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Abstract

We show short time existence and uniqueness of C1,1 solutions to the mean curva-

ture �ow with obstacles, when the obstacles are of class C1,1. If the initial interface

is a periodic graph we show long time existence of the evolution and convergence to a

minimal constrained hypersurface.

1 Introduction and main results

Mean curvature �ow is a prototypical geometric evolution, arising in many models from
Physics, Biology and Material Science, as well as in a variety of mathematical problems.
For such a reason, this �ow has been widely studied in the past years, starting from the
pioneering work of K. Brakke [Bra78] (we refer to [GH86, Hui84, EH89, ES91, CGG91] for
a far from complete list of references).

In some models, one needs to include the presence of hard obstacles, which the evolving
surface cannot penetrate (see for instance [ESV12] and references therein). This leads to
a double obstacle problem for the mean curvature �ow, which reads

v = H on Mt ∩ U, (1)

with constraint
Mt ⊂ U for all t, (2)

where v, H denote respectively the normal velocity and d times the mean curvature of the
interface Mt ⊂ Rd+1, and the closed set U c represents the obstacle. Notice that, due to
the presence of obstacles, the evolving interface is in general only of class C1,1 in the space
variable, di�erently from the unconstrained case where it is analytic (see [ISZ98]). While
the regularity of parabolic obstacle problems is relatively well understood (see [Sha08]
and references therein), a satisfactory existence and uniqueness theory for solutions is still
missing.

In [ACN12] (see also [Spa11]) the authors approximate such an obstacle problem with
an implicit variational scheme introduced in [ATW93, LS95]. As a byproduct, they prove
global existence of weak (variational) solutions, and short time existence and uniqueness
of regular solutions in the two-dimensional case. In [Mer14] the �rst author adapts to
this setting the theory of viscosity solutions introduced in [CIL92, CGG91], and constructs
globally de�ned continuous (viscosity) solutions.

Let us now state the main results of this paper.

∗CMAP, École polytechnique, Palaiseau, France, email: gwenael.mercier@cmap.polytechnique.fr
†Dipartimento di Matematica, Università di Pisa, Largo Bruno Pontecorvo 5, 56127 Pisa, Italy; e-mail:

novaga@dm.unipi.it

1



Theorem 1. Let M0 ⊂ U be an initial hypersurface, and assume that both M0 and ∂U
are uniformly of class C1,1, with dist(M0, ∂U) > 0. Then there exists T > 0 and a unique

solution Mt to (1), (2) on [0, T ), such that Mt is of class C
1,1 for all t ∈ [0, T ).

Notice that Theorem 1 extends a result in [ACN12] to dimensions greater than two.
When the hypersurface Mt can be written as the graph of a function u(·, t) : Rd → R,

equation (1) reads

ut =
√

1 + |∇u|2 div

(
∇u√

1 + |∇u|2

)
. (3)

If the obstacles are also graphs, the constraint (2) can be written as

ψ− 6 u 6 ψ+ , (4)

where the functions ψ± : Rd → R denote the obstacles.

Theorem 2. Assume that ψ± ∈ C1,1(Rd), and let u0 ∈ C1,1(Rd) satisfy (4). Then there

exists a unique (viscosity) solution u of (3), (4) on Rd × [0,+∞), such that

‖∇u(·, t)‖L∞(Rd) ≤ max
(
‖∇u0‖L∞(Rd), ‖∇ψ±‖L∞(Rd)

)

‖ut(·, t)‖L∞(Rd) ≤

∥∥∥∥∥√1 + |∇u0|2 div

(
∇u0√

1 + |∇u0|2

)∥∥∥∥∥
L∞(Rd)

for all t > 0. Moreover u is also of class C1,1 uniformly on [0,+∞).

We observe that Theorem 2 extends previous results by Ecker and Huisken [EH89] in
the unconstrained case (see also [CN13]).

Theorem 3. Assume that u0 and ψ± are Q-periodic, with periodicity cell Q = [0, L]d, for
some L > 0. Then the solution u(·, t) of (3), (4) is also Q-periodic. Moreover there exists

a sequence tn → +∞ such that u(·, tn) converges uniformly as n → +∞ to a stationary

solution to (3), (4).

Our strategy of proof will be to approximate the obstacles with �soft obstacles� modeled
by a sequence of uniformly bounded forcing terms. Di�erently from [ACN12], where the
existence of regular solution is derived from variational estimates on the approximating
scheme, we obtain estimates on the evolving interface, in the spirit of [EH91a, EH91b,
CNV11], which are uniform in the forcing terms.

The plan of the paper is the following: in Section 2 we adapt some well known results
on mean curvature �ow, such as Huisken's monotonicity formula, to the case of forced
mean curvature �ow. In Section 3 we prove Theorem 1. In Section 4 we prove Theorem 2.
In Section 5 we prove Theorem 3. Eventually, in the Appendix at the end of the paper we
adapt the concept of viscosity solution in order to trat the case of mean curvature �ow of
graphs in the presence of obstacles.
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2 Mean curvature �ow with a forcing term

2.1 Evolution of geometric quantities

Let M be a complete orientable d-dimensional Riemannian manifold without boundary,
let F (·, t) : M → Rd+1 be a smooth family of immersions, and denote by Mt the image
F (M, t). Since Mt is orientable, we can write Mt = ∂E(t) where E(t) is a family of open
subsets of Rd+1 depending smoothly on t. We say thatMt evolves by mean curvature with
forcing term k if

d

dt
F (p, t) = −

(
H(p, t) + k(F (p, t))

)
ν(p, t), (5)

where k : Rd+1 → R is a smooth forcing term, ν is the unit normal to Mt pointing outside
E(t), and H is (d times) the mean curvature of Mt, with the convention that H is positive
whenever E(t) is convex.

We shall compute the evolution of some relevant geometric quantities under the law
(5). We denote by ∇S , ∆S respectively the covariant derivative and the Laplace-Beltrami
operator on M . As in [Hui84], the metric on Mt is denoted by gij(t), it inverse is gij(t),
the scalar product (or any tensors contraction using the metric) on Mt is denoted by 〈· , ·〉
whereas the ambient scalar product is (· , ·), the volume element is µt, and the second
fundamental form is A. In particular we have A (∂i, ∂j) = hij , where we set for simplicity
∂i = ∂

∂xi
, and H = gijhij , using the Einstein notation (we implicitly sum over every index

which appears twice). We also denote by λ1, . . . , λd the eigenvalues of A.
Notice that, in terms of the parametrization F , we have

gij = (∂iF , ∂jF ) , hij = −
(
∂2
ijF , ν

)
for all i, j ∈ {1, . . . , d}. (6)

Proposition 1. The following equalities hold:

d

dt
gij = −2(H + k)hij (7)

d

dt
ν = ∇S(H + k) (8)

d

dt
µt = −H(H + k)µt (9)

d

dt
hij = ∆Shij +∇Si ∇Sj k − 2Hhilg

lmhmj − kgmlhimhjl + |A|2hij (10)

d

dt
H = ∆S(H + k) + (H + k)|A|2 (11)

d

dt
|A|2 = ∆S |A|2 + 2kgijgslgmnhishlmhnj + 2|A|4 − 2|∇SA|2 + 2

〈
A , (∇S)2k

〉
.(12)

Proof. The proof follows by direct computations as in [Hui84, EH91b]. Recalling (6), we
get

d

dt
gij =

d

dt
(∂iF , ∂jF ) = −(H + k) ((∂iν , ∂jF ) + (∂iF , ∂jν)) = −2(H + k)hij

d

dt
ν =

(
d

dt
ν , ∂iF

)
gij∂jF = −

(
ν ,

d

dt
∂iF

)
gij∂jF

= (ν , ∂i((H + k)ν)) gij∂jF = ∂i(H + k)gij∂jF = ∇S(H + k).

The evolution of the measure on Mt

µt =
√

det[g]
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is given by

d

dt

√
det[g] =

d
dt det[g]

2
√

det[g]
=

det[g] · Tr
(
gij d

dtgij
)

2
√

det[g]

= −
√

det[g] · (H + k)gijhji = −µtH(H + k).

