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Abstract

We consider the I'—limit of a family of functionals which model the interaction of a
material that undergoes phase transition with a rapidly oscillating conservative vector
field. These functionals consist of a gradient term, a double-well potential and a vector
field. The scaling is such that all three terms scale in the same way and the frequency of
the vector field is equal to the interface thickness. Difficulties arise from the fact that the
two global minimizers of the functionals are nonconstant and converge only in the weak
L2-topology.
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1 Introduction

Given a bounded Lipschitz domain Q of R” and 0 < ¢ < 1, we study the singular limit as
e — 0 of a family of functionals G, : H'(2) — R which consist of three competing parts:

e An “interaction term” penalizing spatial changes in u;

e a double-well potential W, i.e. a non-convex function which has exactly two minimizers,
for simplicity +1 and —1;



e and a term coupling u to a rapidly oscillating vector field Vv (2= ), where € (0,1] and
v € WH®(RY) is a periodic function with cell domain @ := (-1/2,1/2)V.

Such a family of functionals is given by :
Ge(u) == / [6|Vu(a:)|2 + Wiu(z)) + <Vv (%) ,Vu(a:)>] dz, ue HYQ). (1.1)
Q € €

On a mesoscopic scale, i.e. a scale that is much larger than the atomistic scale but smaller
than the macroscopic one, these functionals model the free energy of a physical system which
undergoes a phase transition. The parameter ¢ is the ratio between meso-and macroscale, and
the limit ¢ — 0 yields an effective description on the macroscale, which is the scale of interest.
In this setting, the function w :  — R in the functional (1.1) is the “order parameter”
that describes to what extent a material confined in the domain € is in one of two “pure”
phases, called henceforth the “+” or “—” phase. Examples for such systems are, among
others, highly anisotropic magnetic materials (the two pure phases are “all spins up/down”)
or two-component alloys (u would be the concentration of one of the two components). The
mean-field free energy of states with spatially constant order parameter at sufficiently low
temperatures is given by a double-well potential W : R — [0, 00), a function having exactly
two global minimizers +1, and convex in a neighborhood of each minimizer. In different
spatial regions the system may be close to different phases. Such oscillations are penalized
by an interaction term, which is due to some exchange energy in the underlying atomistic
picture.

If only double-well and interaction energy are of interest one can consider the following func-
tional:

M, (u) == / [equ + W(u)

0 £
If the system is prevented from staying close to +1 or to —1 everywhere (for example by a
volume constraint), then the transition layer (roughly speaking the set separating the positive
and negative regions), will formally be of order &, therefore £ corresponds to the interface
thickness on the macroscopic scale. Because of the double-well potential, it is well known that
sequences whose energy are uniformly bounded converge for € — 0 to £1 almost everywhere.
The effective free energy functional on the macroscale can then be obtained by considering
the limit of the functionals M, as ¢ — 0. The notion of I'-convergence introduced by De
Giorgi (see [7, 6]) provides a suitable mathematical framework to study the limit behavior of
a family of functionals. In [13, 14] Modica and Mortola characterized the I'-convergence of
the family (1.2) by showing

] dz, u € HY(Q). (1.2)

(T — lim M, ) (u) == (1.3)

e—0

ew Jo|Du| if u e BV (Q;{%1}),
400 otherwise,

where B V(Q; {:I:l}) denotes the space of functions having bounded variations taking values
+1 a.e., [,|Du| denotes the total variation of the Radon measure Du (which coincides with
the perimeter P({u > 0},Q)), and

1
ow ;:2/1 VW dt.



This paper paper addresses the convergence of the modified energies defined in (1.1) which
consists in adding a rapidly oscillating gradient vector field to the Modica-Mortola func-
tional (1.2). When v € H?(f) and has vanishing normal derivative on 0Q the last term

in (1.1) can be written as
1
—/ —Av (£> u(z) dz,
Q&% e

and the functional reduces to

W(u(z)) 1 T
— 2 1
Ge(u) .—/Q [6|Vu(:v)| LY (50‘) u(z)| dz, u € H(Q), (1.4)
where g := Av is a function of average zero on (—1/2,1/2)" and periodic. In such a case

this adding term gives rise to a fast oscillating functions with high amplitude, that can model
strong oscillating spatial inhomogeneities. For a € [0,1) the asymptotic limit (for € — 0) of
this class of functionals (1.4) has been discussed in [8], where we explained how in this case
the mesoscopic can be linked to the macroscopic scale. Here we continue this discussion for
the more general class of functionals (1.1) with emphasize on the case a = 1.

To understand the limit behavior as ¢ — 0 of the family (1.1) we have to take into account
two limits which occur simultaneously:

e The singular limit ¢ — 0 as in [13, 14],
e and the “homogenization” of the rapidly oscillating field.

When a = 0, the resulting functional G, consists of adding to (1.2) a continuous linear
functional (independent of ¢). Hence the results in [13, 14] implies that

(T - gl_I)I(l) Ge)(u) = ew /Q | Du| + /Q (Vo(z), Du(z)), Vu € BV(Q;{x1}),

while the I-limit is +o00 if u ¢ BV (€;{£1}). For o > 0 this “splitting” is not expected to
hold anymore since the frequency of Vv(x /%) is strong enough to compete with the gradient
and double-well potential in the resulting free energy. In order to get a consistent physical
model, the free energy G, must satisfy the following two requirements:

(a) The functional G, must have precisely two global minimizers uZ, in order to describe

the two pure phases of the material. These minimizers will play the role of the constants
+1 in functional (1.2);

n order to derive a macroscopic description of the system, the energy of these pure

b) I der to deri ic descripti f th t th f th
phase must converge in the limit ¢ — 0 to the minimizers of an asymptotic functional
that will be interpreted as the “surface tension” energy.

The first requirement can be satisfied by mainly assuming the L°°-norm of the vector field
Vv to be small enough. Indeed the FEuler-Lagrange equation associated to G is
w' 1 0
2eAu — Wilu) + —Av (i) =0 on 9, 2L =0 on 0Q. (1.5)
€ e e on
Thus the function Av appears as a forcing term, which may be discontinuous. If the norm
of v in W1((Q) is small enough, Problem (1.5) admits two solutions u and u_ that are



close respectively to 1 and —1. Conditions on (W, v) will ensure that these critical points
have same energy and are actually global minimizers (non-constant if v #Z 0) of the energy
functional G, (see Proposition 3.5).

But these minimizers cannot satisfy the second requirement stated above. Indeed their energy

can be estimated and one can see that G.(uX) is strictly negative and of order |Q|e~!. To

overcome the fact that lir% G:(uF) = —o0 we need to introduce an additive renormalization
e—

to the free energy modeling the physical system. The appearance of such a renormalization
is in fact quite natural for phase transitions problems. Indeed the energy associated with an
interface is the ezcess free energy due to the fact that more than one phase is present, so it is
actually a difference of energies, determined only up to adding constants. Hence we are led
to replace G¢ by the following functional (see Section 2 for the precise definition):

Fu) = Gefw) = inf {Gele)).

So defined the functional F; can be a good candidate for connecting meso and macroscopic
scale. This renormalization corresponds to the first term in the I'-expansion of G, in the sense
of [5]. A different model for the competition of inhomogeneities and concentration is studied
in [1], but in many respects our setting requires new techniques to handle, among others, the
fact that the global minimizers uF of G. are non-constant.

The behavior of the renormalized functional depends on the range of the parameter a. The
case 0 < a < 1 was already considered in [8], where we proved that the global minimizers
converge to +1 strongly in L'. We were able then to show that the renormalized functionals
F, T-converge to an anisotropic surface energy in the L!-topology. In this paper we focus on
the case a = 1, i.e. oscillations and phase transition have the same scale, and all terms in
the functional (1.1) compete on the same scale. We shall prove that there is an anisotropic
surface energy also for a = 1, although no scale separation between oscillations and formation
of a transition layer appears.

