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Abstract

We consider the p—Laplacian operator on a domain equipped with a Finsler
metric. After deriving and recalling relevant properties of its first eigenfunc-
tion for p > 1, we investigate the limit problem as p — 1.
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1 Introduction

Imagine a nonlinear elastic membrane, fixed on a boundary 99 of a plane
domain Q. If u(z) denotes its vertical displacement, and if its deformation
energy is given by [, |Vu[P dz, then a minimizer of the Rayleigh quotient

Jo [VulP dz
Jo lulP dz

on W;P(Q) satisfies the Euler-Lagrange equation
0
~Apu =X, [ufP?u in Q, (1.1)

where Ayu = div(|Vu[P=2Vu) is the well-known p-Laplace operator. This
eigenvalue problem has been extensively studied in the literature. As p — 1,
formally the limit equation reads

—div(ﬂ) = MO i (1.2)
u = 0 on 0f).

*SHORT TITLE: p-Laplace eigenvalue problem in a Finsler metric



For a precise interpretation of (1.2) see [22] or [31]. Naturally, here A1(f2) :=
limy_,14 Ap(€Q2). A somewhat surprising recent result is that the family of
eigenfunctions {u,} converges in L!(2) cum grano salis to (a multiple of) the
characteristic function x, of a subset Cq of €2, a so called Cheeger-set, see
[20]. A Cheeger set of © is characterized as a domain that minimizes
_ ¢ 10D|

h(Q) = 1gf L
with D varying over all smooth subdomains of 2 whose boundary 0D does
not touch 02, and with |0D| and |D| denoting (n — 1)- and n-dimensional
Lebesgue measure of 0D and D. The existence, uniqueness, regularity and
construction of such sets is discussed in [20] and [21] (and partly in [32])
and its continuous dependence on Q in [17]. The paper [24] contains a nu-
merical method for the calculation of n-dimensional Cheeger sets and some
three-dimensional examples. Cheeger sets are of significant importance in the
modelling of landslides, see [18], [19], or in fracture mechanics, see [23]. Notice
that a set D C ) is a Cheeger set if and only if it is a minimizer of

OE| — h(Q)|E|  for EC Q. (1.3)

Now suppose that the membrane is not isotropic. It is for instance woven
out of elastic strings like a piece of material. Then the deformation energy
can be anisotropic, see [5]. Another way to describe this effect is by stating
that the Euclidean distance in € is somehow distorted. It is the purpose of
the present paper to generalize the above result on eigenfunctions and their
convergence as p — 1 to the situation, where 2 C R” is no longer equippped
with the Euclidean norm, but instead with a general norm ¢. In that case
a Lipschitz continuous function v : € — R (in a convex domain ) has
Lipschitz constant L = sup,cq ¢*(Vu(z)), where ¢* denotes the dual norm to
¢. Therefore the Rayleigh quotient studied in this paper is given by

Jo (6" (V) dx

= 14
on W,P() and the Cheeger constant by
oo Do(D)
h(Q) := Dlréi;z D] (1.5)

with P4 denoting anisotropic perimeter in R" (see (2.10) below). The mini-
mizer u, of R, satisfies the Euler-Lagrange equation

—Qpu = —div ((qs*(vu))ff’*2 J(vu)) SMuP?u nQ  (16)
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in the weak sense [8], i.e.
| @@y o = [l uode o 00)
Q Q

for any v € Wy™P(Q) and for a measurable selection n € J(Vuy), where the
function J : R — P(R") is defined as the subdifferential

J() =0 (#) . (1.8)

Note that the function J is single-valued iff the norm ¢ is strictly convex, i.e.
if its unit sphere {z : ¢(z) = 1} contains no nontrivial line segments [36, pag.
400]. Note further that J(0) = 0 and that for the Euclidean norm the duality
map reduces to the identity J(Vu) = Vu.

