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Abstract

We consider an open connected set €2 and a smooth potential U which is positive in  and
vanishes on 9€2. We study the existence of orbits of the mechanical system

i = Ug(u),

that connect different components of 92 and lie on the zero level of the energy. We allow that 0f2
contains a finite number of critical points of U. The case of symmetric potential is also considered.

1 Introduction

Let U : R® — R be a function of class C?. We assume that @ C R” is a connected component of
the set {x € R™ : U(x) > 0} and that 0 is compact and is the union of N > 1 distinct nonempty
connected components I'y,...,I'y. We consider the following situations

H N > 2 and, if Q is unbounded, there is o > 0 and a non-negative function o : [rg, +00) — R such
that f:goo o(r)dr = 400 and

VU(@) > o(lz]), 2€Q, |z| >ro. (1.1)
H, Q is bounded, the origin 0 € R™ belongs to 2 and U is invariant under the antipodal map
U(-z)=U(z), €.

Condition (1.1) was first introduced in [7]. A sufficient condition for (1.1) is that lim inf ;.. U(z) > 0.
We study non constant solutions w: (T—,T) — §, of the equation

. oUNT
i = Up(u), U,= (a?) : (1.2)
that satisfy
lim d(u(t),00) =0, (1.3)
t—T4
with d the Euclidean distance, and lie on the energy surface
1
5|u|2 —U(u) =0. (1.4)

We allow that the boundary 92 of € contains a finite set P of critical points of U and assume
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H; IT €{T'y,...,I'y} has positive diameter and p € PNT then p is a hyperbolic critical point of U.

If T' has positive diameter, then hyperbolic critical points p € T' correspond to saddle-center equilib-
rium points in the zero energy level of the Hamiltonian system associated to (1.2). These points are
organizing centers of complex dynamics, see [6].

Note that H; does not exclude that some of the I'; reduce to a singleton, say {p}, for some p € P. In
this case nothing is required on the behavior of U in a neighborhood of p aside from being C?.

A comment on H and Hj is in order. If P is nonempty u = p for p € P is a constant solution of (1.2)
that satisfies (1.3) and (1.4). To avoid trivial solutions of this kind we require N > 2 in H, and look
for solutions that connect different components of 9Q2. In Hg we do not exclude that 02 is connected
(N =1) and avoid trivial solutions by restricting to a symmetric context and to solutions that pass
through 0.

We prove the following results.

Theorem 1.1. Assume that H and H; hold. Then for each T'_ € {T'y,...,I'n} there exist Ty €
{Ty,..., TN\ {T_} and a map u* : (T_,Ty) — Q, with —oco < T_ < T4 < 400, that satisfies (1.2),

(1.4) and
lim d(u*(t),T+) =0. (1.5)
t—T4
Moreover, T_ > —oo (resp. Ty < +o0) if and only if T'— (resp. T'y) has positive diameter. If
T_ > —oo it results

li (t)=a_
A =

tgr%l, () =0,

(1.6)

for some x_ € T_\ P. An analogous statement holds if T < +oo.

Theorem 1.2. Assume that Hy and H; hold. Then there exist Ty € {T'q,...,I'n} and a map
u* 1 (0,T4) — Q, with 0 < T < 400, that satisfies (1.2), (1.4) and
lim d(u*(t),T4) =0.

t—>T+
Moreover, T < 400 if and only if 'y has positive diameter. If Ty < +o0 it results

lim w*(t) =
HH%U() T4,

th%l+ v (t) - 07

for some xy € T\ P.
We list a few straightforward consequences of Theorems 1.1 and 1.2.

Corollary 1.3. Theorem 1.1 implies that, if 0 = P, given p_ € P there is p € P\ {p_} and a
heteroclinic connection between p_ and py, that is a solution u* : R — R™ of (1.2) and (1.4) that
satisfies
w0 =p

The problem of the existence of heteroclinic connections between two isolated zeros p4 of a non-
negative potential has been recently reconsidered by several authors. In [1] existence was established
under a mild monotonicity condition on U near py. This condition was removed in [8], see also [2].
The most general results, equivalent to the consequence of Theorem 1.1 discussed in Section 2.1, were
recently obtained in [7] and in [11], see also [3]. All these papers establish existence by a variational
approach. In [1], [8] and [2] by minimizing the action functional, and in [7] and [11] by minimizing the
Jacobi functional.



Corollary 1.4. Theorem 1.1 implies that, if T = {p} for somep € P and the elements of {T'1,..., T n}\
{T'_} have all positive diameter, there exists a nontrivial orbit homoclinic to p that satisfies (1.2), (1.4).

Proof. Let v* : R — QU {z4} be the extension defined by
U*(T+ + t) = u*(T+ - t)’ te (0’ +OO)7 U*(T-‘r) =T+,

of the solution u* : (—o00,T}) — Q given by Theorem 1.1. The map v* so defined is a smooth
non-constant solution of (1.2) that satisfies

i v =p
O
Corollary 1.5. Theorem 1.1 implies that, if all the sets T'1,...,I'y have positive diameter, given

I_ e{l,...,T'n}, there exist Ty € {T'1,..., Ty} \{T'=} and a periodic solution v* : R — Q of (1.2)
and (1.4) that oscillates between T'— and T'y. This solution has period T = 2(Ty —T-).