The case a = 1 differs in several ways from the case considered in [8]. A main difference is
that the minimizers uX of G, oscillate with frequency ¢! and an amplitude which is small
but finite, hence they converge only weakly in L?. So we are naturally led to consider the
I-convergence of the family F, with respect to the L2-weak topology. This allows much less
control over the behavior of sequences u, — u than in the case of L!-convergence. In par-
ticular, such sequences have relatively large gradients everywhere, not only near the limiting
interfaces. However, if the sequences have uniformly bounded renormalized energy, then they
are forced to be close to the minimizers uZ in most of the space, i.e. their oscillations are
not arbitrary, but close to those of the minimizers. This fact allows to overcome most of the

difficulties created by the lack of strong convergence.

Using these facts, we will first prove that any sequence with bounded energy converges weakly
(up to a subsequence) to some function in BV (€; {a~,a*}), but in general a* # +1 (unlike
the case 0 < a < 1). The second main step will be to derive the so-called “fundamental
estimate”, which is crucial in order to ensure the I'-limit to be a Borel-measure (see Thm.
5.3). In this part a main difficulty is due to the fact that we cannot interpolate between two
sequences having same weak limit without increasing the energy. Based then on a general
representation result for local functionals together with a precise characterization of finite



energy sequences, we will finally prove that the I'-limit of the family F, with respect to the
weak-L? convergence has the form

/ o), = {u> 0}, u€ BV(Q:{a",a*}) (1.6)
*ENQ

where E is a finite perimeter set and vg is the unit normal to 0*E.

The paper is organized as follows. In Section 2 we collect our basic assumptions on the
functionals (1.1) and state our main result of I'-convergence. Section 3 provides several
crucial estimates on the minimizers of the functional G, and shows the existence of precisely
two minimizers under some smallness assumptions on the field v. Using these estimates we
are able in Section 4 to prove an equi-coerciveness result on the family of functionals Fr.
Section 5 is mainly dedicated to the proof of the so-called “fundamental estimate”. Based
then on a usual procedure we can in Section 6 derive our main result of I'-convergence and a
representation formula. In Section 7.1 we explain that the I-limit can be of the form (1.6),
even if the wells of the double-well potential W do not have the same depth. The minimizer
close to a deep but narrow well cannot follow the oscillations of the field as much as the
minimizer close to a higher but flat well, hence both may still have the same energy.

2 Notation and main results

Henceforth we fix an open bounded set with Lipschitz boundary @ ¢ RV, N > 2, and denote
by A the class of all open subsets of O. The unit cube in R" centered at the origin and its
scalings are denoted by

Q= (-1/2,1/2)V, Q.(2) =e(z4+Q) (¢>0,zeZN).

The space of functions of bounded variations BV () is the set of u € L'(Q) whose distribu-
tional derivatives Du = (Dqu, ..., Dyu) is a vector-valued Radon measure. If u € BV (), by
the Radon-Nykodym Theorem we can decompose Du = D%u + D*u where D%u is absolutely
continuous with respect to the Lebesgue measure called the absolutely continuous part of Du.
Given E C R we also define

BV(E) :={uec BV(Q): u(z) € E for a.e. z € N}.

Moreover we denote by 0*FE the reduced boundary of E whenever xg € BV (Q2), where xg
stands for the usual characteristic function of the set F.

Given a metric space X and a family F. : X — RU {oo}, we recall that F' = I'—lim iglf F,
e~

and F" =T —limsup F, are defined as follows:

e—0
F'(z) = inf {lim iglfFE(a:E) : T, sequence, T, — T in X} ,
E—
F"(z) = inf {lim sup F.(z:) : . sequence . — = in X} :
e—0

If F' = F" then this common function is denoted I'— liH(l) F..
e—



Given Q € A and £ > 0, we consider the functional

o) o /Q [6|Vu|2 + @ + <Vv (g) ,Vu>] do ifu e H'(Q), o

+ 00 otherwise.

We require that v and W satisfy the following assumptions:
(H1) W € C*R), W > 0, W }0) = {-1,1}, W is even, W'(s) < 0 for s € (0,1), there
exist dp € (0,1) and wp > 0, such that W is strictly convex on [1 — dy, +00) and
wy (s —1)2 < W(s) <wols —1)2 Vs € (1 — by, +00),
W(-1+4+s)=W(1+s) Vs € (—do, 0p);

(H2) the function v belongs to W1 (RN );
(H3) v is Q-periodic and satisfies:

V(T1y. e Tiy e Tp) = —0(T1, ... — Tiy. .. Tp) forall1 <i<n. (2.2)

Under these only assumptions the infimum of the functional G.(-,Q2) may tend to —oo as
e — 0. This is a difficulty to find a “limit functional” in the sense of the I'-convergence. To
overcome this obstacle we introduce a renormalization by following a procedure already used
in [8]. Given  CC RY, we consider the following class of “polyrectangles” contained in :

R:(Q) := {P CQ: P=int (Uzele—(Z)) for some I C ZN} ,

where int(E) stands for the interior of a set E. The functional G, is then “renormalized” as
follows:
sup < Ge(u,R) — inf G.(-, R } if Re(Q) #0,
F(u,Q) :== ReRE(Q){ (u: R) H(R) R) ()
0 otherwise.

(2.3)

For each u € H'(B) fixed, F.(u,-) defines a set function A — [0,00) that enjoys of the
following properties:

(a) For each Q2 € A the set R.(f2) is finite. Hence the supremum in the definition of (2.3)
is a maximum achieved by some polyrectangle R..

(b) Fe(u,0) =0 and F;(u,-) is increasing:
A, A2 €A, Ay C Ay = Fo(, A1) < Fe(+, Ag).

(c) The set function F_(u,-) is additive in A:
A1, Ay € A, A1 N A =0 = FE(’U,,A1UA2) :FE(U,AI)—i—FE(U,AQ). (2.4)

This property follows by observing that for any R € R.(A;UAs) we have RNA; € R.(A4;)
(1 =1,2) and also

inf G.(,R)= _inf G.(,RNA;)+ inf G.(-,RNA).
H(R) H(RNAL) H1(RNAs)



(d) The functional F is local. Le. given A € A and u,v € H'(O) it holds:

ua=vla = F.(u,A) =F.(v,A). (2.5)

(e) The set function F(u,-) is not subadditive in A, i.e. it does not satisfy the property:
ACAIUAy, A AL,A e A — FE(U,A) SFE(U,A1)+FS(U,A2). (26)

Indeed as soon as R.(O) # 0 we can find A;, Ay € A containing none of the cubes
Q:(z) for all z € Z¥, but such that Q.(z) C A; U Ay for some zg € Z". For such sets
we have:

Fs(u,Al) = FE(’U,,AQ) =0 and FE(u,Al U AQ) > 0,

and so (2.6) cannot hold. For similar reasons the set function Fg(u,-) is not inner
regular. In particular F,(u,-) is not the restriction of a Borel measure.