In order to prove (10) we compute (as usual, we denote the Christo�el symbols by Γkij)

d

dt
hij = − d

dt

(
ν , ∂2

ijF
)

= −
(
∇S(H + k) , ∂2

ijF
)

+
(
∂2
ij(H + k)ν , ν

)
= −

(
gkl∂k(H + k)∂lF , Γkij∂kF − hijν

)
+∂2

ij(H + k) + (H + k)
(
∂j

(
himg

ml∂lF
)
, ν
)

= ∂2
ij(H + k)− Γkij∂k(H + k) + (H + k)himg

ml
(

Γklj∂kF − hljν , ν
)

= ∇Si ∇Sj (H + k)− (H + k)hilg
lmhmj . (13)

Using Codazzi's equations, one can show that

∆Shij = ∇Si ∇SjH +Hhilg
lmhmj − |A|2hij , (14)

so that (10) follows from (14) and (13). From (10) we deduce

d

dt
H =

d

dt
gijhij

= 2(H + k)gishslg
ljhij + gij

(
∇Si ∇Sj (H + k)− (H + k)hilg

lmhmj

)
= ∆S(H + k) + (H + k)|A|2,

which gives (11). In addition, we get

d

dt
|A|2 =

d

dt

(
gikgjlhijhkl

)
= 2

d

dt
gjlhijhkl + 2gikgjl

d

dt
hijhkl

= 2
(

2(H + k)gjshstg
tl
)
gjlhijhkl

+ 2gikgjl
(

∆Shij +∇Si ∇Sj k − 2Hhilg
lmhmj − kgmlhimhjl + |A|2hij

)
hkl

= 2kgjshstg
tlgjlhijhkl + 2gikgjl∆Shijhkl + 2|A|4 + 2

〈
A , (∇S)2k

〉
.

(15)

On the other hand, one has

∆S |A|2 = 2
〈
∆SA , A

〉
+ 2|∇SA|2 = 2gpqgmnhpm∆Shqn + 2|∇SA|2. (16)

so that (12) follows from (16) and (15).

2.2 The Monotonicity Formula

We extend Huisken's monotonicity formula [Hui90] to the forced mean curvature �ow (5)
(see also [CNV11, Section 2.2]).
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Given a vector �eld ω : Mt → Rd+1, we let

ω⊥ = (ω , ν) ν, ωT = ω − ω⊥ .

Letting X0 ∈ Rd+1 and t0 ∈ R, for (x, t) ∈ Rd+1 × [t0,+∞) we de�ne the kernel

ρ(x, t) =
1

(4π(t0 − t))d/2
exp

(
−|x− x0|2

4(t0 − t)

)
.

A direct computation gives

dρ

dt
= −∆Sρ+ ρ

(
(x0 − x , (H + k)ν)

t0 − t
− |(x0 − x)⊥|2

4(t0 − t)2

)
. (17)

Proposition 2 (Monotonicty Formula).

d

dt

∫
Mt

ρ = −
∫
Mt

ρ

(∣∣∣∣H +
k

2
+

(x− x0 , ν)

2(t0 − t)

∣∣∣∣2 − k2

4

)
.

Proof. Recalling (9), we compute

d

dt

∫
Mt

ρ =

∫
Mt

d

dt
ρ−H(H + k)ρ

=

∫
Mt

ρ

(
− |x− x0|2

4(t0 − t)2
+

d

2(t0 − t)
− (x− x0 , ν)

2(t0 − t)
(H + k)−H(H + k)

)
= −

∫
Mt

ρ

(∣∣∣∣Hν +
x− x0

2(t0 − t)
+
kν

2

∣∣∣∣2 − k2

4

)
+

∫
Mt

d

2(t0 − t)
ρ+

∫
Mt

ρ
(x− x0 , ν)H

2(t0 − t)

We use the �rst variation formula: for all vector �eld Y on Mt, we have∫
Mt

divMt Y =

∫
Mt

〈Hν , Y 〉 .

As a result, with Y = ρ(x−x0)
2(t−t0) , we get

d

dt

∫
Mt

ρ = −
∫
Mt

ρ

(∣∣∣∣Hν +
x− x0

2(t0 − t)
+
kν

2

∣∣∣∣2 − k2

4
− |(x− x0)T |2

4(t0 − t)2

)

= −
∫
Mt

ρ

(∣∣∣∣H +
(x− x0 , ν)

2(t0 − t)
+
k

2

∣∣∣∣2 − k2

4

)
.

In a similar way (see [EH89]) one can prove that for all functions f(X, t) de�ned on
Mt, one has

∂t

∫
Mt

ρf =

∫
Mt

(
df

dt
−∆Sf

)
ρ−

∫
Mt

fρ

(∣∣∣∣H +
(x− x0 , ν)

2(t0 − t)
+
k

2

∣∣∣∣2 − k2

4

)
. (18)
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Indeed, using (17)

d

dt

∫
Mt

ρf =

∫
Mt

f
dρ

dt
+
df

dt
ρ−H(H + k)fρ

=

∫
Mt

f

(
dρ

dt
−H(H + k)ρ

)
+
df

dt
ρ

=

∫
Mt

f

(
−∆Sρ+ ρ

(
(X0 −X , (H + k)ν)

t0 − t
− 1

4

|(X0 −X)⊥|2

(t0 − t)2

)
−H(H + k)ρ

)
+
df

dt
ρ

=

∫
Mt

−∆Sfρ+

(
ρ

(
(X0 −X , (H + k)ν)

t0 − t
− 1

4

|(X0 −X)⊥|2

(t0 − t)2

)
−H(H + k)ρ

)
+
df

dt
ρ

=

∫
Mt

ρ

(
d

dt
f −∆Sf

)
−
∫
fρ

(∣∣∣∣H +
(x− x0 , ν)

2(t0 − t)
+
k

2

∣∣∣∣2 − k2

4

)
.

Lemma 1. Let f be de�ned on Mt and satisfy

d

dt
f −∆Sf 6 a · ∇Sf on Mt (19)

for some vector �eld a bounded on [0, t1]. Then,

sup
Mt, t∈[0,t1]

f 6 sup
M0

f.

Proof. Denote by a0 the bound on a, k := supM0
f and de�ne fl = max(f − l, 0). Assump-

tion (19) implies (
d

dt
−∆S

)
f2
l 6 2fla · ∇Sfl − 2|∇Sfl|2

which, thanks to Young's inequality, gives(
d

dt
−∆S

)
f2
l 6

1

2
a2

0f
2
l .

Applying (18) to f2
l , we get

d

dt

∫
f2
l ρ 6

1

2
(a2

0 + ‖k‖2∞)

∫
f2
l ρ. (20)

Letting l = supM0
f , so that fl ≡ 0 onM0, from (20) and the Gronwall's Lemma we obtain

that fl ≡ 0 on Mt for all t ∈ (0, t1], which gives thesis.

3 Proof of Theorem 1

We now prove short time existence for the mean curvature �ow with obstacles (1), (2). Let
M0 = ∂E(0) ⊂ U , where we assume that U , E(0) are open sets with boundary uniformly
of class C1,1. In particular, M0 satis�es a uniform exterior and interior ball condition, that
is, there is R > 0 such that, for every x ∈ M0, one can �nd two open balls B+ and B−

of radius R which are tangent to M0 at x and such that B+ ⊂ E(0)c and B− ⊂ E(0).
Let also Ω− := E(0) \ U , and Ω+ := E(0) ∪ U . Notice that Ω± are open sets with C1,1

boundaries, with dist(Ω−, ∂Ω+) > 0. Note that the condition Mt ⊂ U can be rewritten as

Ω− ⊂ E(t) ⊂ Ω+.
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Let also
k := 2N(1− χΩ+ − χΩ−)

where N is bigger than (d times) the mean curvature of ∂U.
We want to show that equation (5), with k as above, has a solution in an interval

[0, T ). To this purpose, letting ρε be a standard molli�er supported in the ball of radius
ε centered at 0, we introduce a smooth regularization kε = k ∗ ρε of k. Notice that
‖kε‖∞ = 2N , kε(x) = −2N (resp. kε(x) = 2N) at every x ∈ Ω− (resp. x /∈ Ω+) such that
dist(x, ∂U) ≥ ε, and kε(x) = 0 at every x ∈ U such that dist(x, ∂U) ≥ ε.

Using standard arguments (see for instance [EH91b, Theorem 4.1] and [EH91a, Prop.
4.1]) one can show existence of a smooth solution M ε

t of (5), with k replaced by kε, on a
maximal time interval [0, Tε).

Let now
Ω−ε := {x ∈ Ω− : dist(x, ∂Ω−) > ε}

and
Ω+
ε := {x ∈ Rn : dist(x,Ω+) < ε}.

The following result follows directly from the de�nition of kε.

Proposition 3. The hypersurfaces ∂Ω−ε and ∂(Ω+
ε )c are respectively a super and a subso-

lution of (5), with k replaced with kε. In particular, by the parabolic comparison principle

M ε
t cannot intersect ∂Ω±ε .

We will show that we can �nd a time T > 0 such that for every ε, there exists a smooth
solution of (5) (with k replaced with kε) on [0, T ).

