance. Let x̄− ∈ Γ− and x̄+ ∈ ∂Ω \ Γ− be such that |x̄+ − x̄−| = d and set

ũ(t) = (1− (t+ τ))x̄− + (t+ τ)x̄+, t ∈ [−τ, 1− τ ],

where τ ∈ (0, 1) is chosen so that U(ũ(0)) = U0. Then ũ ∈ U , T ũ− = −τ , T ũ+ = 1− τ and

A(ũ, (−τ, 1− τ)) = a < +∞.
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Next we show that there are constants M > 0 and T0 > 0 such that each u ∈ U with

A(u, (Tu−, T
u
+)) ≤ a, (2.2)

satisfies

‖u‖L∞((Tu−,T
u
+);Rn) ≤M,

Tu− ≤ −T0 < T0 ≤ Tu+.
(2.3)

The L∞ bound on u follows from H and from Lemma 2.1, in fact, if Ω is unbounded, |u(t̄)| = M for
some t̄ ∈ (Tu−, T

u
+) implies

a ≥ A(u, (Tu−, t̄)) ≥
∫ t̄

Tu−

√
2U(u(t))|u̇(t)|dt ≥

√
2

∫ M

r0

σ(s)ds.

The existence of T0 follows from

d2
1

|Tu−|
≤
∫ 0

Tu−

|u̇(t)|2dt ≤ 2a,
d2

1

Tu+
≤
∫ Tu+

0

|u̇(t)|2dt ≤ 2a,

where d1 = d(∂Ω, {x : U(x) > U0}).
Let {uj} ⊂ U be a minimizing sequence

lim
j→+∞

A(uj , (T
uj
− , T

uj
+ )) = inf

u∈U
A(u, (Tu−, T

u
+)) := a0 ≤ a. (2.4)

We can assume that each uj satisfies (2.2) and (2.3). By considering a subsequence, that we still denote
by {uj}, we can also assume that there exist T∞− , T∞+ with −∞ ≤ T∞− ≤ −T0 < T0 ≤ T∞+ ≤ +∞ and
a continuous map u∗ : (T∞− , T

∞
+ )→ Rn such that

lim
j→+∞

T
uj
± = T∞± ,

lim
j→+∞

uj(t) = u∗(t), t ∈ (T∞− , T
∞
+ ),

(2.5)

and in the last limit the convergence is uniform on bounded intervals. This follows from (2.3) which
implies that the sequence {uj} is equi-bounded and from (2.2) which implies

|uj(t1)− uj(t2)| ≤
∣∣∣∣∫ t2

t1

|u̇j(t)|dt
∣∣∣∣ ≤ √a|t1 − t2| 12 , (2.6)

so that the sequence is also equi-continuous.
By passing to a further subsequence we can also assume that uj ⇀ u∗ in W 1,2((T1, T2);Rn) for

each T1, T2 with T∞− < T1 < T2 < T∞+ . This follows from (2.2), which implies

1

2

∫ T
uj
+

T
uj
−

|u̇j |2dt ≤ A(uj , (T
uj
− , T

uj
+ )) ≤ a,

and from the fact that each map uj satisfies (2.3) and therefore is bounded in L2((T
uj
− , T

uj
+ );Rn).

We also have
A(u∗, (T∞− , T

∞
+ )) ≤ a0. (2.7)

Indeed, from the lower semicontinuity of the norm, for each T1, T2 with T∞− < T1 < T2 < T∞+ we have∫ T2

T1

|u̇∗|2dt ≤ lim inf
j→+∞

∫ T2

T1

|u̇j |2dt.
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This and the fact that uj converges to u∗ uniformly in [T1, T2] imply

A(u∗, (T1, T2)) ≤ lim inf
j→+∞

A(uj , (T1, T2)) ≤ lim inf
j→+∞

A(uj , (T
uj
− , T

uj
+ )) = a0.

Since this is valid for each T∞− < T1 < T2 < T∞+ the claim (2.7) follows.

Lemma 2.2. Define T∞− ≤ T− ≤ −T0 < T0 ≤ T+ ≤ T∞+ by setting

T− = inf{t ∈ (T∞− , 0] : u∗((t, 0]) ⊂ Ω}
T+ = sup{t ∈ (0, T∞+ ) : u∗([0, t)) ⊂ Ω}.

Then

(i)
A(u∗, (T−, T+)) = a0. (2.8)

(ii) T+ < +∞ implies limt→T+
u∗(t) = x+ for some x+ ∈ Γ+ and Γ+ ∈ {Γ1, . . . ,ΓN} \ {Γ−}.

(iii) T+ = +∞ implies
lim

t→+∞
d(u∗(t),Γ+) = 0, (2.9)

for some Γ+ ∈ {Γ1, . . . ,ΓN} \ {Γ−}.

Corresponding statements apply to T−.

Proof. We first prove (ii), (iii). If T+ < +∞ the existence of limt→T+
u∗(t) follows from (2.6) which

implies that u∗ is a C0, 12 map. The limit x+ belongs to ∂Ω and therefore to Γ+ for some Γ+ ∈
{Γ1, . . . ,ΓN}. Indeed, x+ 6∈ ∂Ω would imply the existence of τ > 0 such that, for j large enough,

d(uj([T+, T+ + τ ]), ∂Ω) ≥ 1

2
d(x+, ∂Ω),

in contradiction with the definition of T+. If T+ = +∞ and (iii) does not hold there is δ > 0 and a
diverging sequence {tj} such that

d(u∗(tj), ∂Ω) ≥ δ.