Proof. The solution v* is the T-periodic extension of the map w* : [T_,2T — T_] — Q defined by
w*(t) = u*(t) for t € (T_,Ty), where u* is given by Theorem 1.1, and

w*(Ti) = T4,
w*(T++t):u*(T+—t), tE(O,T+—T_]
O

The problem of existence of heteroclinic, homoclinic and periodic solutions of (1.2), in a context
similar to the one considered here, was already discussed in [2] where 02 is allowed to include continua
of critical points. Our result concerning periodic solutions extends a corresponding result in [2] where
existence was established under the assumption that P = (.

The following result is a direct consequence of Theorem 1.2.

Corollary 1.6. Theorem 1.2 implies that, if all the sets 'y, ..., Uy have positive diameter, there exists
I, €{ly,...,I'n} and a periodic solution v* : R — Q of (1.2) and (1.4) that satisfies

v*(=t) = —v*(t), teR.
This solution has period T' = 4T, with T’y .

Proof. The solution v* is the T-periodic extension of the map w* : [-2T4,27] — Q defined by
w*(t) = u*(¢t) for t € (0,74), where u* is given by Theorem 1.2, and by

w*(t) = —w* (—t), te (=T4,0),
w*(0) =0, w"(+T})=+z4,

w* (T +t) = w* (T4 —t), te (0,14],
w*(=Ty +t) =w*(=Ty —t), te[-T4,0).

In particular the solution oscillates between zy and —zy and this is true also when 0f2 is connected
(N =1). O



2 Proof of Theorems 1.1 and 1.2

We recall a classical result.

Lemma 2.1. Let G : R™ — R be a smooth bounded and non-negative potential, I = (a,b) a bounded
interval. Define the Jacobi functional

Te(g.T) =2 / Gla®)ldldt

and the action functional
1.
Acla.1) = [ (Fla0F + Gla(o)) .
I
Then
(i) L
Jo(q, 1) < Aalq, 1), q€ W (I;R")
with equality sign if and only if

SO~ Gla) =0, te I

(it)
i aI =min A 7I ;
min Ja (g, I) = min Ac(g, T)
where
Q={qe WH(I;R") : q(a) = qu, 4(b) = @}
When G = U we shall simply write 7, A for Jy, Ay.
We now start the proof of Theorem 1.1. Choose I'_ € {T';,..., 'y} and set

d=min{|lz —y|:xelT_,yc IQ\T_}.

For small § € (0,d) let Os = {z € Q: d(z,I'_) < 6} and let Uy = 1 min,ecpo,n0 U(z). We note that
Uy > 0 and define the admissible set

U={ueW"(T*,T{);R") : —oc0 < T" < T} < +o0,

(2.1)
u((T*, T)) € Q, Uu(0)) = Up, u(T*) € T, u(T¥) € IQ\T_}.

We determine the map u* in Theorem 1.1 as the limit of a minimizing sequence {u;} C U of the action
functional

A, (T, T})) = /T T (%wt)ﬁ +U(u(t))d,

Note that in the definition of I/ the times T* and T} are not fixed but, in general, change with w.
Note also that the condition U(u(0)) = Up in (2.1) is a normalization which can always be imposed
by a translation of time and has the scope of eliminating the loss of compactness due to translation
invariance. Let z_ € T'_ and Z; € 9Q \ I'_ be such that |4 — Z_| = d and set

at)=1—-(@t+71)T-+ {t+7)Ty, te[-7,1—1],
where 7 € (0,1) is chosen so that U(@(0)) = Uy. Then @ € Y, T" = —7, T? =1 — 7 and

A(t, (—7,1 = 7)) = a < +00.



Next we show that there are constants M > 0 and Ty > 0 such that each u € U with
A(u, (T, T})) < a, (2.2)
satisfies

l[ull o (o iRy < M,

(2.3)
T < —Ty < Ty < T

The L* bound on u follows from H and from Lemma 2.1, in fact, if Q is unbounded, |u(¢)| = M for
some t € (T, T7) implies

t M
0> Au, (T, 9) > /T U @) ()| dt > \6/ o(s)ds.

The existence of Tj follows from

B &
— < / la(t)|*dt < 2a, = < / [a(t)|*dt < 2a,
7| T T 0
where dy = d(0, {z : U(x) > Up}).

Let {u;} C U be a minimizing sequence

lim A(u;, (T, T7)) = Helzf,f A(u, (T, TY)) := ag < a. (2.4)

j—+oo

We can assume that each u; satisfies (2.2) and (2.3). By considering a subsequence, that we still denote
by {u;}, we can also assume that there exist T>°, T?° with —oo < T < Ty <Tp <TF° < +oo and

a continuous map u* : (1'>°,T%°) — R™ such that
lim T} =T
j—}gloo = £

lim w;(t) =u"(t), te (T,T7),

Jj—+oo

(2.5)

and in the last limit the convergence is uniform on bounded intervals. This follows from (2.3) which
implies that the sequence {u;} is equi-bounded and from (2.2) which implies

oy (t1) — i (2)] < ] / 2 |uj<t>|dt\ < Valty — ta]?, (2.6)

so that the sequence is also equi-continuous.
By passing to a further subsequence we can also assume that u; — u* in Wh2((Ty, Ty); R™) for
each Ty, Ty with T < Ty < T, < T%°. This follows from (2.2), which implies
1 Ti . 2 'u,j ’u]‘
3 L [u;|dt < Auy, (T2, T7)) < a,

and from the fact that each map u; satisfies (2.3) and therefore is bounded in L2((T", T} ); R™).
We also have

Indeed, from the lower semicontinuity of the norm, for each Ty, Ty with T> < T < T5 < T} we have

T2 T2
/ |a*|2dt < Liminf/ || dt.
J—+oo s

T



This and the fact that u; converges to u* uniformly in [T%, T5] imply

A(u*, (Ty,T»)) < liminf A(uy, (T1,T2)) < liminf A(u;, (T, T}7)) = ao.