The following result will be useful in the sequel. We omit the proof which is a simple
ODE argument.

Lemma 2. Let M0 = ∂BR(x0) be a ball of radius R ≤ 1 centered at x0. Then, the

evolution Mt by (5), with constant forcing term k = 2N , is given by Mt = BR(t)(x0) with

R(t) >
√
R2 − (4N + 2d)t. In particular, the solution exists at least on

[
0, R2

4N+2d

)
.

Proposition 4. There exists r > 0, a collection of balls Bi = Br(xi) of radius r, and a

positive time T0 such that M ε
t ⊂

⋃
iBi for every t ∈ [0,min(T0, Tε)). In addition, we can

choose the balls Bi in such a way that, for every i, there exists ωi ∈ Rd+1 such that the

sets ∂Ω± ∩B4r(xi), if nonempty, are graphs of some functions ψ
±
i : Rd → R over ω⊥i .

In particular, one has

(∇kε , ωi) > |∇kε|/2 on B2r(xi).

Most of these notations are summarized in Figure 1.

Proof. By assumption, for every x ∈M0 there exist interior and exterior balls B±x of �xed
radius R ≤ 1. Let B±x (t) be the evolution of B±x by (5) with forcing term k = 2N . By
comparison, for every t ∈ [0, Tε), B

+
x (t) ⊂ Ω(t)c and B−x (t) ⊂ Ω(t). Recalling Lemma 2,

there exists δ > 0 and T0 > 0, independent of ε, such that Mt ⊂ {dM0 6 δ} =: Cδ, for all
t ∈ [0,min(Tε, T0)).
We eventually reduce δ, T0 such that Cδ can be covered with a collection of balls Bi =
Br(xi), centered at xi ∈M0 and with a radius r such that, for every i, there exists a unit
vector ωi ∈ Rd+1 satisfying(

ωi , ν
+(x)

)
>

1

2
and

(
ωi , ν

−(y)
)
>

1

2
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Figure 1: Notation in Proposition 4.

for every x ∈ ∂Ω+ ∩B4r(xi) and y ∈ ∂Ω− ∩B4r(xi), where ν
± is the outer normal to Ω±.

As a result, ∂Ω± ∩ B4r(xi) are graphs of some functions ψ±i : Rd → R over ω⊥i (see
Figure 1).

Notice also that k is a BV function and Dk is a Radon measure concentrated on ∂U
such that

(Dk , ωi) >
|Dk|

2
on B4r(xi).

Then, for every x ∈ B2r(xi) and ε su�ciently small (such that ρε(x) = 0 as soon as
|x| > 2r), we have

(∇kε , ωi) =

(
∇
∫
Rd+1

k(x− y)ρε(y)dy , ωi

)
=

∫
Rd+1

(Dk(x− y) , ωi) ρε(y)dy

>
∫
Rd+1

|Dk|(x− y)

2
ρε(y)dy

>
|Dk| ∗ ρε

2
>
|∇kε|

2
.

In what follows, we will control the geometric quantities ofM ε
t inside each ball Bi. As in

[EH91a], we introduce a localization function φi as follows: let ηi(x, t) = |x−xi|2+(2d+Λ)t
(Λ be a positive constant that will be �xed later) and, for R = 2r, φi(x, t) = (R2−ηi(x, t))+.
We denote by φi the quantity φi(x, t), where x = x(p, t) will be a generic point in Mt.

Notice that there exists T1 = r2

2d+Λ such that for all t ∈ [0,min(T1, Tε)),

M ε
t ⊂

⋃
i

{φi > r2}. (21)
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As a result, we have the following

Lemma 3. Let f be a smooth function de�ned on M ε
t . Assume that there is a C > 0 such

that

φif 6 C on M ε
t ∀t 6 min(Tε, T1) and ∀i ∈ N.

Then,

f 6 αC on M ε
t ∀t 6 min(Tε, T1),

where α depends only on the C1,1 norm of M0.

Lemma 4. Let v := (ν , ω)−1. The quantity v2φ2 satis�es(
d

dt
−∆S

)(
v2φ2

2

)
6

1

2

(
∇S(v2φ2) ,

∇Sφ2

φ2

)
−φ2v3

(
∇Skε , ω

)
+ v2φ(2kε (x , ν)− Λ). (22)

Proof. In this proof and the proofs further, we use normal coordinates: we assume that
gij = δij (Kronecker symbol) and that the Christo�el symbols Γkij vanish at the computa-
tion point.

We expand the derivatives(
d

dt
−∆S

)(
v2φ2

2

)
= v2

(
d

dt
−∆S

)
φ2

2
+ φ2

(
d

dt
−∆S

)
v2

2
− 2

〈
∇S φ

2

2
, ∇S v

2

2

〉
.

First term. We start computing(
d

dt
−∆S

)
|x|2 = −2kε (x , ν)− 2d.

Then, (
d

dt
−∆S

)
φ2 = 2φ(2kε (x− xi , ν)− Λ)− 2|∇S |x|2|2.

Second term. We are interested in

1

2

d

dt
(ω , ν)2 = (ω , ν)

(
d

dt
ν , ω

)
= (ω , ν)

(
∇S(H + kε) , ω

)
.

So,
1

2

d

dt
(ω , ν)−2 = − (ω , ν)−3 (∇S(H + kε) , ω

)
. (23)

On the other hand,

1

2
∆S((ω , ν)−2) = (ω , ν)−1 ∆S (ω , ν)−1 −

〈
∇S (ω , ν)−1 , ∇S (ω , ν)−1

〉
. (24)

Let us note that

∂ijν = ∂i

(
hjlg

lm∂mF
)

= ∂i(hjl)δlm∂mF − hjlδlm(−himν) = ∂i(hjl)∂lF − λ2
i δijν.
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We then get

∆S (ω , ν)−1 = ∂ii (ω , ν)−1 = ∂i

(
− (ω , ∂iν) (ω , ν)−2

)
= − (ω , ∂iiν) (ω , ν)−2 + 2 (ω , ∂iν)2 (ω , ν)−3

= − (ω , ν)−2 (∂ihil∂lF − λ2
i ν , ω

)
+ 2 (ω , ν)−3 (ω , λi∂iF )2 .

= − (ω , ν)−2 (∂lhii∂lF , ω) + |A|2 (ν , ω)−1 + 2 (ω , ν)−3 (ω , λi∂iF )2 .

We also have〈
∇S (ω , ν)−1 , ∇S (ω , ν)−1

〉
= (ω , ν)−4 (ω , ∂kν) (ω , ∂kν)

= (ω , ν)−4 (ω , hkug
uv∂vF )2 = (ω , ν)−4 (ω , λk∂kF )2 ,

which leads to(
d

dt
−∆S

)
v2

2
= −v3

(
∇S(H + kε) , ω

)
+ v3∂m(hii) (ω , ∂mF )

−|A|2v2 − 2v4λ2
k (ω , ∂kF )2 − v4 (ω , λk∂kF )2

Third term. We notice, as in [EH91a] that |∇Sφ2|2 = 4φ2|∇S(|x|2)|2 and

−
(
∇S(v2) , ∇Sφ2

)
= −3

(
v∇S(v) , ∇Sφ2

)
+

1

2

((
∇S(v2φ2) ,

∇Sφ2

φ2

)
− v2 |∇Sφ2|2

φ2

)
.

Then, Young's inequality gives

2
∣∣v (∇Sv , ∇Sφ2

)∣∣ 6 2φ2|∇Sv2|2 +
1

2φ2
|∇Sφ2|2

6 2φ2|∇Sv2|2 + 2v2|∇S |x|2|2.

Hence,

−
(
∇S(v2) , ∇Sφ2

)
6 −3φ2|∇Sv2|2−3v2|∇S |x|2|2+

1

2

((
∇S(v2φ2) ,

∇Sφ2

φ2

)
− v2 |∇Sφ2|2

φ2

)
.

Summing the three terms, we get

(
d

dt
−∆S

)(
v2φ2

2

)
6

1

2

(
∇S(v2φ2) ,

∇Sφ2

φ2

)
− φ2v3

(
∇Skε , ω

)
+ v2φ(2kε (x , ν)− Λ).

For γ > 0, we let

ψ(v2) :=
γv2

1− γv2
.