Set Um = mind(x,∂Ω)=δ U(x) > 0. From the uniform continuity of U in {|x| ≤ M} (M as in (2.3)) it
follows that there is l > 0 such that

|U(x1)− U(x2)| ≤ 1

2
Um, for |x1 − x2| ≤ l, x1, x2 ∈ {|x| ≤M}.

This and u∗ ∈ C0, 12 imply

U(u∗(t)) ≥ 1

2
Um, t ∈ Ij =

(
tj −

l2

a
, tj +

l2

a

)
,

and, by passing to a subsequence, we can assume that the intervals Ij are disjoint. Therefore for each
T > 0 we have ∑

tj≤T

l2Um
a
≤
∫ T

0

U(u∗(t))dt ≤ a0,

which is impossible for T large. This establishes (2.9) for some Γ+ ∈ {Γ1, . . . ,ΓN}. It remains to show
that Γ+ 6= Γ−. This is a consequence of the minimizing character of {uj}. Indeed, Γ+ = Γ− would
imply the existence of a constant c > 0 such that limj→∞A(uj , (T

uj
− , T

uj
+ )) ≥ a0 + c.
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Now we prove (i). T+ − T− < +∞, implies that u∗ is an element of U with Tu
∗

± = T±. It follows
that A(u∗, (T−, T+)) ≥ a0, which together with (2.7) imply (2.8). Assume now T+ − T− = +∞.
If T+ = +∞, (2.9) implies that, given a small number ε > 0, there are tε and x̄ε ∈ ∂Ω such that
|u∗(tε)− x̄ε| = ε and the segment joining u∗(tε) to x̄ε belongs to Ω. Set

vε(t) = (1− (t− tε))u∗(tε) + (t− tε)x̄ε, t ∈ (tε, tε + 1].

From the uniform continuity of U there is ηε > 0, limε→0 ηε = 0, such that U(vε(t)) ≤ ηε, for
t ∈ [tε, tε + 1]. Therefore we have

A(vε, (tε, tε + 1)) ≤ 1

2
ε2 + ηε.

If T− > −∞ the map uε = 1[T−,tε]u
∗ + 1(tε,tε+1]vε belongs to U and it results

a0 ≤ A(uε, (T−, tε + 1)) = A(u∗, (T−, tε)) +A(vε, (tε, tε + 1)) ≤ A(u∗, (T−, T+)) +
1

2
ε2 + ηε.

Since this is valid for all small ε > 0 we get

a0 ≤ A(u∗, (T−, T+)),

that together with (2.7) establishes (2.8) if T− > −∞ and T+ = +∞. The discussion of the other
cases where T+ − T− = +∞ is similar.

We observe that there are cases with T+ < T∞+ and/or T− > T∞− , see Remark 2.

Lemma 2.3. The map u∗ satisfies (1.2) and (1.4) in (T−, T+).

Proof. 1. We first show that for each T1, T2 with T− < T1 < T2 < T+ we have

A(u∗, (T1, T2)) = inf
v∈V
A(v, (T1, T2)), (2.10)

where
V = {v ∈W 1,2((T1, T2);Rn) : v(Ti) = u∗(Ti), i = 1, 2; v([T1, T2]) ⊂ Ω}.

Suppose instead that there are η > 0 and v ∈ V such that

A(v, (T1, T2)) = A(u∗, (T1, T2))− η.

Set wj : (T
uj
− , T

uj
+ )→ Ω defined by

wj(t) =


uj(t), t ∈ (T

uj
− , T1] ∪ [T2, T

uj
+ ),

v(t) +
T2 − t
T2 − T1

δ1j +
t− T1

T2 − T1
δ2j , t ∈ (T1, T2),

where δij = uj(Ti)− u∗(Ti), i = 1, 2, with uj as in (2.4). Define vj : [T
vj
− , T

vj
+ ]→ Rn by

vj(t) = wj(t− τj),

where τj is such that U(vj(0)) = U0, as in (2.1). Note that

A(vj , (T
vj
− , T

vj
+ )) = A(wj , (T

uj
− , T

uj
+ )). (2.11)

From (2.5) we have limj→∞ δij = 0, i = 1, 2, so that

lim
j→+∞

A(wj , (T1, T2)) = A(v, (T1, T2)) = A(u∗, (T1, T2))− η ≤ lim inf
j→+∞

A(uj , (T1, T2))− η.
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Therefore we have

lim inf
j→+∞

A(wj , (T
uj
− , T

uj
+ )) = lim

j→+∞
A(wj , (T1, T2)) + lim inf

j→+∞
A(uj , (T

uj
+ , T1) ∪ (T2, T

uj
+ ))

≤ lim inf
j→+∞

A(uj , (T1, T2))− η + lim inf
j→+∞

A(uj , (T
uj
+ , T1) ∪ (T2, T

uj
+ )) ≤ a0 − η,

that, given (2.11), is in contradiction with the minimizing character of the sequence {uj}.
The fact that u∗ satisfies (1.2) follows from (2.10) and regularity theory, see [5]. To show that u∗

satisfies (1.4) we distinguish the case T+ − T− < +∞ from the case T+ − T− = +∞.
2. T+ − T− < +∞. Given t0, t1 with T− < t0 < t1 < T+, let φ : [t0, t1 + τ ]→ [t0, t1] be linear, with |τ |
small, and let ψ : [t0, t1]→ [t0, t1 + τ ] be the inverse of φ. Define uτ : [T−, T+ + τ ]→ Rn by setting

uτ (t) =

 u∗(t), t ∈ [T−, t0],
u∗(φ(t)), t ∈ [t0, t1 + τ ],
u∗(t− τ), t ∈ (t1 + τ, T+ + τ)]