The paper is organized as follows. In Section 2 we fix some notation. In
Section 3 we recall and derive the existence, uniqueness, regularity and log-
concavity of solutions for p > 1. In Section 4 we derive the limit equation for
p — 1. In Section 5, we discuss in detail the two-dimensional case, proving
uniqueness of Cheeger sets in the convex case. In Section 6 we provide some
instructive examples.

2 Notation

We say that the norm ¢ is regular if ¢2,(¢*)? € C?(R"). This includes for
instance ¢(x) = ||z||; with ¢ € (1, 00) but excludes the crystalline cases ¢ =1
or g = 00, see Section 6.

Given E C R" and = € R", we set

disty(z, E) := ;IEI{C oz —vy), df(w) := distg(z, E) — disty(R" \ E, x).

Notice that, at each point where dg is differentiable, there holds
¢*(Vdy) = 1. (2.9)
Let us define the (anisotropic) perimeter of E as
Py(E) := sup{/ divy dz |n € CHRY), ¢(n) < 1} = ¢*(WE)dH" L,
E »E
(2.10)

where 0*E and v denote the reduced boundary of E and the (Euclidean)
unit normal to 0*E.



Given an open set 2 C R” we define the BV -seminorm of v € BV () as

/Qqﬁ*(Dv) = sup{/ﬂvdivn dz |n e CLRM), ¢(n) < 1}.

Given § > 0, we define

ES = {xeR"\dg<6}:E+6W¢,
E° = {x e R dg > —5},
B = (Ei)igE,

where Wy := {z| ¢(z) < 1}, also called Wulff shape, denotes the unit ball
with respect to the norm ¢.

Given a compact set £ C R"™ with Lipschitz boundary, we denote by
ng : OF — R" any Lipschitz vector field satisfying ng € J (VdgJ ) a.e. on OF.
Moreover, we set

Kol oo = inf div, ngl| 1, ,
156l Lo (o) MEJ(Wf)H Mgl (om)

which represents the L°°-norm of the ¢-mean curvature of OF. Here div,
denotes the tangential divergence operator. We make the convention that
kgl Lo(amy = +oo if the set E does not admit any Lipschitz vector field
ng € J(Vdf). We say that E is ¢-regular if ||kl o (o) < +00.

Notice that in the Euclidean case E is ¢-regular iff OF is of class Ol
Moreover, the unit ball Wy, is always ¢-regular and ||s4||pow,) = n — 1. To
see this, it is enough to consider the vector field ng(x) = z/p(x).

3 Existence, uniqueness, regularity and log-
concavity of solutions

Let 2 C R" be a bounded open set. If we minimize the functional
I(v) = /Q¢>* (Vo)? dz on K :={wveW,PQ); ol ey =1} (3.1)

then via standard arguments (see [6]) a minimizer u, exists for every p > 1
and it is a weak solution to the equation (1.6), with A\, = I,(up). Note that
Ay := I,(up)'/? is the minimum of the Rayleigh quotient

(fyy (¢7(V0))P daz)'/?

[Vl

R,(v) == (3.2)



on WO1 P(Q) \ {0}. Without loss of generality we may assume that u, is non-
negative. Otherwise we can replace it by its modulus.

Moreover, as shown in [6] any nonnegative weak solution of (1.6) is neces-
sarily bounded and positive in Q. If p > n, then w, is also uniformly Holder
continuous because of the Sobolev-embedding theorem and the equivalence of
the usual Sobolev norm with

fullg = ([ 1 da:)l/p+(/9 (8" (V)" dx)l/p. (33)

If the norm ¢ is regular and p > 1, one can even show that u, € C*(Q).
Indeed, the function 4, minimizes

Jp(w) = /Q (6* (V)P — Ap()ul? da,

and the theory for quasiminima in [16] implies that minimizers are bounded
(Thm. 7.5), Holder continuous (Thm. 7.16) and satisfy a strong maximum
principle (Thm. 7.12), because one can easily check that wu, satisfies (7.71)
in [16]. Therefore u, is positive. Once positivity is known, the uniqueness
follows from a simple convexity argument, see [4] or [6]. Moreover, from the
result in [11] one can conclude that u, € C%?(Q) for any 3 € (0,1). Finally,
if ¢ is regular, then u, € C1*(Q) according to [7], [26], [34], [35] or [12]. Let

us summarize these statements.