Lemma 5. For ε 6 r, we have(
d

dt
−∆S

)
φ2|A|2ψ(v2)

2
6 φ2ψ(v2)(−γ|A|4 − 2kε

∑
i

λ3
i − 2

〈
A , (∇S)2kε

〉
)

−φ2|A|2v3ψ′(v2)
(
∇Skε , ω

)
− φ2|A|2

∑
i

(λiω
i)2 2v4 + γv6

(1− γv2)3
.
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Proof. We denote V = φ2|A|2ψ(v2)
2 and compute

(
d

dt
−∆S

)
φ2|A|2ψ(v2)

2
= |A|2ψ(v2)

(
d

dt
−∆S

)
1

2
φ2 + φ2ψ(v2)

(
d

dt
−∆S

)
1

2
|A|2

+φ2|A|2
(
d

dt
−∆S

)
1

2
ψ(v2)− 2

〈
1/2∇S |A|2 , 1/2∇Sφ2

〉
−2
〈
1/2∇S |A|2 , 1/2∇Sψ(v2)

〉
− 2

〈
1/2∇Sφ2 , 1/2∇Sψ(v2)

〉
.

The two �rst terms have already been computed. Let us consider in the third one.

1

2

d

dt
ψ(v2) = v

dv

dt
ψ′(v2) = −v3ψ′(v2)

(
∇S(H + kε) , ω

)
,

1

2
∆Sψ(v2) =

1

2
∂iiψ(v2) = ∂i(v∂ivψ

′(v2)) = v∆Svψ′(v2) + 2v2|∇Sv|2ψ′′(v2) + |∇Sv|2ψ′(v2)

= (3|∇Sv|2 − v3(∂l(hkk)w
l) + v2|A|2)ψ′(v2) + 2|∇Sv|2ψ′′(v2).

Hence(
d

dt
−∆S

)
1

2
ψ(v2) = −v3ψ′(v2)

(
∇Skε , ω

)
−(3|∇Sv|2 +v2|A|2)ψ′(v2)−2v2|∇Sv|2ψ′′(v2).

As above, we want to conclude the proof using the weak maximum principle. So, we
want to rewrite the last terms (which are gradient terms) using the gradient of V . Let us
expand ∇SV .

∇S φ
2|A|2ψ(v2)

2
= φ2|A|2 1

2
∇Sψ(v2) + |A|2ψ(v2)

1

2
∇Sφ2 + φ2ψ(v2)

1

2
∇S |A|2.

So,∣∣∣∣∇S φ2|A|2ψ(v2)

2

∣∣∣∣2 = φ4|A|4 |∇
Sψ(v2)|2

4
+ |A|4ψ2(v2)

|∇Sφ2|2

4
+ φ4ψ2(v2)

|∇S |A|2|2

4

+φ2|A|4ψ(v2)
〈
∇Sψ(v2) , ∇Sφ2

〉
+ φ4|A|2ψ(v2)

〈
∇Sψ(v2) , ∇S |A|2

〉
+|A|2ψ2(v2)φ2

〈
∇Sφ2 , ∇S |A|2

〉
.

As a matter of fact,

1

φ2|A|2ψ(v2)

∣∣∣∣∇S φ2|A|2ψ(v2)

2

∣∣∣∣2 = φ2|A|2 |∇
Sψ(v2)|2

4ψ(v2)
+ |A|2ψ(v2)

|∇Sφ2|2

4φ2

+φ2ψ(v2)
|∇S |A|2|2

4|A|2
+ 2|A|2

〈
∇Sψ(v2)/2 , ∇Sφ2/2

〉
+2φ2

〈
∇Sψ(v2)/2 , ∇S |A|2/2

〉
+ 2ψ(v2)

〈
∇Sφ2/2 , ∇S |A|2/2

〉
.
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We use the last equality to rewrite(
d

dt
−∆S

)
φ2|A|2ψ(v2)

2

= |A|2ψ(v2)
(
φ(2kε (x , ν)− Λ)− |∇S |x|2|2

)
+ φ2ψ(v2)

(
−
〈
∇SA , ∇SA

〉
+ |A|4 − 2kεg

jshstg
tlgjlhijhkl − 2

〈
A , (∇S)2kε

〉)
+ φ2|A|2

(
−v3ψ′(v2)

(
∇Skε , ω

)
− (3|∇Sv|2 + v2|A|2)ψ′(v2)− 2v2|∇Sv|2ψ′′(v2)

)
− 1

φ2|A|2ψ(v2)

∣∣∣∣∇S φ2|A|2ψ(v2)

2

∣∣∣∣2
+ φ2|A|2 |∇

Sψ(v2)|2

4ψ(v2)
+ |A|2ψ(v2)

|∇Sφ2|2

4φ2
+ φ2ψ(v2)

|∇S |A|2|2

4|A|2
.

(25)
Let us rewrite some terms as follows:

|∇Sφ2|2 = 4φ2 · | − 2xT |2 = 4φ2(4|x|2 − 4 (x , ν)),

|∇Sψ(v2)|2 = ψ′(v2)2|∇Sv2|2 = 4ψ′(v2)2v6
∑
k

(λkω
k)2,

|∇S |A|2|2 = 4
∑
i

(∂i(hll)λl)
2,

|∇SA|2 =
∑
i,k,l

(∂i(hkm))2.

In addition, we have the obvious estimate

|∇S |A|2|2 6 4|A|2|∇SA|2.

So,

φ2|A|2 |∇
Sψ(v2)|2

4ψ(v2)
+ |A|2ψ(v2)

|∇Sφ2|2

4φ2
+ φ2ψ(v2)

|∇S |A|2|2

4|A|2

6 φ2|A|2
ψ′(v2)2v6

∑
k(λkω

k)2

ψ(v2)
+ 4|A|2ψ(v2)(|x|2 − (x , ν)2) + φ2ψ(v2)|∇SA|2.

We plug this inequality into (25) and obtain

(
d

dt
−∆S

)
φ2|A|2ψ(v2)

2
6 |A|2ψ(v2)

(
φ(2kε (x , ν)− Λ)− |∇S |x|2|2

)
+ φ2ψ(v2)

(
−
〈
∇SA , ∇SA

〉
+ |A|4 − 2kεg

jshstg
tlgjlhijhkl − 2

〈
A , (∇S)2kε

〉)
+ φ2|A|2

(
−v3ψ′(v2)

(
∇Skε , ω

)
− (3|∇Sv|2 + v2|A|2)ψ′(v2)− 2v2|∇Sv|2ψ′′(v2)

)
− 1

φ2|A|2ψ(v2)

∣∣∣∣∇φ2|A|2ψ(v2)

2

∣∣∣∣2
+ φ2|A|2

ψ′(v2)2v6
∑

k(λkω
k)2

ψ(v2)
+ 4|A|2ψ(v2)(|x|2 − (x , ν)2) + φ2ψ(v2)|∇SA|2.
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Let us regroup some terms (noting that |∇Sv|2 = v4
∑

i(λiω
i)2), we get(

d

dt
−∆S

)
φ2|A|2ψ(v2)

2

6 |A|2ψ(v2) (φ(2kε (x , ν)− Λ))

+ φ2|A|4(ψ(v2)− v2ψ′(v2))− 2φ2ψ(v2)kεg
jshstg

tlgjlhijhkl − 2φ2ψ(v2)
〈
A , (∇S)2kε

〉
− φ2|A|2v3ψ′(v2)

(
∇Skε , ω

)
− 1

φ2|A|2ψ(v2)

∣∣∣∣∇S φ2|A|2ψ(v2)

2

∣∣∣∣2
+ φ2|A|2

∑
i

(λiω
i)2

(
v6ψ′(v2)2

ψ(v2)
− 3v4ψ′(v2)− 2v6ψ′′(v2)

)
.

Then, we note that

v6ψ′(v2)2

ψ(v2)
− 3v4ψ′(v2)− 2v6ψ′′(v2) = − 2v4 + γv6

(1− γv2)3
6 0

and
ψ(v2)− v2ψ′(v2) = −γψ2(v2) 6 0.

So,(
d

dt
−∆S

)
φ2|A|2ψ(v2)

2
6 φ2ψ(v2)(−γ|A|4 − 2kε

∑
i

λ3
i − 2

〈
A , (∇S)2kε

〉
)

−φ2|A|2v3ψ′(v2)
(
∇Skε , ω

)
− φ2|A|2

∑
i

(λiω
i)2 2v4 + γv6

(1− γv2)3
,

what was expected.

We now show that Mt can be locally written as a Lipschitz graph, with Lipschitz
constant independent of ε.

Proposition 5. Let ε 6 r. Then, for every t ∈ [0,min(Tε, T1)), Mt ∩Bi can be written as

a Lipschitz graph over ω⊥i , with Lipschitz constant independent of ε.