Though the functionals F. are not a measure (in the set variable), we will see that they I'-
converge in an appropriate metric space to a measure. To reach this conclusion we need first
more information on the minimizers of the functional G, (-, Q:(2)). We introduce for each
Q cC RV the functionals:

G, Q) = / (Va2 + W(u) + (Vo,Vu) | dz, e H(Q), (2.7)
Q
rel — 2 v
G(u,Q) := /Q [\Vu| +W (u 2)] dz. (2.8)
The functional G is the rescaled version of G,, i.e. by the change of variables y = ¢ 'z and
setting u(y) = u(ey), we obtain the identity
G:(u,Q) = V721G (@, e71Q) . (2.9)

Whereas G is a way of rewriting the functional G, as a functional with nonnegative integrands,
but with an z-dependent potential. We have the relation

Gu,Q) =G (u—l— g,Q) - %/Q\Vvﬁdx,
from which we easily get the following
Proposition 2.1. Let w(u,t) = sign(u)(Ju| A (1 +1)). If 2t > ||v||L, then
G(u, Q) > G(w(u,t),Q),
and the inequality is strict unless u = w(u,t) a.e. in Q.
Hence for any (u,Q) € H'(Q) x A and for any 2t > ||v||s, Proposition 2.1 implies that
Gu, Q) > G(—(1+t)Vun(l+1),Q) (2.10)

with strict inequality unless ||u|oo < 1+ t. Thus any minimizers u of G(-,Q) is bounded and
satisfy the a priori estimate
[ulloo <1+ [vllo/2- (2.11)



A rearangement argument will further show that in the unit cube  any minimizer is axis-
symmetric (see Proposition 3.1). Therefore if ug is a minimizer of G(-, @), and extending it
by periodicity, we deduce that on a polyrectangle R € R.(€2) the function u(%) is a minimizer
of G.(-, R). In particular we get

inf Ge(u,int U = inf Ge(u, + inf Ge(u, s 2.12
i intoay O H@ U @) = ot (G Q)+ fof) G @2) 212

for any Q; = Q. (%) i = 1,2 with z; € ZV, 21 # 2. As a consequence of (2.12), we can in the
definition of F¢(-, Q) just consider the “maximal polyrectangle” contained in ©, i.e.

F.(u,Q) = F.(u,Q.) with Q. := R. (2.13)
ReR:(Q2)

This preliminary discussion shows that the renormalization in (2.3) amounts to adding a
positive constant, uniformly bounded by C|Q|/¢ for some constant C' > 0 depending only on
(W,v). Indeed denoting by ug any minimizer of G(-,Q), for each R € R.(f2) we have

| B| €2

0> inf Ge(\R) = Glug,Q) > ——|Glug, Q).

In order to discuss the uniqueness of minimizers for C:’(, Q), we introduce for each Q cc RY
the following closed convex subsets of H!({2):

HL(Q):={uec H(Q): +u>1—§ ae. in Q}, (2.14)

where the constant & is defined in (H1). The functional G(-, Q) restricted to HL () admits
a unique minimizer u*. When ||v||yy1, is small we can prove that these two functions u* are

actually the unique global minimizers for the functional G (-, Q). More precisely

Theorem 2.2. Under the assumptions (H1) to (H3) there exists a constant co := co(W) > 0
such that if ||v||py1.e < co, then the functional G(-,Q) admits precisely two global minimizers
uT,u". Furthermore

{ ut € HL(Q), Gu",Q)=Gu™,Q), u't-u" =2

(2.15)
U(T1y e Ty oo Tpy) = U(T1y e — Ty e Ty) foralll1 <i<n, z€Q.

The two minimizers given by Theorem 2.2 substitute the role played by the constant mini-
mizers £1 in the classical Modica-Mortola functional. By extending periodically the function
u® to RV, we easily see that uF(x) := ui(f) restricted to a polyrectangle R € R.(Q) (with
Q2 € A) give the two global minimizers of the functionals G.(-, R) and F.(-, R). In order to
identify a limit problem we need to choose a topology that provides convergence of these
minimizers as ¢ — 0. Since uF satisfy the a priori estimate (2.11) we deduce that

uf — / u®  weakly in L%(Q).
Q

Therefore it is natural to work in the weak L?(O)-topology and in order to set the problem
in a metric space we note that (2.10) implies

F(u,Q) > F.(—(14+t)VuA(1+1),Q),



for any 2 € A and 2t > ||[v||o- Hence, after cutting, we may work with sequences u. € L*(O)
which are such that ||uc||co < 1+ ||v]lc. Which in turn implies that there exists a constant

M > 0 (depending only on W, v and R) such that |[ul|p2(q) < M for all @ € A. From now
on we shall restrict our analysis to the metrizable space

X = {u € L*(0) : ull2 < M}, endowed with the weak L? — topology.

Our goal is to characterize the I'-limit of the functionals F; restricted to the metric space X
(which we still denote by F.). Let us emphasize the following properties of F":

(a) 0 < F' < F" and F'(u,-) is increasing;

(b) Since F_(u,-) is superadditive in the class A, we know that F’ is superadditive in A (see
[Prop. 16.12, [6]]).

The main difficulty in the present paper will be to prove the subadditivity of F’. To state
our main result of I'-convergence we need to consider the values:

a* ::/ uF (z)dz,
Q

where u*

notation:

are the minimizers given by Theorem 2.2 and for E C RY we introduce the following

at ifrcE,

a~ otherwise. (2.16)

Xbas(2) = atxe a1 - xe) = {
Our main theorem on I'-convergence of the family F, with respect to the weak L?-topology
reads then as follows:

Theorem 2.3. Assume that (H1), (H2) and (H3) are satisfied. Then there exists a constant
co = co(W,9) such that, if ||[v|w1e < co, there ezists a function ¢ : RN \ {0} — R which is
strictly positive, homogeneous and convex such that

/ o)AMY L if u = xp ot € BV(®;{a",at}),
T—lim F.(u,9) = ¢ Jozno (2.17)
E—>

+ oo otherwise,
for any set Q € A with Lipschitz boundary.

Unlike in the case of the usual Modica-Mortola functional, the assumption that W is strictly
decreasing in [0, 1], see (H1), is important in order to ensure that G admits only two global
minimizers. Indeed the example in Section 7.1 shows that there may be a global minimizer
which oscillates around a local minimizer of W.

Further note that if we strengthen (H1) by assuming W (s) = wo(s—1)2 for s € (1—6g,1—dp),
instead of just requiring bounds by quadratic functions, then W’ is a linear function and we
can easily show that (a¥,a ) = (1,—1). Finally let us mentioned that the periodicity of
v is used in order to derive that the I'-limit does not depend on z and on the particular
subsequence ¢; — 0 (see Proposition 6.4 and Theorem 6.5).



3 Estimates for the minimizers

Under our assumptions classical arguments show that the functional G(-,Q) defined by (2.7)
admits at least one minimizer. In this section we discuss the symmetry of such minimizers,
present some a priori bound and prove that there are precisely two minimizers when ||v||yy1,00
is small enough.

Proposition 3.1. Assume (H1), (H2) and let Q2 CC RY. Then for any minimizer u € HY(Q)
of G(-,Q) it holds
lulloo <1+ |Vlloe  and u€ WX(Q). (3.1)

loc
If Q is the unit cube Q = (—1/2,1/2)N, then with the additional assumption (H3) any mini-
mizers u s azis-symmetric:

w(xy, . Tiy oo Ty) =u(T1, e — Tiy o Ty) foralll1<i<n, z€qQ, (3.2)
(RV).

Proof. Once we know that u € L*®°(2), using the Euler-Lagrange satisfied by u we deduce
that A(u —v) € L®(Q). Standard elliptic regularity [11] yield then u — v € C1(£2). Since
v € WHe(RN) we conclude u € W,=>(Q).

loc

We now prove (3.2). Given 1 <14 < n, let u® € H*(Q) be defined as

and in particular its Q-periodic extension is in H, lloc

(X1, e Ty oo X)) = (T, oo — Ty T,y

and set
w:=sup{u,u’} and wu:=inf{u,u’}.

We claim that
(i) G, Q) =G, Q) =G(u,Q) and (1) u=u’. (3.3)

Assume first

/ (YUl + W () + (Vo, V) } g/ (Vul> + W(w) + (Vo,Vu)} . (3.4)
{u—u">0} {u—u" <0}

We note that

/ Vo2 = / IVul? / W) = / W) o (3.5)
{u—u" <0} {u—u">0} {u—u" <0} {u—u">0}

and thanks to assumption (H3) we also get

/{u_wo} (Vo, Vu?) = / (Vo, V) . (3.6)

{u—us>0}

Hence using successively the definition of u, (3.5) together with (3.6), and (3.4), we obtain

G, Q) = /{ o) {IVu* + W(u) + (Vo, Vu) } + / {IVu)? + W (u?) + (Vv, Vu?) }

{u—uo <0}

- / (IVul + W (u) + (Vo, Vu) } +/ ([Vul® + W(u) + (Vo, Va) }
{u—u>0}

{u—u>0}

{u—u>0}

= G(u,Q).