(2.12)

Note that uτ ∈ U with Tuτ− = T− and Tuτ+ = T+ + τ . Since u∗ is a minimizer we have

d

dτ
A(uτ , (T

uτ
− , Tuτ+ ))|τ=0 = 0. (2.13)

From (2.12), using also the change of variables t = ψ(s), it follows

A(uτ , (T
uτ
− , Tuτ+ ))−A(u∗, (T−, T+))

=

∫ t1+τ

t0

( φ̇2(t)

2
|u̇∗(φ(t))|2 + U(u∗(φ(t)))

)
dt−

∫ t1

t0

(1

2
|u̇∗(t)|2 + U(u∗(t))

)
dt

=

∫ t1

t0

(1− ψ̇(t)

2ψ̇(t)
|u̇∗(t)|2 + (ψ̇(t)− 1)U(u∗(t))

)
dt

=

∫ t1

t0

( − τ
t1−t0

2(1 + τ
t1−t0 )

|u̇∗(t)|2 +
τ

t1 − t0
U(u∗(t))

)
dt

= − τ

t1 − t0

∫ t1

t0

( |u̇∗(t)|2

2(1 + τ
t1−t0 )

− U(u∗(t))
)
dt.

This and (2.13) imply ∫ t1

t0

(1

2
|u̇∗(t)|2 − U(u∗(t))

)
dt = 0. (2.14)

Since this holds for all t0, t1, with T− < t0 < t1 < T+, then (1.4) follows.
3. T+ − T− = +∞. We only consider the case T+ = +∞. The discussion of the other cases is similar.
Let T ∈ (T−,+∞), let T− < t0 < t1 < T and let φ : [t0, T ]→ [t0, T ] be linear in the intervals [t0, t1 +τ ],
[t1 + τ, T ], with |τ | small, and such that φ([t0, t1 + τ ]) = [t0, t1]. Define uτ : (T−,+∞)→ Rn by setting

uτ (t) =

{
u∗(t), t ∈ (T−, t0] ∪ [T,+∞)
u∗(φ(t)), t ∈ [t0, T ].

We have

A(uτ , (T−, T ))−A(u∗, (T−, T ))

=

∫ t1

t0

( − τ
t1−t0

2(1 + τ
t1−t0 )

|u̇∗(t)|2 +
τ

t1 − t0
U(u∗(t))

)
dt+

∫ T

t1

( τ
T−t1

2(1 + τ
T−t1 )

|u̇∗(t)|2 − τ

T − t1
U(u∗(t))

)
dt.
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Since u∗ restricted to the interval [t0, T ] is a minimizer of (2.10), by differentiating with respect to τ
and setting τ = 0 we obtain

− 1

t1 − t0

∫ t1

t0

(1

2
|u̇∗(t)|2 − U(u∗(t))

)
dt+

1

T − t1

∫ T

t1

(1

2
|u̇∗(t)|2 − U(u∗(t))

)
dt = 0.

From (2.7) it follows that the second term in this expression converges to zero when T → +∞.
Therefore, after taking the limit for T → +∞, we get back to (2.14) and, as before, we conclude that
(1.4) holds.

Lemma 2.4. Assume that limt→T+
u∗(t) = p ∈ P . Then

T+ = +∞.

Proof. Since U is of class C2 and p is a critical point of U there are constants c > 0 and ρ > 0 such
that

U(x) ≤ c|x− p|2, x ∈ Bρ(p) ∩ Ω.

Fix tρ so that u∗(t) ∈ Bρ(p) ∩ Ω for t ≥ tρ. Then T+ = +∞ follows from (1.4) and

d

dt
|u∗ − p| ≥ −|u̇∗| = −

√
2U(u∗) ≥ −

√
2c|u∗ − p|, t ≥ tρ.

We now show that if Γ+ has positive diameter then T+ < +∞. To prove this we first show that
T+ = +∞ implies u∗(t)→ p ∈ P as t→ +∞, then we conclude that this is in contrast with (2.8).

Lemma 2.5. If T+ = +∞, then there is p ∈ P such that

lim
t→+∞

u∗(t) = p. (2.15)

An analogous statement applies to T−.

Proof. If Γ+ = {p} for some p ∈ P , then (2.15) follows by (2.9). Therefore we assume that Γ+ has
positive diameter. The idea of the proof is to show that if u∗(t) gets too close to ∂Γ+ \ P it is forced
to end up on Γ+ \ P in a finite time in contradiction with T ∗ = +∞.

If (2.15) does not hold there is q > 0 and a sequence {τj}, with limj→∞ τj = +∞, such that
d(u∗(τj), P ) ≥ q, for all j ∈ N. Since, by (2.3) u∗ is bounded, using also (2.9), we can assume that

lim
j→+∞

u∗(τj) = x̄, for some x̄ ∈ Γ+ \ ∪p∈PBq(p). (2.16)

The smoothness of U implies that there are positive constants r̄, r, c and C such that

(i) the orthogonal projection on π : Br̄(x̄)→ ∂Ω is well defined and π(Br̄(x̄)) ⊂ ∂Ω \ P ;

(ii) we have
Br(x0) ⊂ Br̄(x̄), for all x0 ∈ ∂Ω ∩B r̄

2
(x̄);

(iii) if (ξ, s) ∈ Rn−1 × R are local coordinates with respect to a basis {e1, . . . , en}, ej = ej(x0), with
en(x0) the unit interior normal to ∂Ω at x0 ∈ ∂Ω ∩B r̄

2
(x̄) it results

1

2
cs ≤ U(x(x0, (ξ, s))) ≤ 2cs, |ξ|2 + s2 ≤ r2, s ≥ h(x0, ξ), (2.17)

where

x = x(x0, (ξ, s)) = x0 +

n∑
j=1

ξjej(x0) + sen(x0),

and h : ∂Ω ∩ B r̄
2
(x̄) × {|ξ| ≤ r} → R, |h(x0, ξ)| ≤ C|ξ|2, for |ξ| ≤ r, is a local representation of

∂Ω in a neighborhood of x0, that is U(x(x0, (ξ, h(x0, ξ)))) = 0 for |ξ| ≤ r.