Proof. We want to show that the quantity (ν , ωi) is bounded from below, or, equivalently,
that v := (ν , ωi)

−1 is bounded from above on every ball Bi. We want to estimate the
quantity v2φ2 (we drop the explicit dependence on the index i) using Lemma 4.

We choose Λ such that the last term in (22) is nonpositive (take for instance Λ = 2NR).
We also have to control

v
(
∇Skε , ω

)
= (ν , ω)−1 ((∇kε , ω)− (∇kε , ν) (ν , ω)) = (ν , ω)−1 (∇kε , ω)− (∇kε , ν) .

Proposition 4 provides immediately

(ν , ω)−1 (∇kε , ω)− (∇kε , ν) > (ν , ω)−1 |∇kε|
2
− |∇kε|

which is nonnegative as soon as (ω , ν) 6 1
2 . From Lemma 4 and the weak maximum

principle (see [PW84]), we obtain that ‖v2φ2‖∞(t) 6 max(‖v2φ2‖∞(0), 4R2). Thanks to
Lemma 3, this provides a uniform Lipschitz bound on the whole Mt, for t 6 T1.

Recalling Theorem 8.1 in [Hui84], from Proposition 5 it follows that, if Tε < T1, the
second fundamental form of Mt blows up as t→ Tε. Let us show that it does not happen.
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Proposition 6. For every ε 6 r, there exists Cε > 0 such that

‖A‖L∞(Mt) 6 Cε for all t ∈ [0,min(Tε, T1)).

Proof. As in [EH91a], we are interested in the evolution of the quantity

φ2|A|2ψ(v2)

2

and use the estimates of Lemma 5. Notice that

|λi|3 = |λi||λi|2 6
1

2α
λ4
i +

α

2
λ2
i .

Choosing α such that 2N
α 6 γ

2 , one can write∣∣∣∣∣−2kεφ
2ψ(v2)

∑
i

λ3
i

∣∣∣∣∣ 6 φ2ψ(v2)
(γ

2
|A|4 +Nα|A|2

)
.

In addition, as soon as |A|2 > 1, one has
〈
A , (∇S)2kε

〉
6 |A|2|∇2kε|. One can also notice

that as above, v
(
∇Skε , ω

)
> 0 as soon as v > 2. On the other hand, if v 6 2, one has

v3ψ′(v2) = ψ(v)v
1−γv2 6 4ψ(v) for γ su�ciently small.

So, anyway, if |A| > 1,(
d

dt
−∆S

)
φ2|A|2ψ(v2)

2
6 2Nα

φ2|A|2ψ(v2)

2
+4|∇2kε|

φ2|A|2ψ(v2)

2
+8

φ2|A|2ψ(v2)

2
|∇Skε|.

Finally, we apply the maximum principle to the quantity

Ã := e−(2Nα+4‖∇2kε‖∞+8‖∇kε‖∞)t φ
2|A|2ψ(v2)

2

which satis�es (
d

dt
−∆S

)
Ã 6 0.

It provides
∀t 6 min(Tε, T1), ‖Ã‖∞(t) 6 ‖Ã‖∞(0)

which shows that φ2|A|2ψ(v2)
2 does not blow up.

Using Lemma 3 and choosing γ such that ψ(v2) is bounded and remains far from zero,
we know that |A| does not blow up for t 6 T1.

Corollary 1. There exists T1, depending only on the dimension, ‖k‖∞ and the radius in

the ball condition for M0, such that there exists a solution M ε
t of the mean curvature �ow

with forcing term kε on [0, T1).

The surfacesM ε
t are uniformly Lipschitz and everyM ε

t ∩Bi can be written as the graph
of some function uεi (x, t). All the u

ε
i are Lipchitz (in space) with a constant which depends

neither on i nor in ε. We want to show that they are also equicontinuous in time.

Proposition 7. The functions uεi are Lipschitz continuous in x and 1/2-Hölder continuous
in t on Bi × [0, T1), uniformly with respect to ε and i.
In addition, they are (classical) solutions of the equation

∂tu
ε
i =

√
1 + |∇uεi |2 div

(
∇uεi√

1 + |∇uεi |2

)
−
√

1 + |∇uεi |2 kε(x, u
ε
i ). (26)

14



Proof. Let δ be �xed (we drop the index ε in what follows), and let t0 ∈ [0, T1). Let
x0 ∈ Mt and i such that x0 ∈ Bi. Then, (ν(x0) , ωi)

−1 is bounded above and Mt is the
graph of a function u over ω⊥i . Then, let x1 = x0 + δωi. Thanks to the Lipschitz condition,
there is a ball B1/Cδ(x1) that does not touchMt. Evolving by mean curvature with forcing

term kε, this ball vanishes in a positive time Tδ > ω(δ) := δ2

C2(2d+1)
(note that Tδ does

not depend on ε). By comparison principle, for t ∈ [t0, t0 + ω(δ)), Mt does not go beyond
x1. That is equivalent to say that u is 1/2-Hölder continuous in time, with a constant
independent of ε.

The equation satis�ed by uεi is usual. One just has to notice that with the de�nitions
above,

div

(
∇uεi√

1 + |∇uεi |2

)
= −H.

We now pass to the limit as ε goes to zero. By Proposition 7, the family (uεi ) is equi-
Lipschitz in space and equi-continuous in time on Bi×[0, T1). Therefore, by Arzelà�Ascoli's
Theorem one can �nd a sequence εn → 0 and continuous functions ui such that, for every
i, uεni −→n→∞ ui locally uniformly on Bi × [0, T1).

Proposition 8. The functions ui are viscosity solutions of (3) on Bi × [0, T1), with ob-

stacles U ∩Bi (see Appendix 5).

Proof. Thanks to Proposition 4, every x ∈ Bi can be decomposed as x = x′ + zωi with
z = (x , ωi). Then, there exists functions ψ

±
i of class C1,1 such that

U ∩Bi = {(x′, z) ∈ Bi : ψ−i (x′) 6 z 6 ψ+
i (x′)}.

For simplicity we shall drop the explicit dependence on the index i. Since uε(x, 0) = u0(x)
for all ε, and uεn converges uniformly to u as n→ +∞, it is clear that u(x, 0) = u0(x).
Condition (37) immediately follows from Proposition 3.
We now check that u is a subsolution of (3). Let (x0, t0) ∈ Rd × R and ϕ ∈ C2 such that
ψ−(x0, t0) < u(x0, t0) and

(u− ϕ)(x0, t0) = max
|(x,t)−(x0,t0)|6r

(u− ϕ)(x, t).

One can change ϕ so that (x0, t0) is a strict maximum point, and u(x0, t0) = ϕ(x0, t0).
Let 2δ := u(x0, t0) − ψ−(x0, t0). Thanks to the de�nition of kε, for all ε 6 δ, we have
kε(x, ϕ(x, t)) > 0 in a small neighborhood V of (x0, t0). Hence, for ε su�ciently small
uε − ϕ attains its maximum in V at (xε, tε), with (xε, tε)→ (x0, t0) as ε→ 0. Since uε is
a classical solution of (26), it is also a viscosity solution, therefore

ϕt −
√

1 + |∇ϕ|2 div

(
∇ϕ√

1 + |∇ϕ|2

)
6 −

√
1 + |∇ϕ|2 kε(x, ϕ) 6 0 at(xε, tε).

Letting ε → 0 we obtain that u is a subsolution of (3). A similar argument shows that u
is also a supersolution of (3), and this concludes the proof.

Conclusion of the proof of Theorem 1. The result in [PS07, Theorem 4.1] (see also Section
A.4) applies, showing that the functions ui are of class C

1,1. As the uniform convergence uεni
implies the Hausdor� convergence of M εn

t to a limit Mt such that Mt ∩Bi = graph(ui(t)),
we built a C1,1 evolution to the mean curvature motion with obstacles on the time interval
[0, T1). Thanks to [ACN12, Theorem 4.8 and Corollary 4.9] this evolution is also unique.
This concludes the proof of Theorem 1.
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4 Proof of Theorem 2

Let ψ±ε be smooth functions such that ψ±ε → ψ± as ε→ 0, uniformly in C1,1(Rd), and let
N > 0 be such that

N ≥

∥∥∥∥∥∥
√

1 + |ψ±ε |2 div

 ψ±ε√
1 + |ψ±ε |2

∥∥∥∥∥∥
L∞(Rd)

for all ε > 0. (27)

We proceed as in Section 3 and we approximate (3), (4) with the forced mean curvature
equation

ut =
√

1 + |∇u|2
[

div

(
∇u√

1 + |∇u|2

)
+ kε(x, u)

]
, (28)

where

kε(x, u) = 2N

(
χ

(
ψ−ε (x)− u

ε

)
− χ

(
u− ψ+

ε (x)

ε

))
,

and χ is a smooth increasing function such that χ(s) ≡ 0 for all s ∈ (−∞, 0], and χ(s) ≡ 1
for all s ∈ [1,∞). In particular ∂ukε(x, u) ≤ 0 for all (x, u).