10

< / (IVul + W () + (Vo, Vu) } +/ (IVul® + W(u) + (Vo, Va) }
{u—u<0}

(3.7)



Since v is a minimizer we deduce that G (w,Q) = G (u, Q). From the equalities

G, Q) +G@Q) = G(u,Q) + G, Q) = 2G(u,Q),

we also deduce G(u, Q) = G(u,Q). Hence statement (i) in (3.3) follows if (3.4) holds. If
in (3.4) we assume the reverse inequality, same arguments with u instead of @ allow also to
conclude.

To show statement (ii) in (3.3) we consider the Euler-Lagrange equation satisfied by @, u and
deduce that they solve

—2A(@ —~u) +c(z)(@—u) =0, T-u>0,

where —
W' (@)W’ (u p —
o(z) = U—u = (z) Tf u(x) # u(x),
0 if u(x) = u(z).
Since w,u € L*®(Q) by (3.1), we deduce that ¢ € L*°(Q). Hence by the Strong Maximum
Principle the following alternative holds:

u—u>0 inQ or u=u in Q. (3.8)

Using the continuity of w,u (by (3.1)) and noting that w —u = 0 on the set {z; =0} N Q, we
deduce that the first alternative in (3.8) cannot hold. Hence u” = u in @ which concludes
the proof of (3.2). o

As a consequence our Proposition 3.1, for any disjoint pair of cube @Q; € R.(Q) (i = 1,2) the
following additivity property hold

inf G (i@ U0;) = inf G.(w.Qi)+ inf G.(u,Qs), (3.9
1 (int(Q10G2) (wint(@UQ2) = Inf  Ge(w, Qi)+ inf Ge(w,Qa), (39)

F (u,int(Q1 U Qz)) = Fs(u, Ql) + F; (u, Qg) (310)

The following definition introduces a cutting and reflection procedure, which gives a function
u!, which assumes values only in one of the convex regions of the potential W. First we
distinguish whether u has large or small oscillations on the set where it is in the “minority
well”, then we perform a reflection-and-cutting procedure.

Definition 3.2. Let t, K > 0 and v € WH°(Q). For each u € H(Q) we define
u, if ][ |Vul® < K;
{u<—t+—”"g"°}

uV (-t lole/2, i VU2 K
{u<—t+T°°}

Ti(u) :=

To(w) = |u|V(t— g).
We finally set

: { @oT)(w) i [{u<0} <l (3.11)

T —@om)(-w i [fu<0}l > 39l

11



Lemma 3.3. Assume (H1)-(H2) hold and let Ty be as in Def. 3.2. Then G(u,Q) > G(Ti(u), <)

whenever

K > ]{2|Vv|2+2W(—t—|— 9]/ 00/2)- (3.12)

Proof. Consider the sublevel set 7 := {u < —t + ||v||0o/2} and assume T3 (u) # u. Then by
using (Vv, Vu) > —2(|Vol? + [Vul?) and W (u) > 0 we get

G(u,Q) — G(T1(u), Q)
= [ {1vu = 0] + (W) = Wt+ folloe/2)] + (90,720 - 0]}

> 171 (5 £, 190 = 5 £ 1962 = Wit-+ olle/2))
2171 (5 - 5 £, 908 = Wiet+ Ioler2))

This last expression is clearly non-negative whenever the constant K in the definition of T}
is chosen as in (3.12). o

We will need the following well known result.

Proposition 3.4. Let Q@ C RY be a bounded domain (open and connected) with Lipschitz
boundary.

(a) (Relative Isoperimetric Inequality). There ezists a constant iqg > 0 such that

P(E,Q) > io(min{|E|,|Q\ E}) ¥  for any E C Q.

(b) Let u € BV (Q) with |[{u < 0}| < % Then for any ty > 0 we have
Q1 [0
to [{u < —to}| < : / P({u < s},Q)ds. (3.13)
Q —tO

Proof. For the first statement we refer to [10, Section 5.6]. Concerning (3.13) we note that

-1

1 N1 1 0 N1
tol{u < —to}| < tolQV |[{u < ~tp}| ¥ < |Q|N/ [{u <s}| ¥ ds

|~
in

IA

/0 P({u < s},Q)ds
—to

The following estimate will play a crucial role in our arguments.

Proposition 3.5. Let Q C RY be a bounded Lispchitz domain, and assume (H1), (H2) hold.
There exist two positive constants C(W,Q), W := W(W) such that if

vl zos () < p for some 0 < p < Vo[ oo () < C(W,Q), (3.14)

2
3 ?
then for each t € (1 — 6o+ p,1 — 5) and each u € H' (), we have

G(u,Q) — P({u < s},9Q) ds+W? [{|u] <t - p}|. (3.15)

12



Proof. We consider the case {u < 0} < |Q|/2.
Let the constant K in Def. 3.2 be chosen as in Lemma 3.3. Recalling that (T o T1)(u) = u’
(see Def. 3.2), Lemma 3.3 implies

Gu, Q) — G, Q) = G(u Q) — G(T1(u), Q) + G(T1(u), Q) — G(ut, Q)
> G(T1(u),Q) — G(u', Q).

Hence since T3 o 77 = T and {T1(u) > 0} = {u > 0} (because —t + ||v]|c0/2 < 0), we may
without loss of generality assume that 77 (u) = u, i.e.

{u <0} < 91/2, ][{ ey T <K (3.16)

with
[[v]]oo

K= ][ IVo|2dz + 2W ( £+ ) < | Voll2, + 27(0).
{uc—t+ 1)) 2
Using the definition of G, the left hand-side of (3.15) is given by
G v (st
Glu, Q) — G(ut, Q) = G<u+2,9) G(u -|—2,Q)

{urz<t) {\V ut %)\2 - \V (u+ %)\2+W<u) —W(ut)}

J
N /u|<t “}{‘v u+%)

o5

~~

I3

Let us estimate I;. Since t —v/2 < t — p/2 < 1 and W is decreasing in the interval (0,1),
W(u) — W(t—v/2) >0on {|u| <t—v/2}, and the inequality a? + b> > 2ab yields

L = /{um_g} {\Vu|2 W (u) — W(t - g) + @ + (VU,Vu)}
/{ukt%} |Vl {\/2 (W () —w(t- g)] +|Vol2 - |w}
> /{ukt%} IV {\/2 (W) —w (¢ - —)] + Vo2 - \vu|}

> /{u|<t_p} Vul {\/2 [W(t - p) — W(t - g)] + Vo2 — |vu|} . (3.18)

Since W is convex in the interval (1 — dp,00), the function ¢ — W(t — p) — W(t — &) is
decreasing and so we infer

Y

\%

W(t—p)-Wt-2) > W2=w(-

3p
2 —_— _)

7) = W(1L=p). (3.19)
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Using (3.19) and the fact that the function s — V 2W2 + s2 — s is decreasing, we can estimate

(3.18) as follows:
(Ve 19ol = 19olle) [ vl
{lul<t—p}

_ (\/2 W2 4 Vo2 — ||Vv||oo> /_i:;?({u < 5},0) ds, (3.20)

the latter equality being a consequence of the co-area formula.

I

v

Similar arguments yield

Iy > /{|u|<t_p} % (W (t=p) =W (t=2)] = W2l <t - p}.