9



x0

x(x0, (ξ, s))

h(x0, ξ)

e1

e
n

ξ

s

x0
u∗(t0)

∂Ω

Q0

D0

δ

kδ

δ/2

Figure 1: The coordinates (ξ, s) and the domain Q0 in Lemma 2.5.

Fix a value j0 of j and set t0 = τj0 . If j0 is sufficiently large, setting t0 = τj0 we have that x0 = π(u∗(t0))
is well defined. Moreover x0 ∈ ∂Ω ∩B r̄

2
(x̄) and

u∗(t0) = x0 + δen(x0), δ = |u∗(t0)− x0|.

For k = 8
3

√
2 let Q0 be the set

Q0 = {x(x0, (ξ, s)) : |ξ|2 + (s− δ)2 < k2δ2, s > δ/2}.

Since δ → 0 as j0 → +∞ we can assume that δ > 0 is so small (δ < min{ 1
2Ck2 ,

r
1+k} suffices) that

Q0 ⊂ Ω ∩Br(x0).

Claim 1. u∗(t) leaves Q0 through the disc D0 = ∂Q0 \ ∂Bkδ(u∗(t0)).

From (2.4) we have a0 ≤ A(v, (T−, T
v
+)) for each W 1,2 map v : (T−, T

v
+]→ Rn that coincides with

u∗ for t ≤ t0, and satisfies v((t0, T
v
+)) ⊂ Ω, v(T v+) ∈ ∂Ω and (1.4). Therefore if we set

w(s) = x0 + sen(x0),

s ∈ [0, δ], we have
a0 ≤ A(u∗, (T−, t0)) + J (w, (0, δ)). (2.18)

On the other hand, if u∗(t′0) ∈ ∂Q0(x0) ∩ ∂Bkδ(u∗(t0)), where

t′0 = sup{t > t0 : u∗([t0, t)) ⊂ Q0 \ ∂Bkδ(u∗(t0))},

from (2.7) it follows
A(u∗, (T−, t0)) + J (u∗, (t0, t

′
0)) ≤ a0. (2.19)

Using (2.17) we obtain

J (w, (0, δ)) ≤ 4

3
c

1
2 δ

3
2 , (2.20)

and, since

c
δ

4
≤ U(x(x0, (ξ, s))), (ξ, s) ∈ Q0(x0),

10



we also have, with k defined above,

8

3
c

1
2 δ

3
2 =

k√
2
c

1
2 δ

3
2 ≤ c

1
2 δ

1
2

√
2

∫ t′0

t0

|u̇∗(t)|dt ≤
√

2

∫ t′0

t0

√
U(u∗(t))|u̇∗(t)|dt. (2.21)

From (2.20) and (2.21) it follows

J (w, (0, δ)) ≤ 1

2
J (u∗, (t0, t

′
0)),

and therefore (2.18) and (2.19) imply the absurd inequality a0 < a0. This contradiction proves the
claim.

From Claim 1 it follows that there is t1 ∈ (t0,+∞) with the following properties:

u∗([t0, t1)) ⊂ Q0(x0),

u(t1) ∈ D0.

Set x0,1 = π(u∗(t1)) and δ1 = |u∗(t1) − x0,1|. Since h(x0, 0) = hξ(x0, 0) = 0 and the radius ρδ =

(k2 − 1
4 )

1
2 δ of D0 is proportional to δ, we can assume that δ is so small that the ratio 2δ1

δ and
|x0,1−x0|

|u∗(t1)−x(x0,(0,
δ
2 ))| are near 1 so that we have

δ1 ≤ ρδ, for some ρ < 1,

|x0,1 − x0| ≤ kδ.

We also have

t1 − t0 ≤ k′δ
1
2 , k′ =

8k

c
1
2

.

This follows from

(t1 − t0)
c

4
δ ≤ A(u∗, (t0, t1)) = J (u∗, (t0, t1))

=
√

2

∫ t1

t0

√
U(u∗(t))|u̇∗(t)|dt ≤ 2

√
cδ|u∗(t1)− u∗(t0)| ≤ 2c

1
2 kδ

3
2 .

where we used (2.17) to estimate J on the segment joining u∗(t0) with u∗(t1).
We have u∗(t1) = x0,1 + δ1en(x0,1) and we can apply Claim 1 to deduce that there exists t2 > t1 such
that

u∗([t1, t2)) ⊂ Q1(x0,1),

u∗(t2) ∈ D1,

where Q1 and D1 are defined as Q0 and D0 with δ1 and x(x0,1, (ξ, s)) instead of δ and x(x0, (ξ, s)).
Therefore an induction argument yields sequences {tj}, {x0,j}, {δj} and {Qj(x0,j)} such that

u∗([tj , tj+1)) ⊂ Qj(x0,j), x0,j = π(u∗(tj)),

δj+1 ≤ ρδj ≤ ρj+1δ,

|x0,j+1 − x0,j | ≤ kδj ≤ kρjδ,

(tj+1 − tj) ≤ k′δ1/2
j ≤ k′ρj/2δ1/2,

u∗(tj) = x0,j + δjen(x0,j) ∈ Dj .