Theorem 3.1. For every p € (1,00) the nonnegative minimizer u, of (3.1)
is positive, unique, belongs to C%P(Q) for any B € (0,1) and it solves (1.6) in
the weak sense. Moreover, if the norm ¢ is reqular then uy is of class Cche(Q)
for some o € (0,1). Finally, if Q is convez, then u, is log-concave and the
level sets set {up, >t} C Q are convez for all t > 0.

Proof. To prove the last statement, we follow Sakaguchi’s approach from [29],
first for strictly convex 2 and for a smooth norm ¢. The general case follows
then from approximation arguments for €2 and ¢. Log-concavity of a sequence
Up n is preserved under pointwise limits as n — oo, because the inequality

1 1
log up.p, (xl -;-932) > 3 log uy 5 (1) + 3 log up p(2) in 2 xQ

is stable under such limits. If u, solves (1.6), then v, := logu, solves

_div ((¢*(vu))p*2 J(Vv)) —(p—1)¢"(Vo)P +X, inQ  (34)

and this degenerate elliptic equation can be approximated by a nondegenerate
one

_div ((5 (67 (V)?) T J(Vv)>



— (p—1—&)(¢"(V0)) (e + (6"(VV)D)T + A (35)

Modulo yet another approximation by a right hand side which is strictly mono-
tone in v, equation (3.5) is now amenable to Korevaar’s concavity maximum
principle which states that the concavity function

$1+$2) 1 1

5 — =v(z1) — zv(z2) €N xQ

C(z1,29) =0 ( 5 5

can attain a negative minimum only on the boundary of Q2 x Q. The latter is
ruled out, however, because of the boundary condition. O

Remark 3.2. We should point out that without uniqueness of u, the approz-
imation arguments would only yield log-concavity of a solution and not the
solution up.

4 The limit problem for p — 1

The following estimate for ), is optimal (as p — 1) for any shape of 2 (see
[6])-

Theorem 4.1. (Convergence of eigenvalues) For every p € (1,00) the eigen-
value \p(€2) can be estimated from below as follows:

A($) > (@) . (1)

Here h(QY) is the Cheeger constant of 2 as defined in (1.5). Moreover, as
p — 1, the eigenvalue A\p(Q2) converges to A\1(2) = h(2).

Proof. In the Euclidean case this is Cheeger’s original estimate [10] when
p = 2, and for general p it can be found in [25], [2], [27] and [33]. For a more
general ¢ one can easily modify their proofs by using the generalized coarea
formula from [14] or [15]. To prove the limiting behaviour of A\,(2) as p — 1
we proceed as in [20] and observe that (4.1) implies lim inf, 1 Ap(2) > R(£2).
Therefore it suffices to find a suitable upper bound. Let {Dy}r=12.. be a
sequence of regular domains for which Py(Dy)/|Dy| converges to h(£2). We
approximate the characteristic function of each Dy, by a function wy with the
following properties: w = 1 on Dy, w = 0 outside an e neighborhood of Dy,
and ¢*(Vwyg) = 1/ in an e-layer outside Dy. For small ¢ the function wy, is
in WO1 "°(Q) and provides the upper bound

Py(D
A(9) < 5(Dk) 1p (4.2)
| Di|
Now one sends first p — 1, then k¥ — oo to complete the proof. U

6



Theorem 4.2. (Convergence of eigenfunctions) As p — 1, the eigenfunction
up converges, up to a subsequence, to a limit function u; € BV (), with
up > 0 and ||ui|ly = 1. Moreover, almost all level sets Q; := {uy > t} of ug
are Cheeger sets.