Let us estimate the integral I5 in (3.17). By setting T = {u < —t+||v||c0/2}, using successively
the Cauchy-Schwarz inequality, (3.16) and then (3.13) we get

1/2 1/2 P
| < (][ |vm2) (][ |Vu|2> 7] < [ V0llook2 | {u <42}
T T 2
1
1/2 1 2‘Q|Ni61 0
< |VollaoK'! \{u<—t+p}|snwnooff/ﬁ [ Plu<sh s
- —t+p
Qv b=
< ||Vv||ooK1/2| I~ ;9 P({u < s},9) ds. (3.21)
—t+p

Therefore (3.20) and (3.21) plugged in (3.17) yields
~ ~ —~ t—p
G, ) ~ G, Q) > (2 +0(|Ve]w)) / P({u < s},9).
~t+p
By choosing ||Vv||se small enough we can have 2W + O(||Vo||s) > W. Le., we can find a
constant C(W, Q) such that

Gu, Q) — Gut, Q) >W/t+ (fu < s},9)ds
p

provided ||Vv| pe(q) < C(W, ). This concludes the proof of the proposition. o

Proposition 3.5 implies as in [8] the existence of exactly two global minimizers u*, whose

range are contained in the convex regions of the potential W. Recalling the definition of the
sets HL1(Q) (see (2.14)), we get the following result which is a more precise formulation of
Theorem 2.2:

Proposition 3.6. Let 2 be a bounded Lipschitz domain, and let (H1), (H2), (3.14) be sat-
isfied. Then the functional (2.7) admits precisely two global minimizers u™,u~ and there
holds

vt e HL(Q), G, Q) =Gw™,Q), ut—u =2, (3.22)
. 1-do
G(u,Q) — Gut,Q) > W/1+6 ({u < s},Q) ds for all u € H'(Q). (3.23)
0

When Q is the unit cube Q, the minimizers ur satisfy the symmetry property (3.2).
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4 A priori bounds and a compactness result

The results of the previous section will be applied to the case where the domain is the unit
cube Q. In particular we emphasize that under the assumptions (H1)-(H2), Proposition 3.5
provides a constant C(W, @) such that when

J
l|v]| oo (@) < p for some 0 < p < 30, IV (@) < C(W,Q), (4.1)

then inequality (3.15) holds (with Q := @). In order to formulate a similar inequality on a
cube Q. (z) we introduce the following definition.

Definition 4.1. Let t > 0 and u € H'(2). For each z € ZV with Q-(z) C Q we consider in
the unit cube Q) the rescaled function

u:Q =Rz ulefz+2]),
and let u® be as in Definition 3.2 (with the constant K given by Lemma 3.3). Now we define
) if € Qe(2).

r — €&z

Clul: Q. = R, Clul(z) =" (

For t as in Proposition 3.5, the restriction of CL[u] to a cube Q. (z) C € has a range contained in
one of the convex regions of W. Furthermore if v satisfies (4.1), by using (2.9), Proposition 3.5
(in the unit cube) and then by scaling we derive:

Ge (1 Qe (2)) ~ Ge (C[u], Qe(2)) = €V [é(ﬂ, Q) - G(@,Q)]

W/ P({a < s},Q)ds + W2 |{[a] < t - p}|
t+p

IV

2
_ W/ P({u < s}, Qu(2))ds + WT {u] <t - p}|(4.2)
t+p

The main result of this section is Theorem 4.8, whose proof relies on the idea that a sequence
ue with a uniform energy bound is “close” to a minimizer u*. To make this precise we are
led to introduce the following definition:

Definition 4.2. For any Lebesque-measurable function u: Q — R and z € ZV we set:

1 if [{u(z) > 0} N Q(2)] > 'Q;(z)',
sign.[u, 2] :=
1 if {u(@) > 0} N Q.(2)| < 'ng(z”.

By considering the two global minimizers u™ of 6(, Q) given by Proposition 3.6 we define:

z\ 1+ sign.|u, z _/x\ 1 —sign.|u, z
M.[u,2] = [u+ %) 1+signefuz] | (&) w] o).

2 2
H.[u,z] := [a“L L+ Sig;E[u’ 4 +a” L= Sig;E[u’ z]] XQ.(z) »
where a* = fQ uF (x)dz. Finally we define
M.[u] = Z M.u,z] and H.u Z H.[u,z]
2€ZN 2€ZN
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Note that in the definition of M[u], Hc[u] the sum is actually finite, and the restriction of
these functions to €2 is a BV-function with possible jumps only on the boundary of a cube
Q:(z). We have the following lemma.

Lemma 4.3. Let (H1) to (H3) and (4.1) be satisfied. Then there exists Wy > 0 such that
a(t 2 Wy t 2
e [ Dot = M + 22 [ [t = Malul? < Fufu ),

for anyu e H'(Q), t € (1 -6 +p,1 —5) and R € R.(Q).
Proof. Let Q:(z) C € and assume without loss of generality that sign.[u,z] = 1. Note that
both functions C![u] and M_[u] restricted to Q.(z) take values in (1 — dg, 1 + &), an interval
on which W is convex. Hence, setting ¢ := C[u] — M.[u], we get

M[u]+€ ps

WL +€) - WOLW) = WOLe+ [ 00 [ windras
e[u] e [u]
> W'(Mc[ul)¢ + Wolé|*. (4.3)

with Wy = inf {W"(7)} which is positive by (H1). Therefore inequality (4.2)
76(17(50,14—(50)

and (4.3) give

F; (U; Qs(z))

Y

Ge (Cﬁ[u], Qe (z)) - G: (Ms[u]a Qs(z))
4”4WWMHﬂF4WMMWNw

+/QE(Z) [WH %m? +(vo ),vg>] do.  (4.4)

v

B €
As the restriction of M.[u] on each cube Q.(z) is an absolute minimizer of G.(-, Q(2)), the

associated Euler-Lagrange equation implies

(M, [u))

/Qs(z [QEV(MS[U])V§ W e+ <Vv <E) ,vg>] dz — 0.

By plugging this equality in (4.4) we obtain

ﬂwQWDZ/

Qe(2)

[e|v5|2 + @52] dz.

The thesis follows by using the additivity property (3.10) and summing over all the cubes
Q:(z) contained in R. .

In order to derive a bound on ”u — Cg[u]”Lz(Qs) and ||u - Mg[u]”m(ns) we introduce the
following notation:

16



Definition 4.4. Let &,t > 0. For any u € H*()) we define
Biw) = {we® : Clul(z) £ u@)}
B(u) = {z€Q : ~t—|lleo/2 < ule) <t+|v]loo/2}
Bit(u) = {ze€Q. :ulz)<—t—|v]o/2}N ( U Qg(z))

{z€ZN: sign_[u,z]=1}

B (u) = {we: u(ac)>t+||v||oo/2}ﬁ( U QE(Z)).

{z€ZN: sign [u,z]=—1}

The set BY%(u) contains mainly the points where u(z) is not in the convex regions of W,
whereas BY* (u) are the sets where u is in the “wrong” well of the potential W. We have

B{(u) C B£%(u) U By (u) U By (u). (4.5)

Lemma 4.5. Assume (H1) to (H3) hold, and v satisfy (4.1) (in particular ||v||e < p < d9/3).
Givent € (1 -3y + p,1 — (3/2)p — ||v||l0o), there exists a constant C(t, W,v) > 0 such that:

|BY ()| < CeFi(u,Q), |BbE(u)| < CeF.(u,Q), for allu € H'(Q). (4.6)

Proof. Given z € ZY with Q.(z) C €, it is enough to show that
|BE(u) N Qe(2)| < CeFilu,Qc(2)), (4.7)
|BEE(u) N Qe(2)| < CeFe(u,Qu(2)). (4.8)

Indeed conclusion (4.6) follows then by using the additivity property (3.10) and summing
over all cubes Q. (z) contained in €2..

We give the proof when Q. (z) is such that sign.[u, z] = 1, since the case where sign.[u, z] = —1
can be treated in the same way. Consider the rescaled function u(z) = u(e[z + 2]) in the unit
cube Q. The idea of the proof is to apply Proposition 3.5 with a ¢’ which is different from
the one defining BX(u), B (u). Let

]
o= t+ lollo +

and note that this choice satisfies the conditions of Proposition 3.5.