(2.22)

We can also assume that Qj(x0,j) ⊂ Ω∩Br(x0), for all j ∈ N. This follows from |u∗(tj+1)− u∗(tj)| ≤
kδj ≤ kρjδ.
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From (2.22) we obtain that there exists T with t0 < T ≤ k′δ
1
2

1−ρ
1
2

such that

u∗(T ) = lim
t→T

u∗(t) = lim
j→+∞

x0,j ∈ ∂Ω \ P,

|u∗(T )− x0| ≤
kδ

1− ρ
.

This contradicts the existence of the sequence {τj}, with limj→∞ τj = +∞, appearing in (2.16) and
establishes (2.15). The proof of the lemma is complete.

We continue by showing (2.15) contradicts (2.8).

Lemma 2.6. Assume that Γ+ has positive diameter. Then

T+ < +∞.

An analogous statement applies to Γ− and T−.

Proof. From Lemma 2.5, if T+ = +∞ there exists p ∈ P such that limt→+∞ u∗(t) = p. We use a local
argument to show that this is impossible if Γ+ has positive diameter. By a suitable change of variable
we can assume that p = 0 and that, in a neighborhood of 0 ∈ Rn, U reads

U(u) = V (u) +W (u),

where V is the quadratic part of U :

V (u) =
1

2

(
−

m∑
i=1

λ2
iu

2
i +

n∑
i=m+1

λ2
iu

2
i

)
, λi > 0 (2.23)

and W satisfies,
|W (u)| ≤ C|u|3, |Wx(u)| ≤ C|u|2, |Wxx(u)| ≤ C|u|. (2.24)

Consider the Hamiltonian system with

H(p, q) =
1

2
|p|2 − U(q), p ∈ Rn, q ∈ Ω ⊂ Rn.

For this system the origin of R2n is an equilibrium point that corresponds to the critical point p = 0
of U . Set D = diag(−λ2

1, . . . ,−λ2
m, λ

2
m+1, . . . , λ

2
n). The eigenvalues of the symplectic matrix(
0 D
I 0

)
are

− λi, i = m+ 1, . . . , n

λi, i = m+ 1, . . . , n

± iλi, i = 1, . . . ,m.

Let (e1, 0), . . . , (en, 0), (0, e1), . . . , (0, en) be the basis of R2n defined by ej = (δj1, . . . , δjn), where δji
is Kronecker’s delta. The stable Ss, unstable Su and center Sc subspaces invariant under the flow of
the linearized Hamiltonian system at 0 ∈ R2n are

Ss = span{(−λjej , ej)}nj=m+1,

Su = span{(λjej , ej)}nj=m+1,

Sc = span{(ej , 0), (0, ej)}mj=1.

12



From (2.15) and (1.4) we have
lim

t→+∞
(u̇∗(t), u∗(t)) = 0 ∈ R2n.

Let W s and Wu be the local stable and unstable manifold and let W c be a local center manifold at
0 ∈ R2n. From the center manifold theorem [4], [10], there is a constant λ0 > 0 such that, for each
solution (p(t), q(t)) that remains in a neighborhood of 0 ∈ R2n for positive time, there is a solution
(pc(t), qc(t)) ∈W c that satisfies

|(p(t), q(t))− (pc(t), qc(t))| = O(e−λ0t). (2.25)

Since W c is tangent to Sc at 0 ∈ R2n, the projection W c
0 on the configuration space is tangent to

Sc0 = span{ej}mj=1, which is the projection of Sc on the configuration space. Therefore, if (pc, qc) 6≡ 0,
given γ > 0, by (2.25) there is tγ such that d(q(t), Sc0) ≤ γ|q(t)|, for t ≥ tγ . For γ small, this implies
that q(t) 6∈ Ω for t ≥ tγ . It follows that (pc, qc) ≡ 0 and from (2.25) (p(t), q(t)) converges to zero
exponentially. This is possible only if (p(t), q(t)) ∈W s and, in turn, only if q(t) ∈W s

0 , the projection
of W s on the configuration space. This argument leads to the conclusion that the trajectory of u∗ in
a neighborhood of 0 is of the form

u∗(t(s)) = u∗(s) = sη + z(s), (2.26)

where

η =

n∑
i=m+1

ηiei

is a unit vector1, s ∈ [0, s0) for some s0 > 0, and z(s) satisfies

z(s) · η = 0, |z(s)| ≤ c|s|2, |z′(s)| ≤ c|s| (2.27)

for a positive constant c.
We are now in the position of constructing our local perturbation of u. We first discuss the case

U = V , z(s) = 0. We set
ū(s) = sη

and, in some interval [1, s1], construct a competing map v̄ : [1, s1]→ Rn,

v̄ = ū+ ge1, g : [1, s1]→ R,

with the following properties:

V (v̄(1)) = 0,

v̄(s1) = ū(s1),

JV (v̄, [1, s1]) < JV (ū, [0, s1]). (2.28)

The basic observation is that, if we move from ū in the direction of one of the eigenvectors e1, . . . , em
corresponding to negative eigenvalues of the Hessian of V , the potential V decreases and therefore, for
each s0 ∈ (1, s1) we can define the function g in the interval [1, s0] so that

JV (ū+ ge1, (1, s0)) = JV (ū, (1, s0)). (2.29)

Indeed it suffices to impose that g : (1, s0]→ R satisfies the condition√
V (ū(s)) =

√
1 + g′2(s)

√
V (ū(s) + g(s)e1), s ∈ (1, s0].