Proof. For every p > 1 the function u, minimizes
T0) = [ (@(T0) = (@ do

on Wy (). If one extends J, to L' (2) by setting it +oo on L*(Q)\ W, * (),
the family J, T-converges (see [13]) with respect to the L!(£2)-topology to

/¢*(Dv) —h(Q)/ w|de v e BV(Q),
Jl(’U) = e e

+00 v € LY Q) \ BV(9Q).
Indeed, since J; is lower semicontinuous on L!({2), it is enough to prove the
I-limsup inequality on the subset C'(Q) C L'(Q) (which is dense both in
topology and in energy), where it becomes trivial.
Let us now prove the I-liminf inequality. Notice that, if u,, — u in L({2),
then either there exists a subsequence u,, which is equibounded in BV (), or

Jp. (tp,) goes to +oo. If ug := uy, is bounded in BV(S2), letting py, := py,
and X := Jy, (up,), we have

Tiug) = / o (Tu) = WD s

< [ @y dz] o 5 - / g d
< /Q (6" (Vug)

AK(Q) / uglP* dz — Ap(9) / g de
Q Q

@) [ fuul da=n(@) [ ] da

lug| dz
Q

< Ji(ug)
= Jp(ug) + wg,

where limy, wy, = 0. It follows

Ji(u) < liminf Ji (ug) < liminf Jy (ug)-
k—o0 k—o0

Since J, > 0 on Wol’p(Q), we get J; > 0 on BV (Q). Moreover u, forms a
minimizing sequence for J; since, from the last inequality in (4.3), we have

/ & (Vuy) dr < 2= 10) 4+ 2,(9),
Q b
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where we have used the fact that Jp(up) = 0 and ||up||, = 1. As a consequence,
the family {up}p>1 is bounded in BV () and, after possibly passing to a
subsequence, it converges strongly in L'(Q) to a limit function u; € BV(Q)
such that Ji(u1) = 0, ug > 0 and ||u1||; = 1. Using the coarea formula, one
can see that for all ¢ € [0, maxq u1) the level set €, := {u; > t} is a Cheeger
set. O

Remark 4.3. As a consequence of Theorem 4.2 and the logconcavity of uy, for
convex Q2 (Theorem 3.1) there exists a convex Cheeger set. Moreover, it follows
from the results of [9] that there exists a conver Cheeger set D C Q which is
mazximal, in the sense that any other Cheeger set of Q must be contained in D.
The uniqueness of Cheeger sets is in general not true for nonconver domains

(see [21]).

5 The planar case

In this section we derive further properties of the function i, under the
additional assumption n = 2. Let us begin with the following theorem, which
extends the analogous result in the Euclidean case [21, Th. 1].

Theorem 5.1. Let Q C R? be a bounded open convex set. Then, there exists
a unique Cheeger set D C Q). Moreover, D is conver and we have

1 .
h(Q) = —, D =Qf, (5.1)

where t* > 0 is the (unique) value t such that |QF | = t2|Wy)|.

Proof. Let D be a Cheeger set of ). Notice first that D is a convex set, since
otherwise we could replace it by its convex hull and reduce (1.3) (see [3, Th.
7.1]). Moreover, from the first variation of (1.3) it follows that the anisotropic
curvature of 9D is bounded by h(£2), and each connected component of DN
is contained up to translation in ﬁBW,b (see [28, Theorem 4.5]). Let D be

the open maximal Cheeger set of 2 (recall Remark 4.3), and let I' C ﬁam

be a connected component of 9D N D. We denote by z,y € T'N oD the
extremal points of T, and we let IV be the arc of 0D with extrema x,y and
lying in the same halfplane of I with respect to the straight line r passing
through z,y (see Figure 1). Reasoning as in [3, Lemma 7.3], it is easy to
show that both T" and I’ can be written as graphs on r along some directions.
More precisely, there exists a vector v € R?, with |v| = 1, and two functions
fi,fa i — R such that 0 < f1 < fa on [z,y], that min{ fa(x), f2(y)} = 0,
and that T' = Fy([z,y]) and T" = Fy([z,y]), with F;(z) := fi(z)v, for i = 1,2.