We first estimate ‘B ) N Q:( )| by applying Proposition 3.5 as follows

G(@,Q) - G, Q) 2 G(@Q) - G@",Q) > W{[al <t - p}nQ)|.
Since t' — p =t + (1/2)||v]|oc, by rescaling (see (2.9)) we deduce

R Q) > S |Bw N Q).

and consequently there exists C' > 0 such that (4.7) holds.
Let us now prove the estimate on |B§’i(u) N Q:(z)|- By applying Proposition 3.5 we get

G,Q) - G0,Q) > 6w Q) -G =W [ . PE<sh@) ds
— [0 ’
> W/t@?({ﬂ < s}, Q) ds. (4.9)
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Since sign.[u, z] = 1, we have [{u < s} N Q| < |Q|/2 for each s < 0. Hence inequality (3.13)
implies
0
/ P({u<s}Q)ds > ig(l—4éo)|{u<—t—|lv]w/2} NQ)| (4.10)
—t=[[vlles /2

Hence using (4.9), (4.10) and by rescaling we find

1 ig(1 — dp)
w1 Fe(0,Qe(9) > L= |BE () N Q:(2)|
and therefore (4.8) holds. o

From Lemma 4.5 and Lemma 4.3 we obtain the following estimate.
Lemma 4.6. Assume (H1) to (H3) and (4.1) hold. Then there exists C > 0 such that
| — ME[U]HH(QE) < CeF,(u,Q), for allu € H(Q).

Proof. We first not that there exists sg,co > 0 (depending only on (W, v)) such that

/ ‘u - M,s[u]|2 < coeF; (u, Q) (4.11)
{lul=s0}
Indeed, recalling the definition of F; we have
1 o\ |? W(u(z))
FE (u, Q) = /E |:€ VU(I) + ZVU (g) + f dz

1 2
~ inf / la Vuw(z) + — Vo (5) + w] da.
weH(Q,) Q. 2e 5 €
By choosing w(z) = —4v(%), we obtain the inequality
F.(u,Q) 2/ [Wg(u) = W(:/Q)] . (4.12)

Moreover the quadratic growth of the function W assumed in (H1) implies the existence of a
constant ¢ := ¢(W,v) > 0 and sy > 1 such that

W(s) =W (v/2) > C(s> = 1) > clu— M.(u)|> for all s > s. (4.13)
From (4.12) and (4.13) we obtain (4.11).

For u small, we note that the conditions on v allow to find a ¢ > 0 such that Bg’i’o as in
Definition 4.4 can be estimated by Lemma 4.5, and Lemma 4.3 may be applied for the same
t > 0. Hence we can estimate

/ |u—M€[u]|2 < 2 (/ |u—C£[uH2+/ ‘Cg[u]—ME[u]F)
{lul<so} {lul<so} {lul<so}
< 263(|BE0w) + Bt )+ B ) +2 [ [CHul - Mol
{lul<so}
< Cst(u,Q)
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the last inequality following from Lemma 4.3, property (4.5) and Lemma 4.5.
which completes the proof of the lemma. O

Lemma 4.7. Assume (H1), (H2), (H3) and (4.1) hold. Then there ezist constants c(w),
C(W,v) such that if |Vv|leo < C, then

/ |DH.[u]| < CF:(u,Q), for allu € H'(Q). (4.14)

€

Proof. Notice that a™ = a~ + 2. Hence the total variation of the measure DH_[u] can be
written as

S(N-1) L .
| Ipmp = T5— Y (@ — alsignelu, ] = sign.fu, ],

\zi—zj|=1

which is nothing but the Hamiltonian of a nearest-neighbor Ising model. We use this Hamil-
tonian to provides the lower bound (4.14) for the energy F.(-,2).

We have to show that each pair of neighboring cubes which have different sign contribute to
the energy at least ce¥ !, for some ¢ > 0. Let us consider a pair of cubes Q. (2;), Q(z;) such
that |z; — z;| = 1 and sign.[u, ;] # sign.[u, z;].

Let ¢ be as in Lemma 4.5.
Case 1: If there exists k € {i,j} such that either

|Q5(zk) N{0<u<t+ ||v||oo/2}‘ > EN/4 and sign.[u, z;] = 1,
or
|Q5(zk) N{0>u>—t— ||U||Oo/2}‘ > €N/4 and sign.[u, z;] = —1,
then by (4.7) we have
eV/4 < |BY N Qc ()| < eFe(u, Qc(21)),
so that F.(u,Q.(z)) > eV -1/4.

Case 2: If not, we have
‘(Qs(zz) U Qs(zj)) N{u>t+ ||U||oo/2}‘ > é‘Qs(zz) U Q&(zj)|7
‘(Qs(zz) U QS(ZJ)) N{u<—t— ||U||oo/2}‘ > %|Qs(zz) U QE(’ZJ)‘

Hence for the set which is the union of the two cubes we get that on a significant portion of
the set the function is in the “wrong” well, whatever the sign of the majority of the set is.
Set Q) := int(Qs(zi) U Qs(z]-)). By using Proposition 3.5 (with Q := Q) and the isoperimetric
inequality as in the proof of Lemma 4.5, but for a set which is the union of two cubes, we
obtain that there exists a constant ¢ > 0 such that

F(u,Q) = Gs(ua Q) - Gs(ug:aQ)
= Z {Gs(ans(zk)) - Gs(ugiaQs(zk))}

ke{i,j}

1 N-1
N

~ N

()T
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The only difference is the fact that now the condition on ||Vv| s depends on the volume and
the isoperimetric inequality for a set which is the union of two cubes. Hence two neighboring
cubes with different sign contribute to the energy at least cc®™ =1 for some constant ¢ > 0
independent of u € H' (). o

Theorem 4.8. (Equi-coerciveness) Assume (H1)-(H3) holds and v satisfies the condition
of Lemma 4.7. For any sequence u. € H'(Q) such that

lim sup F, (ue, Q) < 0o, u, — u weakly in L*(Q),
e—0

there holds

/ ‘DHE[ugﬂ <C, H:u]—uinL*R), ueBV(Q{a",a"}).

€

Proof. The BV estimate on H.[uc] is a direct consequence of Lemma 4.7. As a consequence
H_[u] converges, up to a subsequence, to a function w strongly in L!((2).
Using Definition 4.2, Corollary 4.6 and the equality M [u] = H.[u] + (u™(x/g) — a™) we have

Hs[us] — U. (4.15)

By Lemma 4.15 it follows w = u, which gives the thesis. O

5 Bounds on F; and the Fundamental Estimate

Henceforth we shall always assume that (H1) to (H3) hold and that the function v satisfies
besides (4.1) also the conditions of Lemma 4.7.

The following lower bound is a direct consequence of Theorem 4.8 and of Lemma 4.7.
Proposition 5.1. For each Q2 € A we have
(T — lim iglst)(u,Q) =00, forallu€e X\BV(Q;{a ,a"}), (5.1)
£—
and there exists a constant Cy > 0 such that for any xp .+ € BV(Q; {aﬂa*’}) it holds
(T — lim iglst) (XEat,) > C1P(E,Q). (5.2)
£—

Proof. Consider u. l) u such that
31_1)1(1) Fo(ue, Q) = (T — lllsli)lglng)(u, Q).

Ifu ¢ BV (;{a",a"}), Thm. 4.8 implies lilT(l) F.(ue, ) = limsup F(ug, ) = 00, and so (5.1)
e e—0
holds. If u € BV (Q;{a",a™}) we note that Lemma 4.7, Theorem Cor.1.16 together with the
lower-semicontinuity property of the total variation yield:
(T — liminf ) (u, Q) = lim F.(u., Q) > C; / |D[H.u])| > C / | D,
e—0 e—0 0 0

and referring to the definition (2.16) we deduce (5.2). o
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The following upper bound can be easily proved by explicit construction as in [8, Prop. 4.9].
The idea is to smooth out M.[xg ,+] in a e-neighborhood of its jump set.