1Actually η coincides with one of the eigenvectors of U ′′(0).

13



O

e1

η
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Figure 2: The maps ū(s) and v̄(s).

According with this condition we take g as the solution of the problem
g′ = − λ1g√

s2λ2
η − λ2

1g
2

= −
λ1g
sλη√

1− λ2
1g

2

s2λ2
η

g(1) =
λη
λ1

, (2.30)

where we have used (2.23) and set

λη =

√√√√ n∑
i=m+1

λ2
i η

2
i .

Note that the initial condition in (2.30) implies V (v̄(1)) = 0. The solution g of (2.30) is well defined in
spite of the fact that the right hand side tends to −∞ as s→ 1. Since g defined by (2.30) is positive
for s ∈ [1,+∞), to satisfy the condition v̄(s1) = ū(s1), we give a suitable definition of g in the interval
[s0, s1] in order that g(s1) = 0. Choose a number α ∈ (0, 1) and extend g with continuity to the
interval [s0, s1] by imposing that√

V (ū(s)) = α
√

1 + g′2(s)
√
V (ū(s) + g(s)e1), s ∈ (s0, s1]. (2.31)

Therefore, in the interval (s0, s1], we define g by

g′ = − 1

α

√√√√√1− α2 + α2 λ
2
1g

2

s2λ2
η

1− λ2
1g

2

s2λ2
η

≤ −
√

1− α2

α
. (2.32)

Since (2.31) implies

JV (v̄, [s0, s1]) =
1

α
JV (ū, [s0, s1]),

from (2.29) we see that v̄ satisfies also the requirement (2.28) above if we can choose α ∈ (0, 1) and
1 < s0 < s1 in such a way that

JV (ū, (0, 1)) >
1− α
α
JV (ū, (s0, s1)).

Since (2.32) implies s1 < s0 + αg(s0)√
1−α2

a sufficient condition for this is

JV (ū, (0, 1)) >
1− α
α
JV
(
ū,
(
s0, s0 +

αg(s0)√
1− α2

))
,
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or equivalently

1 >
1− α
α

((
s0 +

αg(s0)√
1− α2

)2

− s2
0

)
= 2s0g(s0)

√
1− α
1 + α

+
αg2(s0)

1 + α
. (2.33)

By a proper choice of s0 and α the right hand side of (2.33) can be made as small as we like. For

instance we can fix s0 so that g(s0) ≤ 1
4 and then choose α in such a way that 1

2s0

√
1−α
1+α ≤

1
4 and

conclude that (2.28) holds.

Next we use the function g to define a comparison map v that coincides with u∗ outside an ε-
neighborhood of 0 and show that the assumption that the trajectory of u∗ ends up in some p ∈ P
must be rejected. For small ε > 0 we define

v(εs) = εsη + z(εs) + εg(s− σ)e1, s ∈ [1 + σ, s1 + σ], (2.34)

where σ = σ(ε) is determined by the condition

U(v(ε(1 + σ))) = 0,

which, using (2.23), (2.24), (2.27) and g(1) =
λη
λ1

, after dividing by ε2, becomes

1

2
λ2
η((1 + σ)2 − 1) = εf(σ, ε), (2.35)

where f(σ, ε) is a smooth bounded function defined in a neighborhood of (0, 0). For small ε > 0, there
is a unique solution σ(ε) = O(ε) of (2.35). Note also that (2.34) implies that

v(ε(s1 + σ)) = u∗(ε(s1 + σ)).

We now conclude by showing that, for ε > 0 small, it results

JU (u∗(ε·), (0, s1 + σ)) > JU (v(ε·), (1 + σ, s1 + σ)). (2.36)

From (2.26) and (2.34) we have

lim
ε→0+

ε−1
∣∣∣ d
ds

u∗(εs)
∣∣∣ = 1, lim

ε→0+
ε−1
∣∣∣ d
ds
v(εs)

∣∣∣ =
√

1 + g′2(s), (2.37)

and, using also (2.24) and σ = O(ε),

lim
ε→0+

ε−2U(u∗(εs)) = V (ū(s)), s ∈ (0, s1),

lim
ε→0+

ε−2U(v(εs)) = V (v̄(s)), s ∈ (1, s1)
(2.38)

uniformly in compact intervals.
The limits (2.37) and (2.38) imply

lim
ε→0+

ε−2JU (u∗(ε·), (0, s1 + σ)) = lim
ε→0+

√
2

∫ s1+σ

0

√
ε−2U(u∗(εs))ε−1

∣∣∣ d
ds

u∗(εs)
∣∣∣ds,

=
√

2

∫ s1

0

√
V (ū(s))ds = JV (ū, (0, s1))

lim
ε→0+

ε−2JU (v(ε·), (1 + σ, s1 + σ)) = lim
ε→0+

√
2

∫ s1+σ

1+σ

√
ε−2U(v(εs))ε−1

∣∣∣ d
ds
v(εs)

∣∣∣ds,
=
√

2

∫ s1

1

√
V (v̄(s))

√
1 + g′2(s)ds = JV (v̄, (1, s1)).

This and (iii) above imply that, indeed, the inequality (2.36) holds for small ε > 0. The proof is
complete.
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We can now complete the proof of Theorem 1.1. We show that the map u∗ : (T−, T+)→ Rn possesses
all the required properties. The fact that u∗ satisfies (1.2) and (1.4) follows from Lemma 2.3. Lemma
2.2 implies (1.5) and, if T− > −∞, also (1.6). The fact that x− ∈ Γ− \ P is a consequence of Lemma
2.4 and implies that Γ− has positive diameter. Viceversa, if Γ− has positive diameter, Lemmas 2.5
and 2.6 imply that T− > −∞ and that (1.6) holds for some x− ∈ Γ− \ P . The proof of Theorem 1.1
is complete.