Jj—oo J—roo
Since this is valid for each T>° < T} < T < T¢° the claim (2.7) follows.
Lemma 2.2. Define T <T_ < Ty < Ty < Ty <TY° by setting
T_ =inf{t € (T°°,0] : w*((¢,0]) C Q}
Ty =sup{t € (0,77°) : u*([0,1)) C Q}.
Then
()
A (T-,T4)) = ag. (2.8)
(ii) Ty < 400 implies lim;_,7, u*(t) = x4 for some x4 € 'y and 'y € {I'y,...,. Iy} \{I'_}.
(i1i) T = +oo implies
tiiﬁm d(u*(t),I'y) =0, (2.9)
for some 'y € {I'1,..., Ty} \ {T'_}.
Corresponding statements apply to T_.

Proof. We first prove (ii), (#ii). If T} < 400 the existence of lim;_,7, u*(t) follows from (2.6) which

implies that u* is a C%2 map. The limit x4+ belongs to 92 and therefore to I'y for some I'} €
{T4,...,Tn}. Indeed, x4 & OQ would imply the existence of 7 > 0 such that, for j large enough,

d(uj([T-‘rv T+ + T])a aQ) > d(:L'+, aQ)a

| =

in contradiction with the definition of T.. If T} = 400 and (iii) does not hold there is 6 > 0 and a
diverging sequence {t;} such that

d(u*(tj),00Q) > 4.
Set Uy, = ming(, p0)=s U(x) > 0. From the uniform continuity of U in {|z| < M} (M as in (2.3)) it
follows that there is [ > 0 such that

|U(z1) = U(x2)| < =Up, for |z — x| <1, 21,29 € {|z| < M}.

N =

This and u* € C*2 imply

1 12 12
* > - J— R A _
U () = 5Un, tel;=(t— =t + =),

and, by passing to a subsequence, we can assume that the intervals I; are disjoint. Therefore for each

T > 0 we have
120, T
3 < / U (u* (£))dt < ao,
0

a
t;<T

which is impossible for T large. This establishes (2.9) for some I'y € {I'y,...,T'x}. It remains to show
that T'y # I'_. This is a consequence of the minimizing character of {u;}. Indeed, I'y = I'_ would
imply the existence of a constant ¢ > 0 such that lim;_, A(u;, (T, T}7)) > ao + c.



Now we prove (i). Ty — T < 400, implies that u* is an element of ¢ with T} = Ty. It follows
that A(u*, (T-,T%)) > ao, which together with (2.7) imply (2.8). Assume now T} — T_ = +o0.
If T, = +oo, (2.9) implies that, given a small number € > 0, there are t. and Z. € 9Q such that
|u*(t) — Z.| = € and the segment joining u*(t.) to Z. belongs to Q. Set

ve(t) = (1= (t—t))u™(te) + (£ —te)Te, tE (te,te + 1]
From the uniform continuity of U there is 7. > 0, lim.on. = 0, such that U(v(t)) < 7, for
t € [te,te + 1]. Therefore we have

1
A(Uev (tsate + 1)) S 562 + 775~

fT_ > —oo the map ue = L7 ¢ ju™ + L(;_ ¢ 410 belongs to U and it results

1
ap < Alue, (T, te + 1) = A", (T t0)) + A(ve, (te,te + 1) < AW, (T2, T4)) + 5€ + ne.

Since this is valid for all small € > 0 we get
ap < A(U*a (T77T+))a

that together with (2.7) establishes (2.8) if T_ > —oo and T4 = +oo. The discussion of the other
cases where Ty —T_ = 400 is similar. O

We observe that there are cases with T, < T'?° and/or T_ > T'>°, see Remark 2.
Lemma 2.3. The map u* satisfies (1.2) and (1.4) in (T-,T4).
Proof. 1. We first show that for each 71, T with T < T < Ty < Ty we have
AW, (T4, T2) = inf A(v, (T3, T2)) (210)
where
V={veW'(Ty,T2);R") : v(T}) = u*(T3),i = 1,2; v([T1, Ta]) C Q}.
Suppose instead that there are n > 0 and v € V such that
Av, (Th, T2)) = A(u”, (Th, T2)) — -
Set w; : (T, T,”) — Q defined by

Uj(t), te (Ti_}Jj,Tl] U [TQ,Tﬁj),
Ty —t t—T;

2 51 + 1
T — 1T T — 1T

U(t) + 52j7 te (T17T2)7

where §;; = u;(T;) — u*(T;), i = 1,2, with u; as in (2.4). Define v; : [T, T}'] — R"™ by
v;(t) = w;(t = 75),
where 7; is such that U(v,;(0)) = Uy, as in (2.1). Note that
Aoy, (T2, T9)) = Alwy, (T, T2)) 211)
From (2.5) we have lim;_, d;; = 0,7 = 1,2, so that

lim  A(w;, (Th, Tz)) = A(v, (T1, T2)) = A(u”, (T, T2)) —n < ljiinigf/l(ujv (T1,T2)) — 7.

j—+oo



Therefore we have
lj@ +ilgof A(wj, (T, T)) = ; lim A(wj, (Th, To)) + Ij@ +ilgof A(uy, (T, Th) U (T2, TY7))

< ljlg_igf A(uja (T17T2)) —n+ 1]19_&1()15./4('&17 (TijaTl) U (TQ’TiJ)) <ap—m,

that, given (2.11), is in contradiction with the minimizing character of the sequence {u;}.