Proposition 5.2. There ezists a constant Co > 0 such that for any Q € A with Lipschitz
boundary and for any xp .+ € BV (Q,{a",a%}), we have

(T —limsup F;) (xgq+, Q) < CoP(E,Q) (5.3)
e—0

It remains to show the so-called fundamental estimate, see e.g. Lemma 3.2 in [1], which
implies that (I' — liminf F;)(u, ) is a subadditive set function.

Lemma 5.3. Let U,U',V € A, with U € U', and let S := (U'\U) N V. Let u. and v, such
that

limsup (F;(ue, U') + F.(ve,V)) < 400 (5.4)
e—0

lim sup(||ue oo + [[ve]|loo) < +00 (5.5)
e—0

(ue — ve) — 0 weakly in L*(S). (5.6)

Then there exists a function ¢ € C®°(RN [0,1]) such that
o=1onT, ¢=00nRV\U', |Vy| <Cel,

and
F.ou+ (1 - ,UUV) < F.(u,U") + F.(v,V) + . (u,v, U, U", V), (5.7)

where
lim &, (ue, ve, U, U, V) = 0.
e—0

The proof follows closely that of [8, Prop. 4.4]. First we give some definitions.
Definition 5.4. Let U,U",V € A, with U € U'. Fori € N, we define

Uo = int (U: i@ <ere, @uircony @@) Vo= int (Upss gupeny @)

Uit1 := int (U{z: dist(Q<(2),U:)<e/2, Qc(2)CU'} Qa(z)) ) gs(l) = (Ui+1 - Ui) N Ve.

The following Lemma lists several condition which are sufficient to obtain (5.7). Hence it
remains to verify that these conditions are fulfilled.
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Lemma 5.5. Let u.,v. € H*(O), and let uu,v,u, gg(z) be as in Definition 5.4. Assume
that we can find i € N such that the sets S := S:(i.) fulfill

F.(ue, Se) + Fe(ve, Se) — 0 as e — 0, (5.8)
/~ Jue = ve| dr — 0 as € = 0, (5.9)
S, £
/~ |Vue — Vo 2 de — 0 as € — 0, (5.10)
Se
/~ e (|Vue* + |Vvel?) dz < C. (5.11)
Se

Let p € CYRN) be such that 0 < p <1, o =10nU;,, o =0 on RV \U;. 41 and |V| < Ce™?
for some C independent of €. Define z. :== pu. + (1 — ¢)ve, then we have

F.(z:,5:) — 0.

The proof is a minor modification of the proof of Lemma 4.6 in [8] and therefore omitted.
We have to verify that the assumptions of Lemma 5.5 hold for any two sequences u. and v,
such that limsup, o (F:(us, U") + Fe (v, V)) < 400, and (u: —v:) = 0on S := (U'\U)NV.
We will split the proof in several lemmas, the first of them saying that weak convergence to
the same limit and bounded energy implies that two sequences are close in L.

Lemma 5.6. If u. and v, fulfill (5.4)-(5.6), then
gg% e — Us”Ll(S) =0.

Note that we cannot expect each of the sequences to converge strongly, but we will show that
the difference converges strongly.

Proof. First note that a sequence of bounded energy is bounded in L?(S), which implies,
by our assumption, that both sequences (up to passing to a common subsequence) converge
weakly in L%(S) to the same function w* € L?(S). As H.[u.] and H.[v.] are bounded in
BV (S) by Corollary 4.8, they have a (common) subsequence which converges strongly in
LY(S) to w*. From the definition of H.[u.] we see that H.[u.] — M.[u;] — 0 in L?(Q2). This
implies that M, [u.] also converge to w* (up to the same subsequence) weakly in L?(S). We
then estimate

[|ue — 'UE“Ll(S) < |IMefue] - UE“Ll(S) + | Me[ue] — Ms[UE]HLl(S) + || M [ve] — 'UE“Ll(S)-
By Corollary 4.6 we know that
([ Me[ue] — wellp1(s) + | Me[ve] = vellL1(sy = 0 (as e = 0).

So it remains to show the same for M[u.] — M,[vc]. Recalling that ||Hc[uc] — He[ve]|| 115y — 0,
by definition of H.[u] we get

Z (signe[ue, 2] — signe[ve, 2]) XQ.(2) — 0.
zEZN:Qg(Z)CQ L1(S)
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Since, by definition,
M.fu] = = (u* +u7) + 2t —u” '
) = St uT) + gt —uT) YT signefu, Axa.s),
zEZN:QE(z)CQ

this implies that
lim || Me[u] — ME[UE]HLl(S) = 0.
e—0

This concludes the proof. o

The next estimate allows us to bound the gradient term on the bad set by the energy.

Lemma 5.7. Let t be as in Lemma 4.5. Then there exists a constant C = C(W,v,t) > 0
such that

e/ |Vu|?> < OF.(u,Q), for all u € H'(Q).
Bl(u)

Proof. Assume w.l.o.g. that Q. := Q-(z) is a positive cube. Now let p = ¢ + ||v||oc/2 and

note that
/ Va2 g/ IVul?.
Bt (u)NQe {u<p}NQe

First we estimate the part of the integral where u < —p. Let T,(u) = u, if u > —p, and
T,(u) = —p otherwise. Let w(z) := v(e~'z). We estimate, using 2ab < a® + V?,

(5|Vu|2 O _EW(_p) —~ 8|ng|\Vu|)

FE(UaQs) > Gs(ua Qe) - Gs(Tp(u)aQs) +/

{u<—p}

v 2 1,00
/{ SVt — e <sup (W (u) — W(p)) + M) {u < —p}.

Y

u<—p} 2 [~p.p] 2

Hence
g/ e[Vul? < eF.(u, Q.) + C(W, t,v)[BL N Q.. (5.12)
{uS—p}ﬂQs(Z)

In order to estimate the remaining part of the integral, where |u| < p, we define u” :=
|u| V p. As the double-well potential is symmetric and increasing on [0, 1] (see (H1) we have
W (u) — W (uP) > 0. Using again 2ab < a? + b? we estimate

2
€ v oo €
Q) 2 GaQ) -G, @)z [ Swuwr om0 S
{lul<p} € {u<—p}
Using (5.12) we obtain
5/ 6|VU|2 < C'(t, W7U)|B£- N Qe| +eFe(u, Qe),
{lul<p}NQe
and the lemma is shown. o
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We let in the following

Se = int U Q:(2)
{z: Qe(2)CS}

Lemma 5.8. If u. and v, fulfill (5.4)-(5.6), on a set S € A, then
62/ |Vue — Vo2 = 0.

Proof. The main idea of the proof is to use Lemma 4.3 on the “good” set, were u. is in the
correct well of the double-well potential, and then to bound [ B. V|ue|?, where the “bad” set
B, is as in Definition 4.4.

We have

E/ £|Vue — Vue|?dz

IN

: [ 1Dt 0L ) — D (M o) d

€ €

+ / 82|D“M5[u5] — DaCﬁ[uEHde -I-/ 62|D“M5[v5] — DaCﬁ[v5]|2daz

€ €

+ / 2| D*Cu.] — Du.|*dx +/ 2| D*Cv.] — D%, |*dx

= I + IQ[Ug] + IQ[’UE] + Ig[ug] + 13[1)5].