Remark. From Theorem 1.1 it follows that if N is even then there are at least N/2 distinct orbits
connecting different elements of {Γ1, . . . ,ΓN}. If N is odd there are at least (N + 1)/2. Simple
examples show that, given distinct Γi,Γj ∈ {Γ1, . . . ,ΓN}, an orbit connecting them does not always
exist. Let

Uij = {u ∈W 1,2((Tu−, T
u
+);Rn) : u((Tu−, T

u
+)) ⊂ Ω, u(Tu−) ∈ Γi, u(Tu+) ∈ Γj}

with i 6= j and
dij = inf

u∈Uij
A(u, (Tu−, T

u
+)).

An orbit connecting Γi and Γj exists if

dij < dik + dkj , ∀k 6= i, j.

The proof of Theorem 1.2 uses, with obvious modifications, the same arguments as in the proof of
Theorem 1.1 to characterize u∗ as the limit of a minimizing sequence {uj} of the action functional

A(u, (0, Tu)) =

∫ Tu

0

(1

2
|u̇(t)|2 + U(u(t))

)
dt. (2.39)

in the set

U = {u ∈W 1,2((0, Tu);Rn) : 0 < Tu+ < +∞, u(0) = 0, u([0, Tu+)) ⊂ Ω, u(Tu+) ∈ ∂Ω}. (2.40)

Remark. In the symmetric case of Theorem 1.2 it is easy to construct an example with T+ < T∞+ . For
U(x) = 1− |x|2, x ∈ R2, the solution u : [0, π/2]→ R2 of (1.2) determined by (1.4) and u([0, π/2]) =
{(s, 0) : s ∈ [0, 1]} is a minimizer of A in U . For ε small, let tε = arcsin(1− ε) and define uε : [0, Tuε ]→
R2 as the map determined by (1.4), uε([0, tε]) = {(s, 0) : s ∈ [0, 1− ε)} and uε((tε, T

uε ]) = {(1− ε, s) :
s ∈ (0,

√
2ε− ε2]}. In this case T+ = π/2 and T∞+ = 3π/4.

2.1 On the existence of heteroclinic connections

Corollary 1.3 states the existence of heteroclinic connections under the assumptions of Theorem 1.1
and, in particular, that U ∈ C2. Actually, by examining the proof of Theorem 1.1 we can establish an
existence result under weaker hypotheses. In the special case ∂Ω = P , #P ≥ 2, given p− ∈ P , the set
U defined in (2.1) takes the form

U =
{
u ∈W 1,2((Tu−, T

u
+);Rn) : −∞ < Tu− < Tu+ < +∞,

u((Tu−, T
u
+)) ⊂ Ω, U(u(0)) = U0, u(Tu−) = p−, u(Tu+) ∈ P \ {p−}}.

In this section we slightly enlarge the set U by allowing Tu± = ±∞ and consider the admissible set

Ũ =
{
u ∈W 1,2

loc ((Tu−, T
u
+);Rn) : −∞ ≤ Tu− < Tu+ ≤ +∞,

u((Tu−, T
u
+)) ⊂ Ω, U(u(0)) = U0, lim

t→Tu−
u(t) = p−, lim

t→Tu+
u(t) ∈ P \ {p−}}.
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Proposition 2.7. Assume that U is a non-negative continuous function, which vanishes in a finite
set P , #P ≥ 2, and satisfies √

U(x) ≥ σ(|x|), x ∈ Ω, |x| ≥ r0

for some r0 > 0 and a non-negative function σ : [r0,+∞)→ R such that
∫ +∞
r0

σ(r)dr = +∞.

Given p− ∈ P there is p+ ∈ P \ {p−} and a Lipschitz-continuous map u∗ : (T−, T+) → Ω that
satisfies (1.4) almost everywhere on (T−, T+),

lim
t→T±

u∗(t) = p±,

and minimizes the action functional A on Ũ .

Proof. We begin by showing that

a0 = inf
u∈U
A = inf

u∈Ũ
A = ã0. (2.41)

Since U ⊂ Ũ we have a0 ≥ ã0. On the other hand arguing as in the proof of Lemma 2.2, if T+ − T− =
+∞, given a small number ε > 0, we can construct a map uε ∈ U that satisfies

a0 ≤ A(uε, (T
uε
− , Tuε+ )) ≤ A(u, (Tu−, T

u
+)) + ηε

where ηε → 0 as ε→ 0. This implies a0 ≤ ã0 and establishes (2.41). It follows that we can proceed as
in the proof of Theorem 1.1 and define u∗ ∈ Ũ as the limit of a minimizing sequence {uj} ⊂ U . The
arguments in the proof of Lemma 2.2 show that (2.8) holds. It remain to show that u∗ is Lipschitz-
continuous. Looking at the proof of Lemma 2.3 we see that the continuity of U is sufficient for
establishing that (1.4) holds almost everywhere on (T−, T+), and the Lipschitz character of u∗ follows.
The proof is complete.

Remark. Without further information on the behavior of U in a neighborhood of p± nothing can
be said on T± being finite or infinite and it is easy to construct examples to show that all possible
combinations are possible. As shown in Lemma 2.4 a sufficient condition for T± = ±∞ is that, in a
neighborhood of p = p±, U(x) is bounded by a function of the form c|x− p|2, c > 0. U of class C1 is
a sufficient condition in order that u∗ is of class C2 and satisfies (1.2).