The fact that u* satisfies (1.2) follows from (2.10) and regularity theory, see [5]. To show that u*
satisfies (1.4) we distinguish the case Ty — T < 400 from the case T — T_ = +c0.

2. Ty —T- < +oo. Given tg,t; with T_ < tg < t1 < T4, let ¢ : [to,t1 + 7] — [to, t1] be linear, with |7|
small, and let v : [to,t1] — [to,t1 + 7] be the inverse of ¢. Define u, : [T_, Ty + 7] — R™ by setting

u*(t), tel[T_,to,
u‘r(t) = u*(¢(t))a te [t0>t1 + T]v (212)
u(t—1), t€ (i +7,Ty+ 7))

Note that u, € Y with T"" = T_ and T} = Ty + 7. Since u* is a minimizer we have

d u U
A, (T T47) o = 0. (2.13)

From (2.12), using also the change of variables ¢t = v (s), it follows

Alur, (T2, Ti7)) = A(u”, (T, T4))

_ZMT&émmwww+0m%amDﬁ‘lh@wwW+UWWWﬁ

t1 1—’(/J(t) . 2 . .
- /to (WW OF + @) = DU (u (t)))dt

S =

t1—to

_ _ﬁ/ 1 (2(1|“+(t>|) ~ U (1)) dr.

to t1—to

This and (2.13) imply

/ttl (%|u*(t)|2 - U(u*(t)))dt =0. (2.14)

Since this holds for all tg,¢1, with T_ < tg < t; < T4, then (1.4) follows.

3. Ty —T_ = +00. We only consider the case 7'y = 4+o00. The discussion of the other cases is similar.
Let T € (T—,400),let T_ <ty <t; < T andlet ¢ : [tg,T] — [to, T] be linear in the intervals [tg, t1 + 7],
[t1 +7,T], with |7] small, and such that ¢([to, 1 +7]) = [to, t1]. Define u, : (T—,+00) — R™ by setting

[ wr(t), te (To,to) U[T, +0)
“@‘{mwm»em%y

We have
A(u”rv (T—7 T)) - A(U*a (T—a T))
_ /to (72(1 f;tioto)|u*(t)|2+ o tOU(u*(t)))dt—l—/tl (72(11‘;11t1)|u*(t)|2 S U(u*(t)))dt.



Since u* restricted to the interval [to, 7] is a minimizer of (2.10), by differentiating with respect to 7
and setting 7 = 0 we obtain

L [ Gror - v o)as w2 [ (G0 - e)a o

t1 —to Jy, ty

From (2.7) it follows that the second term in this expression converges to zero when T — +o0.
Therefore, after taking the limit for 7' — 400, we get back to (2.14) and, as before, we conclude that
(1.4) holds. O

Lemma 2.4. Assume that limy_, 7 u*(t) =p € P. Then
T+ = +00.

Proof. Since U is of class C? and p is a critical point of U there are constants ¢ > 0 and p > 0 such
that
Ulx) <clz—p]? z¢ B,(p) N Q.

Fix t, so that u*(t) € B,(p) N Q for t > t,. Then T'; = +oo follows from (1.4) and

d
£|u* —p| > —|a*| = —/2U (u*) > —V2cju* —p|, t>t,.

O

We now show that if I' has positive diameter then 7 < 4o0. To prove this we first show that
T} = +oo implies u*(t) = p € P as t — +o0, then we conclude that this is in contrast with (2.8).

Lemma 2.5. If T, = 400, then there is p € P such that
lim w*(t) = p. (2.15)

t——+o0
An analogous statement applies to T .

Proof. If T'y = {p} for some p € P, then (2.15) follows by (2.9). Therefore we assume that Iy has
positive diameter. The idea of the proof is to show that if u*(¢) gets too close to 9I'y \ P it is forced
to end up on I'; \ P in a finite time in contradiction with 7% = +ooc.

If (2.15) does not hold there is ¢ > 0 and a sequence {7;}, with lim;_,., 7; = +o0, such that
d(u*(r;), P) > ¢, for all j € N. Since, by (2.3) u* is bounded, using also (2.9), we can assume that

lim w*(r;) =, for some Z € I'y \ UpepBq(p). (2.16)

Jj—+oo
The smoothness of U implies that there are positive constants 7, r, ¢ and C' such that
(i) the orthogonal projection on 7 : Br(Z) — 99 is well defined and 7(Bz(Z)) C 902\ P;

(ii) we have
B, (z¢) C Br(z), for all zp € 002N Bz (Z);

(iii) if (¢,s) € R x R are local coordinates with respect to a basis {e1,...,e,}, e; = ej(xo), with
en(2o) the unit interior normal to 9Q at zo € 91N B (2) it results

Ses < Ula(ao, (€,))) < 2es, [€7 + 7 <17, s > h(zo, ), (2.17)

where .
v = 2(w0, (6,) = 70+ 3 Ee5(x0) + sen(o),
j=1
and h: 00N Bz (Z) x {[¢] < r} = R, [h(x0,§)| < C|¢J?, for |£] < 7, is a local representation of
09 in a neighborhood of zg, that is U(z(zo, (€, h(z0,£)))) = 0 for || < .



| R

-< Zo

h(zo, &)

Figure 1: The coordinates (£, s) and the domain @y in Lemma 2.5.