By Lemma 4.3, we get I[uc| + Is[ve] — 0.
As Proposition 3.6 implies that Vu™ = Vu ™, we obtain from the definition of M,[u]

I = |D*(Me[uc]) — D*(Mc[ve])| = 0.
It remains to estimate I3[uc] + I3[ve]. In order to show that I3[u.] — 0, first note that for any
x with Ctu](z) # u(zx) we have |D*CHu](z)| < max(e™!||v||y 1., |Vul), hence
Iy[ue] < 2[[vllfy1,00| Be(ue) N Se| + 462/ Ve .
{Ct[u]#u}

Thereofore I3 — 0 is a consequence of Lemma 4.5 an Lemma 5.7. o

Lemma 5.9. If u. and v, are such that

limsup (F:(u, U') + F.(ve,V)) < 400 and (ue —v:) =0 on S,

e—0

then we can find sets S, which fulfill the assumptions of Lemma 5.5.

Proof. Property (5.8) follows from an averaging argument (originally due to De Giorgi) as in
[8, Lemma 4.7], and from the assumption that both sequences have bounded energy. More
precisely, letting k. be the largest integer such that S.(i) # 0 for i < k., we have

ke _ _
D (Peltue, S:(@) + Pelve, 5:())) < Fr(ue, 8) + Fe(vx, 5) < C.
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Since ke is of order 1/e, for at least one half of the indeces i there holds
5 5 2C o
F(ug, Se(1)) + Fe(ve, Se(4)) < T < Ce,
£
which gives (5.8).
Property (5.9) follows as above from an averaging argument, and from Lemma 5.6.

In order to prove (5.10), we use Lemma 5.8 to show that &2 fSe |Vue — V|2 — 0 and apply
again an averaging argument. Finally, we can estimate the energy F:(uc,S) as follows

F.(us,S8) > Gg(us,sg)z/ e (|Vue|* + VweVu, ) dz

€

1 1 C
> —/ e IV - |V |?) de > —/ evul?— Zis.l.
2 - 2 Se £
Therefore, we obtain
C
/ e|Vue?dz < =,
Se €
and (5.11) follows as before from an averaging argument. o

6 Representation and properties of the I'-limit
Once we have both the fundamental estimate and the estimates from above and below, we
can reason as in [4, Th. 10.3, Prop. 11.6]. We get the following result.

Proposition 6.1. There ezist a sequence ¢; — 0 and Fy : L2 (RY) x A — [0, +00], such that

(T'— lim F;)(-, Q) = Fo(-, Q),
j—00
for any Q € A with Lipschitz boundary (in the weak L?(Q)-topology). Moreover, for any
u € BV(0;{a",a"}), Fy(u,-) is the restriction to A of a regular Borel measure, whereas
Fo(u,-) = +oo if u &€ BV(0;{a",a™}).
Note that the functional Fj obtained in previous proposition may depend on the subsequence

gj. The fact that Fy is independent of such sequences will be a consequence of the represen-
tation formula stated below.

Definition 6.2. Given z,v € RV we introduce the notations:

T . N . _ ) v,z . a’ if y € HW®,
e e R oo v <0, e ={ o BUEET

Furthermore setting Q¥ to be the unit closed cube centered at the origin with two of its faces
orthogonal to v, we define

7l =Tt pQ".

Recalling [3, Theorem 1.0.3] (see also [1, Theorem 3.5]), we obtain the following representation
formula for the functional Fj.
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Theorem 6.3. Consider the constants C1,Cy > 0 given by Propositions 5.1 and 5.2. Then
there exists a Borel function ¢ : RN x SN=1 — [C}, Cy] such that

/ (e, vp)dHY ™ ifu= xpas € BV (9 {a=,a*}),
F()(U,B) = 9*ENB

400 otherwise,

for any open set Q with Lipschitz boundary and any Borel set B C Q. In particular, ¢ satisfies
1
¢(r,v) = limsup —— min {FO (u, QZ’“) cu=yx""in RN \QZ’“’”}. (6.1)
p—0+ P

The representation formula (6.1) allows us to obtain more informations on the function ¢. In
particular, the following proposition shows that the I'-limit is homogeneous, i.e. ¢ does not
depend on x. The proof follows exactly as in [8, Prop. 5.6].

Proposition 6.4. The function ¢ given by Theorem 6.3 does not depend on x, moreover its
one—homogeneous extension

7:RY 5 [0,00) z+> { \f’fls&(g/lx\) ;; ig

18 convex.
Given v € S¥~! and X > 0, we define
[QK] = U (Z+ QV,O) .
z: (24+Q7%)CAQ

We conclude with the following representation result for the function ¢, the proof of which
follows exactly as in [1, Theorem 4.3].

Theorem 6.5. We have the following representation for the function o:

o) = lim g min{ G, Q5) ~ G0, Q5D u=x"" on BY\[@]}. (62

A—+400

In particular, the I'-limit does not depend on the subsequence €.

Finally, we note that as in [8, Proposition 5.1] assumption (H3) implies that

o(v) = p(—v) vy e VL.

7 Final remarks

7.1 The case of two different wells

All the results of this paper can be extended to the more general case of a double-well potential
which is not necessarily even. We can consider, for example, a potential W which satisfies,
instead of (H1), the assumption
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(H1’) W € C*(R), W > 0, W 1(0) = {1}, W is strictly decreasing in [0,1] and strictly
increasing in [—1,0 ] Moreover, there exist positive constants dg, d1, Cy, C_ such that

W(s) = Ci(s—1)2 Vs € (1 — do, +00),
W(s) = C_(s+1)*+4 Vs € (—o00,—1+ dy),

where the constants Cy > C_ > 0 and §; > 0 are chosen in such a way that

pein GG Q) = min  G,Q).

We observe that it is always possible to find such constants for ||v||y1, sufficiently small.
Indeed, since the lower well of the potential (at s = 1) is very narrow, while the higher well (at
s = —1) is very flat, the v-dependent part of the functional is less effective around the higher
well than around the lower one. Thus the energy of the positive and negative minimizers
can be equal, even though the depth of the wells is different. This is made precise in the
following computation. For ||v||yy1,0c small enough there exist two solutions u* € H'(Q) of
the Euler-Lagrange equation of G such that +u*(z) > 1 — & for all z € Q and they are
unique within the class of positive (resp. negative) functions. Therefore the Euler-Lagrange
equation is linear, i.e.

—2Aut + 204 (ui F 1) = Auw.

Let (Ar)ken be the sequence of eigenvalues of the Laplace operator —A on @ with peri-
odic boundary conditions and consider an associated sequence of orthonormal eigenfunctions
(ex)ken- If v := (v, ex)12(q) are the Fourier coefficients of v, then the Fourier coefficients ukjE
of ut are given by

uf =1 and uf = —mvk for k > 1.
Consequently,
Gu*,Q) = i )\Akivk and G ,Q Z kv
=1 r+Ct 4k>1)\k+0_
which implies
~ ~ Cy —C_ A2yp2
G, Q) = Glu, Q) =~ = % YNGR sYEReRY

For C > C_ there exists 6, > 0 such that G(u™, Q) = G(u', Q).

7.2 Limit of the parabolic problems

Let us conclude with a brief discussion of the convergence of the parabolic equations corre-
sponding to the gradient flows of the functionals G, (properly rescaled in time), i.e.

(x,t) = Au— V‘;'E(;‘) + #Av (2) (z,t) € 2 x(0,400) (7.1)
u(-,0) = xXE — Xo\E in €,

S
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where E' C () is a set of finite perimeter.

For v smooth, Problem (7.1) admits a smooth solution u. : Q x (0,+00) — R (globally
defined). Moreover it is well known that, when v = 0, the functions u. converge as ¢ — 0 to
the characteristic function of a set E(t), which is the evolution by mean curvature of the set
E at time t [2, 12]. Conversely, we expect that the presence of the function v may prevent
the motion of the interface JF, which remains “trapped” between local minimizers of the
approximating functionals. Therefore, for a wide class of forcing terms v, for each ¢ € (0, 00)
we expect:
Ue (1) = Xpot (weakly in L*(€)).

Namely while there is a relaxation towards the positive and negative minimizers, the set
separating the positive and negative region in space does not move significantly. In the
simpler one-dimensional case this so-called “pinning” of fronts has been studied in detail in

[9].
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