Note that the signs between (28) and (5) are reversed.
Notice that kε → k as ε→ 0, with

k(x, u) =


2N if u < ψ−(x)
−2N if u > ψ+(x)

0 elsewhere
.

We denote by uε the solution of the approximate problem (28), which exists and is
smooth for short times.

Proposition 9. The solution uε is de�ned for t ∈ [0,+∞), and satis�es the estimates

‖uε(·, t)‖W 1,∞(Rd) ≤ C for all t ∈ [0,+∞) (29)

‖uε(·, t)‖W 2,∞(Rd) ≤ C(T ) for all t ∈ [0, T ]. (30)

Proof. Estimate (29) follows from Proposition 5, choosing Bi = Rd+1, ωi = ed+1 and
φ ≡ 1. Estimate (30) follows from (29) and Proposition 6.

In what follows, we use intrinsic derivatives on the graph Mt := {(x, uε(x, t))}, which
will be denoted as above by an exponent S. The metric on Mt is

gij = δij + ∂iuε∂ju

with inverse

gij = δij −
∂iuε∂juε

1 + |∇uε|2
.

The tangential gradient of a function f de�ned on Mt is given by

(∇Sf)i = gij∂jf = ∂if −
∂iuε∂juε

1 + |∇uε|2
∂jf ,

so that(
∇Sf , ∇uε

)
= (∇f , ∇uε)−

|∇uε|2

1 + |∇uε|2
(∇f , ∇uε) =

1

1 + |∇uε|2
(∇f , ∇uε) , (31)
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and

|∇Sf |2 =

fi − (uε)i
∑
j

(uε)jfj
1 + |∇uε|2

2

= |∇f |2 + (uε)
2
i

(
(∇uε , ∇f)

1 + |∇uε|2

)2

− 2
(uε)i(uε)jfifj

1 + |∇uε|2

= |∇f |2 +
|∇uε|2

1 + |∇uε|2
(∇uε , ∇f)2

1 + |∇uε|2
− 2

(∇uε , ∇f)2

1 + |∇uε|2

= |∇f |2 − (∇uε , ∇f)2

1 + |∇uε|2
− (∇uε , ∇f)2

(1 + |∇uε|2)2
.

(32)

In addition, the Laplace-Beltrami operator applied to f is

∆Sf = gijfij = ∆f − ∂iuε∂juε
1 + |∇uε|2

fij = ∆f −
(
∇uε∇2f , ∇uε

)
1 + |∇uε|2

.

Proposition 10. The quantity ‖(uε)2
t ‖∞(t) is nonincreasing in time. In particular,

‖(uε)t(·, t)‖L∞(Rd) ≤

∥∥∥∥∥√1 + |∇u0|2 div

(
∇u0√

1 + |∇u0|2

)∥∥∥∥∥
L∞(Rd)

.

Proof. We compute

d

dt

(uε)
2
t

2
= (uε)t

[√
1 + |∇uε|2

(
div

(
∇uε√

1 + |∇uε|2

)
+ kε

)]
t

.

Expanding this expression, we get

d

dt

(uε)
2
t

2
= (uε)t

[
(∇(uε)t,∇uε)√

1 + |∇uε|2

(
div

(
∇uε√

1 + |∇uε|2

)
+ kε

)

+
√

1 + |∇uε|2
(

div

(
(∇uε)t√

1 + |∇uε|2
− ((∇uε)t,∇uε)∇uε

(1 + |∇uε|2)3/2

)
+ (uε)t ∂ukε

)]
.

Let us compute more explicitly the three terms of the expression above:

(uε)t
((∇uε)t,∇uε)√

1 + |∇uε|2

(
div

(
∇uε√

1 + |∇uε|2

)
+ kε

)

=

(
∇(

(uε)2t
2 ),∇uε

)
√

1 + |∇uε|2

(
∆u√

1 + |∇uε|2
− (uε)i (∇uε , (∇uε)i)

(1 + |∇uε|2)3/2
+ kε

)

=

(
∇(

(uε)
2
t

2
),∇uε

) ∆uε
1 + |∇uε|2

−

(
∇uε,∇( |∇uε|

2

2 )
)

(1 + |∇uε|2)2
+ kε

 ,
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(uε)t div

(
∇(uε)t√

1 + |∇uε|2

)
= (uε)t∂i

(
(uε)ti√

1 + |∇uε|2

)

=
(uε)t(uε)tii√

1 + |∇uε|2
− 1

(1 + |∇uε|2)3/2
(uε)t(uε)ti(∇uε, (∇uε)i)

=
(uε)t∆(uε)t√

1 +∇u2
ε

− 1

(1 + |∇uε|2)3/2
(uε)t(uε)ti∂i(

|∇uε|2

2
)

=
(uε)t∆(uε)t√

1 +∇u2
ε

− 1

(1 + |∇uε|2)3/2

(
∇
(

(uε)
2
t

2

)
,∇
(
|∇uε|2

2

))
and

(uε)t div

(
((∇uε)t,∇uε)∇uε

(1 + |∇uε|2)3/2

)
= ∆uε

(∇uε , (uε)t∇(uε)t)

(1 + |∇uε|2)3/2
+

(uε)t(uε)tij(uε)j(uε)i

(1 + |∇uε|2)3/2
+

((uε)i∇(uε)i , (uε)t∇(uε)t)

(1 + |∇uε|2)3/2

− 3(uε)i
((uε)t∇(uε)t , ∇uε) (∇(uε)i , ∇uε)

(1 + |∇uε|2)5/2

= ∆uε

(
∇uε , ∇(

(uε)2t
2 )

)
(1 + |∇uε|2)3/2

+
(uε)t(uε)tij(uε)j(uε)i

(1 + |∇uε|2)3/2
+

(
∇( |∇uε|

2

2 ) , ∇(
(uε)2t

2 )
)

(1 + |∇uε|2)3/2

− 3

(
∇(

(uε)2t
2 ) , ∇uε

)(
∇( |∇uε|

2

2 ) , ∇uε
)

(1 + |∇uε|2)5/2
.

Notice that

∆S (uε)
2
t

2
= ∆

(uε)
2
t

2
−

(
∇uε , ∇2 (uε)2t

2 ∇uε
)

1 + |∇uε|2

= (uε)t∆(uε)t + |(∇uε)t|2 −
(uε)i(uε)j(uε)t(uε)tij + (uε)i(uε)j(uε)ti(uε)tj

1 + |∇uε|2
.

We then get

d

dt

(uε)
2
t

2
=

(
∇(

(uε)2t
2 ) , ∇uε

)
√

1 + |∇uε|2
kε + ∆S

(
(uε)

2
t

2

)
− 2

(
∇
(

(uε)2t
2

)
, ∇

(
|∇uε|2

2

))
1 + |∇uε|2

+ 2

(
∇(

(uε)2t
2 ) , ∇uε

)(
∇( |∇uε|

2

2 ) , ∇uε
)

(1 + |∇uε|2)2
+

(∇uε , (∇uε)t)2

1 + |∇uε|2
− |(∇uε)t|2 + (uε)

2
t∂ukε.

Note that the last term is nonpositive by de�nition of kε.
In order to apply Lemma 1, we have to show the inequality

−(∇uε , (∇uε)t)2

1 + |∇uε|2
+ |(∇uε)t|2 > 0.

It is enough to note that, since the solution exists for all times and it is smooth, the term

∇( |∇uε|
2

2 ) is bounded on each [0, T ] (the bound depends on T and ε but is enough to apply
the lemma). In addition, every factor containing ∇((uε)

2
t /2) also contains ∇uε, hence the

assumptions of Lemma 1 are satis�ed for every T > 0, and this concludes the proof.
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From Propositions 9 and 10, we deduce the following result.

Proposition 11. If u0 is C-Lipschitz in space for some C > 0, and has bounded mean

curvature, then the solution uε of the approximate problem (28) is C-Lipschitz in space

and Lipschitz in time with constant∥∥∥∥∥√1 + |∇u0|2 div

(
∇u0√

1 + |∇u0|2

)∥∥∥∥∥
L∞(Rd)

.