Fix a value jo of j and set tg = 7j,. If jo is sufficiently large, setting ty = 7, we have that zo = 7(u*(to))
is well defined. Moreover 2o € 92N Bz (z) and

u*(to) = xo + den(z0), 6 = |u”(to) — ol
For k = %\/ﬁ let Qo be the set

Qo = {x(x0, (§,5))  [€* + (s = 6)* < k6%, s > §/2}.
Since § — 0 as jo — +0o we can assume that § > 0 is so small (§ < min{;4:z, 155 suffices) that
Qo C QN B(z9).
Claim 1. u*(t) leaves @, through the disc Dy = Qo \ 9Bys(u*(to)).
From (2.4) we have ag < A(v, (T, T%)) for each W2 map v : (T_,T¢] — R" that coincides with
u* for t < o, and satisfies v((to,T7)) C Q, v(T7}) € 02 and (1.4). Therefore if we set

w(s) = xo + sep (o),

s € [0, 4], we have
ap < A(u*, (T-,t0)) + J (w, (0,9)). (2.18)

On the other hand, if u*(t;) € 0Qo(zo) N OBrs(u*(to)), where
ty = sup{t > to : u*([to, 1)) C Qy \ OBrs(u*(to))},

from (2.7) it follows

A, (T 1)) + T, (to, 1)) < ac. (2.19)
Using (2.17) we obtain
) ; (2.20)

and, since



we also have, with k defined above,

k1.3 0%5% % - o ¥ - %
= Zsebst < 2 /t i (t)|dt§\/§/to VT )i (1) d. (2.21)

From (2.20) and (2.21) it follows

Nlw

8
gcéé

j(w7 (076)) < j(U*7 (t0>t6)>7

DN | =

and therefore (2.18) and (2.19) imply the absurd inequality ag < ag. This contradiction proves the
claim.

From Claim 1 it follows that there is ¢; € (¢, +00) with the following properties:
u”([to, t1)) C Qo(xo),

’Lb(tl) € Dy.
Set o1 = w(u*(t1)) and 6; = |u*(t1) — xo,1|. Since h(zo,0) = he(xo,0) = 0 and the radius ps =
(k? — %)%5 of Dy is proportional to §, we can assume that § is so small that the ratio % and

|zo,1—0]|

[ (01)—(w0,(0,5))] 2T€ Dear 1 so that we have

01 < pd, for some p <1,
|.Z‘0)1 — l‘ol S ké.

We also have
t—to < K62, K =

Q‘OO
IS =

This follows from

(1 = t0) 35 < A(u", (t0, 1)) = T (u", (10, 12))
- ﬁ/tl T @) i ()|t < 2V/e8|u (t1) — u” (k)| < 26F ka3

where we used (2.17) to estimate J on the segment joining u*(to) with u*(¢1).
We have u*(t1) = xo,1 + d1€n(x0,1) and we can apply Claim 1 to deduce that there exists to > t; such
that

u*([t1,t2)) C Q1(z0,1),
u*(t2) € D1,

where )1 and D; are defined as @y and Dy with 0; and z(xg1, (&, s)) instead of 6 and z(xo, (€, s)).
Therefore an induction argument yields sequences {t;}, {zo ;}, {0;} and {Q;(x0 )} such that
w ([t tj+1)) € Q(x0,5),  wo,; = m(u"(t5)),
841 < pdj < P16,
20,541 — xo,5] < kd; < kp’d, (2.22)
(i1 —t;) < K6} <K pI/2512,
u*(tj) = x0,; + 0jen(z0,) € D;.

We can also assume that Q;(zo,;) C QN B, (xg), for all j € N. This follows from |u*(¢;41) — u*(¢;)| <

11



[N

From (2.22) we obtain that there exists T with to < T < 1’“/5 - such that
—p2
(T) = limu*(t) = 1 j €O\ P
w(T) = i () = lim_z0, €00\ P,
ko
(T) — xo] < ——.
o (T) — a0l < 7

This contradicts the existence of the sequence {r;}, with lim;_,., 7; = 400, appearing in (2.16) and
establishes (2.15). The proof of the lemma is complete. O

We continue by showing (2.15) contradicts (2.8).
Lemma 2.6. Assume that 'y has positive diameter. Then
T, < +oo0.
An analogous statement applies to T'_ and T_.

Proof. From Lemma 2.5, if Ty = +o00 there exists p € P such that lim; . u*(t) = p. We use a local
argument to show that this is impossible if I'}. has positive diameter. By a suitable change of variable
we can assume that p = 0 and that, in a neighborhood of 0 € R™, U reads

U(u) = V(u) + W(u),

where V is the quadratic part of U:

1 - 2.2 - 2 2 .
V(u)—2<—2/\iui+lz )\iui), Ai >0 (2.23)
=1 i=m-+1
and W satisfies,
(W(u)| < CluP’,  [We(u)] < Clul?,  [Wae(u)] < Clul. (2.24)

Consider the Hamiltonian system with
1 n n
H(p7Q):§|p‘2_U(Q)7 pgR,QGQCR.

