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Abstract

We study the regularity of solutions to the obstacle problem for the parabolic biharmonic
equation. We analyze the problem via an implicit time discretization, and we prove some
regularity properties of the solution.

1 Introduction

The purpose of this paper is to investigate the regularity properties of solutions to the obstacle
problem for the parabolic biharmonic equation.

The parabolic biharmonic equation is a prototype of higher order parabolic equations, and
has been intensively studied in the mathematical literature. We refer for instance to [5, 11, 13,
16, 17, 18, 19, 20, 26] and references therein, for a nonexhaustive list of works on this equation,
and for a discussion of possible applications.

The obstacle problem for elliptic and parabolic PDE’s is a topics which attracted a great
interest in the past years. However, even if many studies are available on second order elliptic
and parabolic equations (see for instance [8, 12] and references therein), there are relatively few
results for higher order obstacle problems, even in the linear fourth order case. In particular,
while the elliptic obstacle problem for the biharmonic operator has been considered in [7, 9,
10, 15, 24], to the best of our knowledge no result is available for the corresponding parabolic
obstacle problem.

We let Q € RY be a bounded domain, with boundary of class C2, and we let f : Q — R be
the obstacle function, satisfying

(1.1) fec*(Q), f <0 on 09.
We consider an initial datum ug : €2 — R such that
(1.2) ug € HE (), ug > f a.e. in Q.

We recall that v € HZ(Q2) implies u = 0 and Vu - ¥ = 0 (weakly) on 99, that is, u satisfies
the so-called Dirichlet boundary conditions on 92 (see [2, 18]), where v*! denotes the unit outer
normal of 9f2.

We shall consider the following fourth order parabolic obstacle problem:

ug(z,t) + A%u(x,t) >0 in QxRy,

ug(w,t) + A%u(x,t) =0 in {(z,t) € A xRy : u(z,t) > f(x)},
P) u(z,t) =0 on 00 xRy,

Vu(z,t) - v (z) =0 on 00 xRy,

u(z,t) > f(x) in QxRy,

u(z,0) = up(x) in Q.




In order to state the main result of this paper precisely, we define a weak solution of (P). Let
us set

(1.3) K :={ue L*0,T; H3(Q)) | us € L*(Q x (0,T)), u> f a.e. in Qx (0,T),
u(z,0) = up(z) a.e. in Q}

Then a weak solution of (P) is defined as follows:
Definition 1.1. u is a weak solution of (P) if
(i) vek,

(ii) For any w € K, it holds that
T
(1.4) // [ut(w — u) + AulA(w — u)] dxdt > 0.
0Ja

We now state the main result of this paper.

Theorem 1.1. Let N > 1. Let f be a function satisfying (1.1). Then, for any initial data ug
satisfying (1.2), the problem (P) has a unique weak solution

(1.5) u € L¥Ry; HE(Q) N HL.(Ry; LA(Q)),  with ug € LA(Ry x Q).
Furthermore, for a.e. t € Ry the quantity
(1.6) e o= ug (-, 1) + A%u(-,t)

defines a Radon measure in 2, and for any T > 0 there exists a constant C' > 0 such that

(1.7) /Tut(Q)th <C.
0

Moreover, when N < 3, the following regularity properties hold:

(i) u € L2(0,T;W2>2(Q)) for any T < +oo. In particular, if N =1,

(1.8) w e COP([0,T); CY(Q) with 0 <~ < % and 0< B3 < ! ;27,

if N € {2,3},

(1.9)  we C%([0,T];C%(Q)) with 0 <y < AN nd 0< B < M%.
(ii) For any 0 <T < +o0, it holds that

(1.10) supp pur C {(2,t) € @ x (0,T) | u(z,t) = f(x)}

and u satisfies (P) in the sense of distribution.



We need to impose the restriction on the dimension N < 3 in order to obtain the W2
estimate on the solution wu(-,t) (see Remark 2.1 for further comments on this). However, in
analogy with the regularity results in the stationary case [15, 9], one may expect that the W2
estimate holds in any dimension.

Let us point out that problem (P) corresponds to the gradient flow of a convex functional
defined on the Hilbert space L?(£2), hence we can apply the general theory of maximal monotone
operators developed in [6]. Indeed, given f as above, we can define the functional Ey(u) :
L?(Q2) — [0, 400] as

1
— [ |Au*> if uwe H3(Q d u>f,
Ey(u) = 2/Q| ul if wu 0(Q) and u>f

400 otherwise.

Notice that Ef(u) is convex and lower semicontinuous on L?(f2), and the problem (P) corre-
sponds to the gradient flow

(1.11) u +0Ef(u) 20, u(0) = g,

where E; denotes the subdifferential of E; in L?(2). In particular, given an initial datum
ug € HZ(Y) with ug > f, by the results in [6] it follows that the evolution problem (1.11) has a
unique solution u satisfying (1.5).

In this paper we characterize the solution v by means of an implicit variational scheme, cor-
responding to the minimizing movements introduced by De Giorgi (see e.g. [3]). This approach
will allow us to extend some of the arguments in [9], concerning the regularity of the elliptic
obstacle problem for the biharmonic operator. We point out that the method does not rely on
the linear structure of the problem and can be applied to more general fourth order parabolic
equations. Indeed, one motivation for this work comes from the motion of planar closed curves
by the elastic flow, in presence of obstacles. The elastic flow is the L? gradient flow of the elastic
energy

E(v) = ands,

where v is a planar closed curve and x denotes the curvature of v. Among other applications, this
flow models the evolution of lipid bilayer membranes (see for instance [14]), where the presence
of obstacles is a natural features.