Moreover, the following inequalities hold

ψ−ε (x)− ε ≤ uε(x, t) ≤ ψ+
ε (x) + ε. (33)

Proof. The Lipschitz bounds of the solution are clear (it is Proposition 9 and 10).
In order to prove the second assertion, let us notice that by (27) and the de�nition of

kε, we have

kε(x, ψ
−
ε − ε) = 2N >

∥∥∥∥∥∥
√

1 + |ψ−ε |2 div

 ψ−ε√
1 + |ψ−ε |2

∥∥∥∥∥∥
L∞(Rd)

,

so that ψ−ε − ε is a subsolution of (28). By the parabolic comparison principle (as in
Proposition 3), we deduce that

ψ−ε − ε 6 uε.

The same argument shows the other inequality in (33).

Conclusion of the proof of Theorem 2. Since the solutions uε are equi-Lipschitz in space
and time, they converge uniformly, as ε→ 0, to a limit function u which is also Lipschitz
continuous on Rd × [0,+∞).
Equation (33) yields

ψ− 6 u 6 ψ+,

and Proposition 8 gives that u is a viscosity solution of (35).
Concerning the regularity of u, we proved that (uε)t and ∇uε are bounded on [0, T ],

for any T in the approximate problem. This gives a bound on the mean curvature of
the approximate solution. This bound does not depend on ε and remains true for the
viscosity solution. As a result, the exact solution has bounded mean curvature and bounded
gradient, which shows that ∆u is L∞ and, by elliptic regularity theory, u is also in W 2,p

for any p > 1, and so C1,α for every α < 1 (see [Lun95] for details).
We can also directly apply to the solution u a regularity result by Shahgholian (see

[Sha08, PS07] and Theorem 4 below), which implies that u is in fact of class C1,1. This
concludes the proof of Theorem 2.

5 Proof of Theorem 3

We compute the evolution of the area of the graph of u:

d

dt

∫
Q

√
1 + |∇u|2 =

∫
Q

(∇ut , ∇u)√
1 + |∇u|2

= −
∫
Q
ut div

(
∇u√

1 + |∇u|2

)
. (34)
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Notice that, for almost every t > 0, ut(t, x) = 0 almost everywhere on the contact set.
Indeed, for almost every t, ut exists for almost every x ∈ Q. If u(x, t) = ψ±(x), then
u − ψ± reaches an extremum in (x, t), which gives, ut(x, t) = 0. In particular, from (34)
we get

d

dt

∫
Q

√
1 + |∇u|2 = −

∫
Q
ut

(
ut√

1 + |∇u|2

)
.

Integrating this equality in time, we obtain∫
Q

√
1 + |∇u|2

∣∣∣∣T
0

=

∫ T

0

∫
Q
− u2

t√
1 + |∇u|2

.

which shows that ∫ T

0

∫
Q
u2
t

is uniformly bounded in T . As a result ut ∈ L2(R+, Q) so u is in H1(Q,BR).
Since ‖ut‖L2(Q) is L

2(R+), there exists a sequence tn →∞ such that

‖ut‖L2(Q)(tn) −→
n→∞

0.

In addition, u(tn) is equi Lipschitz and converges uniformly on compact sets to some u∞
which therefore satis�es in the viscosity sense√

1 + |∇u|2 div

(
∇u√

1 +∇u2

)
= 0

with obstacles ψ± (see Appendix 5).

Remark. By [ISZ98], umin is analytic out of the (closed) contact set {umin = ψ±}.

A Viscosity solutions with obstacles

A.1 De�nition of viscosity solution

Given an open subset B of Rd, let u0, ψ
+ and ψ− be three Lipschitz functions B → R

such that
ψ−(x, 0) 6 u0(x) 6 ψ+(x, 0).

We are interested in the viscosity solutions of the equation

ut =
√

1 + |∇u|2 div

(
∇u√

1 + |∇u|2

)
, u(x, 0) = u0(x), (35)

with the constraint
ψ−(x) 6 u(x, t) 6 ψ+(x). (36)

De�nition 1 (see [CIL92, Mer14]). We say that a function u : B×[0, T )→ R is a viscosity
subsolution of (35) if u satis�es the following conditions:

• u is upper semicontinuous;

• u(x, 0) 6 u0(x);
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•
ψ−(x) 6 u(x, t) 6 ψ+(x); (37)

• for any (x0, t0) ∈ Rd × R+ and ϕ ∈ C2 such that u − ϕ has a maximum at (x0, t0)
and u(x0, t0) > ψ−(x0),

ut 6
√

1 + |∇u|2 div

(
∇u√

1 + |∇u|2

)
. (38)

Similarly, u is a viscosity supersolution of (35) if:

• u is lower semicontinuous;

• u(x, 0) > u0(x);

• (37) holds;

• for any (x0, t0) ∈ Rd × R+ and ϕ ∈ C2 such that u − ϕ has a minimum at (x0, t0)
and u(x0, t0) < ψ+(x0),

ut >
√

1 + |∇u|2 div

(
∇u√

1 + |∇u|2

)
.

We say that u is a viscosity solution of (35) if it is both a super and a subsolution.

A.2 Comparison principle

In order to prove uniqueness of continous viscositysolutions of (35), we shall prove a com-
parison principle between solutions following [GGIS91, Theorem 4] (see also [CGG91]).

Proposition 12. If u is a viscosity subsolution of (35) on [0, T ), v is a viscosity super-

solution, if ψ± are Lipschitz in space and if u(x, 0) 6 v(x, 0), then u(x, t) 6 v(x, t) for all

(x, t) ∈ Rn × [0, T ).

Proof. We will check that the proof of [GGIS91, Theorem 2.1] can be extended to the
obstacle case. Notice �rst that the assumptions (A.1) − (A.3) of [GGIS91, Theorem 2.1]
are satis�ed also in our case. Indeed, (A.1) comes directly from the Lipschitz bound on
ψ± and the constraint ψ− 6 u, v 6 ψ+ whereas (A.2) and (A.3) result from the assumed
time zero comparison.

Let us show that [GGIS91, Proposition 2.3] also holds. Indeed, up to Equation (2.9)
nothing chenges. To continue the proof, using the same notation of [GGIS91, Proposition
2.3], we have to check that if

sup
V

(w −Ψ) > 0,

then the supremum is reached in the complementary of the contact set {u = ψ−} ∪ {v =
ψ+}.

Indeed, notice that if u(x, t) = ψ−(x), then, for all x, y, t, s,

u(x, t)− v(y, s) = ψ−(x)− v(y, s) 6 ψ−(y) + L(|x− y|)− v(y, s) 6 L(|x− y|)

since v > ψ−. Hence, if u(x, t) = ψ−(x), with K ′ > L, we must have w − Ψ 6 0, so the
supremum of w−Ψ is attained in the complementary of {u = ψ−}. One can show similarly
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that the supremum is reached in the complementary of {v = ψ+}. Hence Proposition 2.3
of [GGIS91] holds.

From Proposition 2.4 to Lemma 2.7 of [GGIS91], every result holds without changes.
Concerning the proof of Theorem 2.1 of [GGIS91], the �rst assumption is

α = lim sup
θ→0

{w(t, x, y), | |x− y| 6 θ} > 0.

Then, Proposition 2.4 gives constants δ0 and γ0 such that for all δ 6 δ0, γ 6 γ0 and ε > 0,
there holds

Φ(x̂, ŷ, t̂) := sup
Rd×Rd×[0,T )

Φ(x, y, t) >
α

2

with

Φ(t, x, y) = u(x, t)− v(y, t)− |x− y|
4

4ε
− δ(|x|2 + |y|2)− γ

T − t
To conclude the proof, we only have to show that the maximum of Φ is once again

attained on the complementary of {u = ψ−}∪{v = ψ+}. In the same way as for Proposition
2.3, if u(x, t) = ψ−(x), we can write

Φ(t, x, y) = u(x, t)− v(y, t)− |x− y|
4

4ε
− δ(|x|2 + |y|2)− γ

T − t
6 ψ−(y) + L|x− y| − v(y, t) 6 L|x− y|.

Thanks to Proposition 2.5, |x̂− ŷ| −→
ε→0

0. So, with ε su�ciently small (one can reduce

the quantity ε0 given by Proposition 2.6), Φ has its maximum out of {u = ψ−} (and
similarly out of {v = ψ+}), which enables the application of Lemma 2.7 and gives a
contradiction as in [GGIS91].

A.3 Existence

In this subsection, we prove the following result:

Proposition 13. There exists a continuous viscosity solution to (35).

We follow [CIL92] to build a solution by means of the Perron's method. Let us state
an obvious but useful proposition and a key lemma for applying Perron's method.

Proposition 14. Let u be a subsolution of the mean curvature motion for graphs (without

obstacles) which satis�es u 6 u+. Then, uob := u∨u− is a subsolution of (35) with obtacles
(the same happends for v supersolution and vob = v ∧ u+).