For this system the origin of R?” is an equilibrium point that corresponds to the critical point p = 0
of U. Set D =diag(—A%,...,—A2,,A2 ,,...,A2). The eigenvalues of the symplectic matrix

(7 %)

— Xy, t=m+1,...,n
Ni, i=m+1,....n
+iN, i=1,...,m.

are

Let (e1,0),...,(en,0), (0,e1),...,(0,e,) be the basis of R*" defined by e; = (J;1,...,d;,), where d;;
is Kronecker’s delta. The stable S®, unstable S* and center S°¢ subspaces invariant under the flow of
the linearized Hamiltonian system at 0 € R?" are

S° = Span{(_)‘jeja ej)};'l:erlv

S = Span{()\jej, ej)}?zm—i-la

S¢ = Span{(ejv 0)7 (07 ej)}?:l

12



From (2.15) and (1.4) we have
lim (a*(t),u*(t)) =0 € R?",

t——+oo

Let W* and W*" be the local stable and unstable manifold and let W¢ be a local center manifold at
0 € R?. From the center manifold theorem [4], [10], there is a constant A\g > 0 such that, for each
solution (p(t), q(t)) that remains in a neighborhood of 0 € R?" for positive time, there is a solution
(p°(t),q°(t)) € W¢ that satisfies

|(p(t), a(t)) — (p°(1), 4°(t))] = O(e™™"). (2.25)

Since W€ is tangent to S¢ at 0 € R?", the projection W§ on the configuration space is tangent to
S§ = span{e; }7L,, which is the projection of S¢ on the configuration space. Therefore, if (p¢,¢°) # 0,
given v > 0, by (2.25) there is t, such that d(q(t), S5) < v|q(t)|, for t > t,. For ~ small, this implies
that ¢(t) & Q for t > t,. It follows that (p° ¢°) = 0 and from (2.25) (p(t), ¢(t)) converges to zero
exponentially. This is possible only if (p(t),¢(t)) € W* and, in turn, only if ¢(¢t) € W{§, the projection
of W? on the configuration space. This argument leads to the conclusion that the trajectory of v* in
a neighborhood of 0 is of the form

u*(t(s)) = u*(s) = sn+ z(s), (2.26)

where

n
n= Z i€i

i=m+1

is a unit vector!, s € [0, o) for some so > 0, and z(s) satisfies
2(s) n=0, |2(s)] <cls’, [2(s)] < cls] (2.27)

for a positive constant c.
We are now in the position of constructing our local perturbation of u. We first discuss the case
U=V, z(s) =0. We set
u(s) = sn
and, in some interval [1, s1], construct a competing map o : [1, s;] — R",

1_1:’1_L+g€1, 93[1751]—>R,

with the following properties:

(1, 81]) < Jv(a, [0, 51]). (2.28)

The basic observation is that, if we move from @ in the direction of one of the eigenvectors ey, . .., e,
corresponding to negative eigenvalues of the Hessian of V', the potential V' decreases and therefore, for
each sg € (1,s1) we can define the function g in the interval [1, so] so that

Jv(a+ ger, (1,s0)) = Jv (1, (1, s0)). (2.29)

Indeed it suffices to impose that g : (1, s9] — R satisfies the condition

VV(a(s)) = V1 +g2(s)v/V(als) +g(s)er), s € (L sol.

L Actually 0 coincides with one of the eigenvectors of U’ (0).

13



€1

Figure 2: The maps @(s) and o(s).

According with this condition we take g as the solution of the problem

A
q A1g _ ﬁ
s2AZ — A2g2 1_ ;\foj , (2.30)

Note that the initial condition in (2.30) implies V' (#(1)) = 0. The solution g of (2.30) is well defined in
spite of the fact that the right hand side tends to —oco as s — 1. Since g defined by (2.30) is positive
for s € [1,4+00), to satisfy the condition v(s1) = @(s1), we give a suitable definition of ¢ in the interval
[s0,s1] in order that g(s;) = 0. Choose a number a € (0,1) and extend g with continuity to the
interval [sg, $1] by imposing that

VV(a(s)) = ay/1+g2(s)V/V(als) + g(s)er), s € (so,51]. (2.31)

Therefore, in the interval (sg, 1], we define g by

Afgz

/ 1 1—a2+a282>\% )
g =—= ot < - . (2.32)
« 1— 21)\2 «
s n

Since (2.31) implies
1
Jv (0, [s0,51]) = ajv(ﬂ, [s0,81]),

from (2.29) we see that v satisfies also the requirement (2.28) above if we can choose a € (0,1) and
1 < sp < s71 in such a way that

11—«

Jv (@, (0,1)) > Jv (@, (S0, 51))-

(67

Since (2.32) implies s1 < so + 3‘% a sufficient condition for this is

Jv(a, (0,1)) > ! ;ajv (12, (80,80 + %))7

14



or equivalently

1 a agls0) \? 4 . ag’(s)
1 (( ) - ) =9 a9 1%o) 2.33
> 5 S0 + N S0 509(s0) T + 1+a ( )

By a proper choice of sy and « the right hand side of (2.33) can be made as small as we like. For

instance we can fix sg so that g(sg) < i and then choose « in such a way that %so }I_—g < i and
conclude that (2.28) holds.

Next we use the function g to define a comparison map v that coincides with u* outside an e-
neighborhood of 0 and show that the assumption that the trajectory of u* ends up in some p € P
must be rejected. For small € > 0 we define

v(es) = esn+ z(es) + eg(s —o)er, s€[l+ 0,8 + 0], (2.34)
where o = o(€) is determined by the condition
U(v(e(1+0))) =0,
which, using (2.23), (2.24), (2.27) and g(1) = ’;—"1’7 after dividing by €2, becomes

%)\%((1 +0)2 —1) =ef(o,¢), (2.35)

where f(o, €) is a smooth bounded function defined in a neighborhood of (0,0). For small € > 0, there
is a unique solution o(e) = O(e) of (2.35). Note also that (2.34) implies that

ole(s1 + ) = w(e(s1 + ).
We now conclude by showing that, for € > 0 small, it results

Ju(w*(e), (0,81 +0)) > Ju(v(e), (1 + 0,81 + 0)). (2.36)
From (2.26) and (2.34) we have

diu*(es)’ =1, lim e_lldiv(es)‘ =1+ g2(s), (2.37)