3 Examples

In this section we show a few simple applications of Theorems 1.1 and 1.2.
Our first application describes a class of potentials with the property that, in spite of the existence of
possibly infinitely many critical values, (1.2) has a nontrivial periodic orbit on any energy level.

Proposition 3.1. Assume that U : Rn → R satisfies

U(−x) = U(x), x ∈ Rn,
U(0) = 0, U(x) < 0 for x 6= 0,

lim
|x|→∞

U(x) = −∞

Assume moreover that each non zero critical point of U is hyperbolic with Morse index im ≥ 1. Then
there is a nontrivial periodic orbit of (1.2) on the energy level 1

2 |u̇|
2 − U(u) = α for each α > 0.

Proof. For each α > 0 we set Ũ = U(x) + α and let Ω ⊂ {Ũ > 0} be the connected component that
contains the origin. Ω is open, nonempty and bounded and, from the assumptions on the properties of
the critical points of U , it follows that ∂Ω is connected and contains at most a finite number of critical
points. Therefore we are under the assumptions of Corollary 1.6 for the case N = 1 and the existence
of the periodic orbit follows.
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Figure 3: Symmetric periodic orbit for the example with potential (3.1).

An example of potential U : R2 → R that satisfies the assumptions in Proposition 3.1 is, in polar
coordinates r, θ,

U(r, θ) = −r2 +
1

2
tanh4(r) cos2(r−1) cos2k(2θ),

where k > 0 is a sufficiently large number.

Next we give another application of Corollary 1.6. For the potential U : R2 → R, with

U(x) =
1

2
(1− x2

1)2 +
1

2
(1− 4x2

2)2, (3.1)

the energy level α = − 1
2 is critical and corresponds to four hyperbolic critical points p1 = (1, 0), −p1,

p2 = (0, 1
2 ) and −p2. The connected component Ω ⊂ {Ũ > 0}, (Ũ = U(x) − 1

2 ) that contains the
origin is bounded by a simple curve Γ that contains ±p1 and ±p2. In spite of the presence of these
critical points, from Theorem 1.2 it follows that there is a minimizer u ∈ U , with U as in (2.40) and
u(Tu) ∈ Γ \ {±p1,±p2}, and Corollary 1.6 implies the existence of a periodic solution v∗. Note that
there are also two heteroclinic orbits, solutions of (1.2) and (1.4):

u1(t) = (tanh(t), 0), u2(t) = (0,
1

2
tanh(2t)).

These orbits connect pj to −pj , for j = 1, 2. By Theorem 1.2 both u1 and u2 have action greater than
v∗|(−T+,T+).

Our last example shows that Theorems 1.1 and 1.2 can be used to derive information on the rich
dynamics that (1.2) can exhibit when U undergoes a small perturbation. We consider a family of
potentials U : R2 × [0, 1] → R. We assume that U(x, 0) = x6

1 + x2
2 which from various points of view

is a structurally unstable potential and, for λ > 0 small, we consider the perturbed potential

U(x, λ) = 2λ4x2
1 + x2

2 − 2λ2x1x2 − 3λ2x4
1 + x6

1. (3.2)

This potential satisfies U(−x, λ) = U(x, λ) and, for λ > 0, has the five critical points p0,±p1 and ±p2

defined by

p0 = (0, 0),

p1 = (λ(1− ( 2
3 )

1
2 )

1
2 , λ3(1− ( 2

3 )
1
2 )

1
2 ),

p2 = (λ(1 + ( 2
3 )

1
2 )

1
2 , λ3(1 + ( 2

3 )
1
2 )

1
2 ),

which are all hyperbolic.
We have U(p2, λ) < 0 = U(p0, λ) < U(p1, λ) and p0 is a local minimum, p1 a saddle and p2 a global

minimum. Let α be the energy level. For −α < U(p2, λ) or −α ≥ U(p1, λ) no information can be
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Figure 4: Bifurcations of dynamics of (1.2) with the α = 0, bottom left: α = 0.05, bottom right:
α = −U(p2, 1). The shaded regions are not accessible.

derived from Theorems 1.1 and 1.2 therefore we assume −α ∈ [U(p2, λ), U(p1, λ)). For −α = U(p2, λ)
Corollary 1.3 or Corollary 1.6 yields the existence of a heteroclinic connection u2 between −p2 and
p2. For −α ∈ (U(p2, λ), 0) Corollary 1.6 implies the existence of a periodic orbit uα. This periodic
orbit converges uniformly in compact intervals to u2 and the period Tα → +∞ as −α → U(p2, λ)+.
For α = 0 Corollary 1.4 implies the existence of two orbits u0 and −u0 homoclinic to p0 = 0. We
can assume that u0 satisfies the condition u0(−t) = u0(t) and that uα(0) = 0. Then we have that
uα(· ± Tα

4 ) converges uniformly in compact intervals to ∓u0 and Tα → +∞ as −α → 0−. For
−α ∈ (0, U(p1, λ)), ∂Ω is the union of three simple curves all of positive diameter: Γ0 that includes the
origin and ±Γ2 which includes ±p2 and Corollary 1.5 together with the fact that U(·, λ) is symmetric
imply the existence of two periodic solutions ũα and −ũα with ũα that oscillates between Γ0 and Γ2

in each time interval equal to Tα
2 . Assuming that ũα(0) ∈ Γ2 we have that, as −α → 0+, ũα → u0

uniformly in compacts and Tα → +∞. Finally we observe that, in the limit −α → U(p1, λ)−, ũα
converges uniformly in R to the constant solution u ≡ p1.
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