Figure 1: The Cheeger sets D, D of Theorem 5.1.

Without loss of generality, we shall assume that v L r. Since D and D are
both minimizers of (1.3), it follows that both f; and f2 are minimizers of

G(f) = ¢"(=f'(s),1) — h(2)f(s) ds. (5.2)
[z,y]

If ¢ is a regular norm, then the functional G is strictly convex, which implies
f1 = fa,i.e. D = D. For a general norm, one has to be more careful, since the
functional G is not strictly convex, but only convex. However, reasoning as in
[3, Lemma 8.2], the inclusion I C ﬁBW(b and the inequality f1 < fo imply
K¢l Loo(rry > h(R2), with equality iff T' = T", which proves the uniqueness of

the Cheeger set D.
Let us now prove (5.1), reasoning as in [21, Th. 1]. It has been proved

in [3] that the convex set D = Qi/h(m is a Cheeger set of €2, hence it is the
unique Cheeger set of 2. Therefore, it remains to prove that ¢* = 1/h(Q), i.e.

ﬁ| |W¢|

05 =

Let us recall from [1, Section 2.7],[30] the following Steiner-type formulae

[edl O] +6P4(C) + 8*|Wyl ,
Py(C°) = Py(C) +6Ps(Wy). (5.3)

Incidentally, the second equation follows from the first one and, as in the
Eucliedean case, Py(Wy) = 2|Wy|. This follows from integrating dive on Wi,
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Applying (5.3) to C = D™ and recalling that h(Q) = P4(D)/|D|, we get

Wol
piney _ Wel

The claim now follows if we observe that

1

Q,(Q) = D" Q) .
|

Corollary 5.2. If n = 2 and 2 is a bounded convex set, then the sequence
of functions u, converges to a multiple of the characteristic function of D.
Moreover, D = Q if and only if

16| Lo (a0) < R(S). (5-4)

In particular, (5.4) always holds in the case Q = Wy,

6 Example and concluding remarks

If the norm under consideration for z € 2 is the usual {;- norm, ie. for
bg(z) = (X0, |2i]9)'/9, ¢ > 1. When ¢ > 1, the dual norm of ¢, is given by
¢y = bq', with ¢ = q/(q — 1), and the duality map according to (1.8) is

Ji(y) = (Jylg)* " il 2y

Then the p-Laplace operator in this metric is given by (see [6])

/ qli? Bu
Qp,qu = Z o1 bg (Vu)? 3—% )

and for ¢ = 2 = ¢’ the norm ¢, is just the Euclidean norm and @, , reduces
to the well-known p-Laplace Operator

ou
8.%5

Qp.qu = Apu = div(|VulP 2Vu) .

For general ¢ and p — 1 the operator )1 4 is formally given by

_ "\ 0 |u$z - Ua;
Ql’qu_i;a—xi quf(Vu)] g (Vu) )~

Again for ¢ = 2 = ¢ this expression shrinks down to the customary

Ql 2U = Alu = div (|gz|)
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We complete this section with the construction of a particular Cheeger set
for a nonregular anisotropy. Let us fix n = 2 and consider the norm ¢ = ¢;.
Notice that in this case the Wulff Shape W has the shape of a rhombus. To
be precise, it is square of sidelength v/2, centered in the origin and rotated by
m/2 with respect to the coordinate axes. Moreover, the dual norm ¢* is given
by ¢*(y) = max{|y1|, |y2|}- To better illustrate the results of Section 5, let us
compute the Cheeger set (and Cheeger constant) of a square @ of sidelength
1 (see Figure 2).

Since in this case [Wy| = 2 and Q' is a square of sidelength 1 — 2¢, from
Theorem 5.1 we get t* = 1 —+/2/2 and h(Q) = 2 + /2. It is interesting to
note that the Cheeger set of () is a regular octahedron.
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Figure 2: The Cheeger set of a square with respect to the norm ¢;.
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