S e—0t S

lim e~
e—0+

and, using also (2.24) and o = O(e),

1 ‘

lim e 2U(u*(es)) = V(a(s)), s € (0,s1),

e—0+t

lim e 2U(v(es)) = V(0(s)), s € (1,s1)

e—0t

(2.38)

uniformly in compact intervals.
The limits (2.37) and (2.38) imply
s1+o0

lim e 27y (u*(e-), (0,81 +0)) = lim v2 e*QU(u*(es))efl‘%u*(es)‘d&

e—0T e—0t 0

— 3 /0 V) ds = Jy (@, (0,51)
s1+o

lim e 27y (v(e), (1 + 0,81 +0)) = lim V2 \/6*2(](1)(65))6_1‘%v(es)‘ds,

e—0t e—0t 140
V2 [ VEEIVIF () ds = T (0, (1Ls2).

This and (iii) above imply that, indeed, the inequality (2.36) holds for small ¢ > 0. The proof is
complete. O
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We can now complete the proof of Theorem 1.1. We show that the map u* : (T_,Ty) — R™ possesses
all the required properties. The fact that «* satisfies (1.2) and (1.4) follows from Lemma 2.3. Lemma
2.2 implies (1.5) and, if T_ > —oo, also (1.6). The fact that «_ € I'_ \ P is a consequence of Lemma
2.4 and implies that I'_ has positive diameter. Viceversa, if I'_ has positive diameter, Lemmas 2.5
and 2.6 imply that 7_ > —oo and that (1.6) holds for some x_ € I'_ \ P. The proof of Theorem 1.1
is complete.

Remark. From Theorem 1.1 it follows that if N is even then there are at least N/2 distinct orbits
connecting different elements of {I'y,...,I'y}. If N is odd there are at least (N + 1)/2. Simple
examples show that, given distinct I';,I'; € {T'1,...,I'y}, an orbit connecting them does not always
exist. Let

Uy = {ue WH(T*, TY);R") s u((T, TY)) C Qu(T*) € Ty, u(TY) € Ty}

with ¢ # j and
dij = inf .A(U, (Tﬁ,Tz))

’U.GZ/[ij

An orbit connecting I'; and I'; exists if
dij <dj, + dkj, Vk #£1i,].

The proof of Theorem 1.2 uses, with obvious modifications, the same arguments as in the proof of
Theorem 1.1 to characterize u* as the limit of a minimizing sequence {u;} of the action functional

.
Alu, (O,T“)):/O <%|u(t)\2+U(u(t)))dt. (2.39)

in the set

U={ueW"2((0,T%);R"): 0 < T% < +o0, u(0) =0, u([0,T%)) C Q, u(T?) € 9Q}. (2.40)
Remark. In the symmetric case of Theorem 1.2 it is easy to construct an example with Ty < T%°. For
U(z) =1 — |z|?, z € R?, the solution u : [0,7/2] — R? of (1.2) determined by (1.4) and u([0,7/2]) =
{(s,0) : s € [0,1]} is a minimizer of A in Y. For e small, let t. = arcsin(1 —¢) and define u, : [0, T%] —

R? as the map determined by (1.4), uc([0,t]) = {(5,0) : s € [0,1 — €)} and uc((te, T%]) = {(1 — ¢, 5) :
s € (0,v2e — €2]}. In this case Ty = 7/2 and T{° = 37 /4.

2.1 On the existence of heteroclinic connections

Corollary 1.3 states the existence of heteroclinic connections under the assumptions of Theorem 1.1
and, in particular, that U € C?. Actually, by examining the proof of Theorem 1.1 we can establish an
existence result under weaker hypotheses. In the special case 9Q) = P, #P > 2, given p_ € P, the set
U defined in (2.1) takes the form

U={ueW"(T*T¢);R") : —o0o < T* < T} < +o0,
u((T, 7)) € Q, Uu(0)) = Uo, u(T") =p—, u(T}) € P\ {p-}}.

In this section we slightly enlarge the set ¢ by allowing T = oo and consider the admissible set

U={ueW((T" T");R") : —00 <T* < T¥ < 400,

loc

u(T,TY) € Q. U((0) = Uo, lim u(®) =p-, lim u(t) € P\ {p-}}.
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Proposition 2.7. Assume that U is a non-negative continuous function, which vanishes in a finite

set P, #P > 2, and satisfies
VU(@) > o(|z]), z€Q, |z| >ro

for some ro > 0 and a non-negative function o : [rg,+00) = R such that f:goo o(r)dr = +o0.
Given p_ € P there is py € P\ {p_} and a Lipschitz-continuous map v* : (T_,Ty) — Q that
satisfies (1.4) almost everywhere on (T—,Ty),

lim u*(t) =
tir%i“() P+,

and minimizes the action functional A on U.
Proof. We begin by showing that

ap = inf A= inf A= ao. (2.41)
ueU uel:{

Since U C U we have ag > do. On the other hand arguing as in the proof of Lemma 2.2, if T, -T_ =

400, given a small number € > 0, we can construct a map u. € U that satisfies

ap < A(ue, (T2, Ty)) < A(u, (T2, TF)) + ne

where 1. — 0 as ¢ — 0. This implies ag < ao and establishes (2.41). It follows that we can proceed as
in the proof of Theorem 1.1 and define u* € U as the limit of a minimizing sequence {u;} C U. The
arguments in the proof of Lemma 2.2 show that (2.8) holds. It remain to show that u* is Lipschitz-
continuous. Looking at the proof of Lemma 2.3 we see that the continuity of U is sufficient for
establishing that (1.4) holds almost everywhere on (T_,T% ), and the Lipschitz character of u* follows.
The proof is complete. O

Remark. Without further information on the behavior of U in a neighborhood of pi nothing can
be said on T4 being finite or infinite and it is easy to construct examples to show that all possible
combinations are possible. As shown in Lemma 2.4 a sufficient condition for 74 = +oo is that, in a
neighborhood of p = p, U(z) is bounded by a function of the form c|z — p|?, ¢ > 0. U of class C* is
a sufficient condition in order that u* is of class C? and satisfies (1.2).