In the sequel, we shall denote by u∗ (resp. u∗) the upper (resp. lower) semicontinuous
envelope of a function u.

Lemma 6. Let F be a family of subsolutions of (35). We de�ne

U(x, t) = sup{u(x, t) | u ∈ F}.

Then, U∗ is a subsolution of (35).

The proof of the proposition and the lemma can be found in [CIL92], Lemma 4.2 (with
obvious changes due to the parabolic situation and obstacles).
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Construction of barriers. In the sequel, to claim that the initial condition is taken
by the viscosity solution, we need to build barriers around the solution u. More precisely,
we want to build a subsolution w− such that (w−)∗(x, 0) = u0(x) and a supersolution w+

such that (w+)∗(x, 0) = u0(x). To show this claim, let us begin by a simple fact.
Let

gaα,b(x) = −
∑

αi
(x− a)2

i√
1 + (x− a)2

i

+ b (39)

for some (a, b) ∈ Rd × R and αi > 0 such that g(x) 6 u0(x). Note in particular that

gaα,b(x) > −
∑

αi(x− a)2
i + b and H(gaα,b) > H(gaα,b)|t=0 = −2

∑
αi. (40)

Then, it is easy to show (using Proposition 14) that the function

v(x, t) =

(
gaα,b(x) +

(
2

n∑
i=1

αi + 3M

)
t

)
∨ ψ−

is a subsolution of (35). Indeed, the curvature of gaα,b is smaller than 2
∑

i αi and its

gradient is bounded by 2 (so
√

1 + |∇g|2 6 3).
Thanks to Lemma 6, the function

w−(x, t) =

 sup
(αi),c
gcα,b6u0

(
gaα,b(x)− 2

n∑
i=1

αit− 3Mt

)
∨ ψ−


∗

is a subsolution of (35) (with obstacles).
It remains to show that (w−)∗(x, 0) = u0(x). To see this, notice that since u0 is Lipschitz
and u0 > ψ−, u0(x) = w−(x, 0), yielding u0(x) 6 (w−)∗(x, 0). But for all t > 0, v(x, t) 6
u0(x) so w−(x, t) 6 u0(x). By continuity of u0, (w−)∗(x, t) 6 u0(x), which shows that
(w−)∗(x, 0) = u0(x), and w− is a low barrier for solutions of (35).

We build w+ in the same way.

Perron's method. We use the classical Perron's method to build a solution of (35) on
[0, T ) for every t > 0. Let us de�ne

W (x, t) = sup{u(x) : u is a subsolution of (35) on [0, T )}.

Since ψ− is a subsolution, this set in non empty and W is well de�ned. Every subsolution
is less that ψ+, so is W .

Thanks to Lemma 6, W ∗ is a subsolution of (35) regardless the initial conditions.
Applying the comparison principle (Proposition 12) to every subsolution u and w+ gives

∀x, t, W (x, t) 6 w+(x, t).

Considering the upper-semi-continuous envelopes, we get

∀x, t, W ∗(x, t) 6 (w+)∗(x, t)

which immediately yields to
W ∗(x, 0) = u0(x).

Then, W ∗ is a subsolution of (35), hence W ∗ = W which shows the upper semi-continuity
of W .

We want to prove thatW is actually a solution of (35). In order to do this, let us prove
the following
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Lemma 7. Let u be a subsolution of (35). If u∗ fails to be a supersolution (regardless

initial conditions) at some point (x̂, t̂) then there exists a subsolution uκ (regardless initial

conditions) satisfying uκ > u and supuκ − u > 0 and such that u(x, t) = uκ(x, t) for

|x− x̂|, |t− t̂| 6 κ.

Proof. Let us assume that u∗ fails to be a supersolution at (0, 1). Then there exists
(a, p,X) ∈ J 2,−u∗(0, 1) with

a+ F (p,X) + k(0)
√

1 + p2 < 0.

Let us then de�ne

uδ,γ(x, t) = u∗(0, 1) + δ + (p , x) + a(t− 1) +
1

2
(Xx , x)− γ(|x|2 + t− 1).

Thanks to the continuity of F and k, uδ,γ is a classical subsolution on Br(0, 1) of ut +

F (Du,D2u) + k(x)
√

1 + |∇u|2 = 0 for δ, γ, r su�ciently small. By assumption,

u(x, t) > u∗(x, t) > u∗(0, 1) + a(t− 1) + (p , x) +
1

2
(Xx, x , +) o(|x|2 + |t− 1|).

With δ = γ r
2+r
8 , we get u(x, t) > uδ,γ(x, t) for small r and |x|, |t − 1| ∈ [ r2 , r]. Reducing

again r, we can assume that uδ,γ < ψ+ on Br. Thanks to Lemma 6,

ũ(x, t) =

{
max(u(x, t), uδ,γ(x, t)) if |x, t− 1| < r

u(x) otherwise

is a subsolution of (35) (with no initial conditions).

Finally, this lemma combined with the de�nition of W proves that W is in fact a
solution of (35) (the initial conditions were already checked).

A.4 Regularity

Proposition 15. The unique solution u of (35) is Lipschitz in space, with the same

constant as u0, ψ
±.

Proof. We will prove that uz(x, t) = u(x+ z, t)−L|z| is in fact a subsolution of (35). The
Lipschitz bound is then straightforward (using the comparison principle).

To begin, we notice that u(x + z, t) − L(|z|) 6 u+(x, t) and u(x + z, 0) − L|z| 6
u0(x+ z)− L|z| 6 u0(x).

Assume now that ϕ is any smooth function which is greater than uz with equality at
(x̂, t̂). Then, either, uz(x̂, t̂) = ψ−(x̂, t̂) and nothing has to be done, or uz(x̂, t̂) > ψ−(x̂, t̂).
In the second alternative, one can write

u(x̂+ t, t̂) > ψ−(x̂) = ψ−(x̂+ z) + (ψ−(x̂)− ψ−(x̂+ z),

so
u(x̂+ z, t̂) > ψ−(x̂+ z) + ψ−(x̂)− ψ−(x̂+ z) + L|z|︸ ︷︷ ︸

>0

> u−(x̂+ z, t̂).

As u is a subsolution at (x̂+z, t̂) and u(x+z, t) 6 ϕ(x, t)+L|z| with equality at (x̂+z, t̂),
one can write with y = x+ z, s = t,

u(y, t) 6 ϕ(y − z, s) + L|z| := φ(y, s),
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with equality at (ŷ, ŝ) which gives

φt + F (Dφ(x̂, t̂), D2φ(x̂, t̂)) 6 0.

Since the derivatives of φ and ϕ are the same, we deduce

ϕt + F (Dϕ,D2ϕ) 6 0,

what was expected.

Remark. With the same arguments, one can prove that

∀δ > 0, ∀x, t, |u(x, t+ δ)− u(x, t)| 6 sup
x
|u(x, δ)− u(x, 0)|.

We now present a general regularity result by Shahgholian [Sha08] which applies to
viscosity solutions for parabolic equations with obstacles.

Theorem 4 ([PS07], Th. 4.1). Let Q+ := {(x, t) ∈ Rd × R : |x| < 1, t ∈ [0, 1)} and

H(u) = F (D2u,Du) − ut where F is uniformly elliptic. Let u be a continuous viscosity

solution of
(u− ψ)H(u) = 0,

H(u) 6 0,

u > ψ,

(41)

in Q+, with boundary data

u(x, t) = g(x, t) > ψ(x, t) on {|x| = 1} ∪ {t = 0}. (42)

Assume that ψ ∈ C1,1(Q+) and g is continuous. Then, u ∈ C1,1 on every compact subset

of Q+.

It has to be noticed H = F − ∂t where F (D2u,Du) = −
√

1 + |∇u|2 div

(
∇u√

1+|∇u|2

)
satis�es all the assumptions of [Sha08], 1.3. Indeed, the uniform ellipticity is provided by
the Lipschitz bound obtained in previous subsection.

Moreover, the viscosity solution u of (35) satis�es (41) and (42) on every cylinder
Q+
r (x0) := {|x − x0| 6 r, t ∈ [t0, t0 + r)} such that r is choosen su�ciently small in

order to have either Q+
r (x0) ∩ {u = ψ+} = ∅ or Q+

r (x0) ∩ {u = ψ−} = ∅. In the second
alternative, change every sign in the equations.

Applying Theorem 4 we get a C1,1 bound for u on every compact subset of Q+
r (x0).

To show that u is C1,1 in the whole space, just cover Rd × R+ with such Q+
r (xi).
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