3 Examples

In this section we show a few simple applications of Theorems 1.1 and 1.2.
Our first application describes a class of potentials with the property that, in spite of the existence of
possibly infinitely many critical values, (1.2) has a nontrivial periodic orbit on any energy level.

Proposition 3.1. Assume that U : R™ — R satisfies
U(-z)=U(z), z€R",
U0)=0, U(x) <0 forz #£0,
lim U(z) = —o0
|z|—o00
Assume moreover that each non zero critical point of U is hyperbolic with Morse index i,, > 1. Then
there is a nontrivial periodic orbit of (1.2) on the energy level |u|? — U(u) = a for each o > 0.

Proof. For each o > 0 we set U = U(x) 4+ a and let Q@ C {U > 0} be the connected component that
contains the origin. € is open, nonempty and bounded and, from the assumptions on the properties of
the critical points of U, it follows that 02 is connected and contains at most a finite number of critical
points. Therefore we are under the assumptions of Corollary 1.6 for the case N = 1 and the existence
of the periodic orbit follows. O
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Figure 3: Symmetric periodic orbit for the example with potential (3.1).

An example of potential U : R? — R that satisfies the assumptions in Proposition 3.1 is, in polar
coordinates r, 0,

1
U(r,0) = —r* + 5 tanh?(r) cos?(r 1) cos?*(26),

where k > 0 is a sufficiently large number.

Next we give another application of Corollary 1.6. For the potential U : R? — R, with
1 1
Ule) = 5(1 - 23 + 5 (1 - 423)%, (3.)

the energy level a = —% is critical and corresponds to four hyperbolic critical points p; = (1,0), —p1,
p2 = (0,3) and —p,. The connected component €2 C {U >0}, (U=U(x)— 1) that contains the
origin is bounded by a simple curve I' that contains +p; and +ps. In spite of the presence of these
critical points, from Theorem 1.2 it follows that there is a minimizer v € U, with U as in (2.40) and
u(T*) € T'\ {£p1, £p2}, and Corollary 1.6 implies the existence of a periodic solution v*. Note that

there are also two heteroclinic orbits, solutions of (1.2) and (1.4):
1
u1(t) = (tanh(¢),0), us(t) = (0, 5 tanh(2t)).

These orbits connect p; to —p;, for j = 1,2. By Theorem 1.2 both u; and u2 have action greater than
U*|(*T+;T+)'

Our last example shows that Theorems 1.1 and 1.2 can be used to derive information on the rich
dynamics that (1.2) can exhibit when U undergoes a small perturbation. We consider a family of
potentials U : R? x [0,1] — R. We assume that U(z,0) = 2% + 23 which from various points of view
is a structurally unstable potential and, for A > 0 small, we consider the perturbed potential

Uz, \) = 2\122 + 22 — 20%x 09 — 3X\22] + 2§, (3.2)

This potential satisfies U(—x,\) = U(z, A) and, for A > 0, has the five critical points pg, p; and +ps
defined by

bo = (0’0)7
pr= (A1 (2)7)2, 031 - (2)2)%),
p2=(AM1+(2)2)2, M1+ (2)2)?),

which are all hyperbolic.
We have U(pa, A) < 0= U(po,A) < U(p1, ) and py is a local minimum, p; a saddle and p, a global
minimum. Let « be the energy level. For —a < U(ps,\) or —a > U(p1, ) no information can be
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Figure 4: Bifurcations of dynamics of (1.2) with the @ = 0, bottom left: « = 0.05, bottom right:
a = —U(p2,1). The shaded regions are not accessible.

derived from Theorems 1.1 and 1.2 therefore we assume —« € [U(pa, A), U(p1,A)). For —a = U(pa, A)
Corollary 1.3 or Corollary 1.6 yields the existence of a heteroclinic connection us between —ps and
pe. For —a € (U(p2,A),0) Corollary 1.6 implies the existence of a periodic orbit u,. This periodic
orbit converges uniformly in compact intervals to ug and the period T, — +o0c0 as —a — U(pz, A\)T.
For o« = 0 Corollary 1.4 implies the existence of two orbits uy and —uy homoclinic to py = 0. We
can assume that ug satisfies the condition ug(—t) = uo(t) and that u,(0) = 0. Then we have that
U (- £ %) converges uniformly in compact intervals to Fug and T, — 400 as —a — 0. For
—a € (0,U(p1,N)), 99 is the union of three simple curves all of positive diameter: T'g that includes the
origin and +T'y which includes +ps and Corollary 1.5 together with the fact that U(-, A) is symmetric
imply the existence of two periodic solutions u, and —u, with %, that oscillates between I'g and T’y
in each time interval equal to % Assuming that i4(0) € T's we have that, as —a — 07, @, — ug
uniformly in compacts and T,, — +oo. Finally we observe that, in the limit —a — U(p1,\)”, Ua

converges uniformly in R to the constant solution u = p;.
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