Although this flow is governed by a fourth order quasilinear parabolic equation, we expect
that the method of this paper can be adapted, and this will be subject of future investigation.

The paper is organized as follows: in Section 2 we introduce the implicit scheme correspond-
ing to problem (P), by means of an appropriate variational problem; in Section 3 we study
the regularity of solutions to the variational problem; in Section 4 we pass to the limit in the
approximating scheme and prove Theorem 1.1.

1.1 Notation

The equation in (P) is the L? gradient flow for the functional

E(u) = ;/Q|Au(x)]2 da.



Let T'> 0, n € N, and set

T
Tn = —.
n
Let us set ug, = ug. For i = 1,--- ,n, we define inductively u; ,, as a solution of the minimum
problem
(M; ) min {G; ,(u) : ue€ K},
where
(1.12) Gin(u) := E(u) + Pin(u)
with
1 2
(1.13) Pin(u) = 5— | (u—ui-1,0)" de,
Tn JQ

and K is a convex set given by
K :={uc H}Q): u(z)> f(z) a.e. in Q}.
In the following, we let

Ui (T) — Ui—1,0(7)
Tn '

(1.14) Vin(z) i=
Definition 1.2. (Piecewise linear interpolation) Define u, : Q@ x [0,7] — R as
(1.15) Un (T, 1) = Ui—1,0(7) + (t = (i = 1)70) Vin (@)

if (x,t) € Qx [(i — 1), imy] fori=1,--- ,n.

Definition 1.3. (Piecewise constant interpolation) Define @, : Q x [0,7] — R as

(1.16) Up (2, 1) = u;ipn(z),
(1.17) V(1) i= Vin(z),

if (z,t) € QX [(i — V)7, i1) fori=1,--- n.

2 Existence and regularity of minimizers of (M)

We first mention a well-known compactness result in H3(Q) [1, 2].

Proposition 2.1. The following embedding is compact:

Cl7(Q) for 0<vy< % if N=1,
N .
2.1) HE(Q) CO7(Q) for 0<y<2— ) if N=2,3,
. 0
LYQ)  for 1<Vg<+oo if N =4,
LYQ)  for 1<Vq< N 4 if N >5.




We now show the existence of minimizers of (M; ).

Theorem 2.1. (Existence of minimizers) Let f be a function satisfying (1.1). Let ugy satisfy
(1.2). Then the problem (M;,) possesses a unique solution u;, € HZ(Q) with u;n(z) > f(z)
a.e. in ) foreachi=1,--- n.

Proof. Fix n € N, T > 0, and ¢ = 1,--- ,n, arbitrarily. From (1.12)-(1.13) and the minimality
of a solution u to (M; ), we obtain that

E(u) < Gin(u) < Gip(ui-1n) = E(ti—1n),
and then

0< inf Gip(u) < Gin(ui—1n) = E(ui—1n) <

< F .
B <o < E(uo)

Thus we can take a minimizing sequence {u;} C HZ(Q) for (M;,) such that u;(z) > f(x) a.e.
in Q for each j € N and sup; G (u;) < o0.
Observing that the norm ||Aul| 2y is equivalent to [|ul| H2(Q) (see [23]), it follows from

[Awjll 12y = /2B (us) < V2E(uo) = [|Auol| 120
that {u;} is uniformly bounded in HZ(£2). Thus there exists u € HZ(f2) such that
(2.2) uj —u in  HF(Q),
in particular,
(2.3) Auj — Au in  L*(Q),

up to a subsequence. Thanks to Proposition 2.1, we obtain that

- 1
Cl7(Q) for 0<y< 3 if N=1,
N
. CO7(Q) for 0<y<2—— if N=23,
u; — u in 2
L1(Q) for 1<Vg<+o0 if N =4,
Li(Q for 1< if N >5.
(Q) or <Vq < N4 i > 5
In particular
(2.4) uj — u a.e. in Q up to a subsequence.

Recalling u; > f a.e. in Q for each j € N, (2.4) yields that v > f a.e. in . Making use of
Fatou’s Lemma, we conclude that

(2.5) P; »(u) < liminf P, (u;).

J—00
Furthermore (2.3) implies

1 1. . ..
(2.6) B(u) = 5 |Aulaoy < 5 liminf | Au; 72 g = liminf E(u,)

Combining (2.5) with (2.6), we see that u € HZ(f2) is the minimizer of (M;,) with u > f a.e.
in ©. The uniqueness follows from the fact that the functional G; ,(-) is strictly convex. O



Regarding the regularity of the minimizer w;,, obtained in Theorem 2.1, we start with the
following:

Theorem 2.2. Let u; ,, be the solution of (M; ) obtained by Theorem 2.1. Then, for anyn € N,
it holds that

T

(2.7) / / V(s O davdt < 2 (uo),
0JQ

(2.8) Sl;p ||Aui7n||L2(Q) < v/2E(uyp).

Proof. Fix T > 0 and n € N. For each ¢ = 1,--- ,n, it follows from (1.12)-(1.13) and the
minimality of w;,, that

(2.9) Gin(uin) < Gin(ti—1n) = E(ui—1,n)-
Hence we get

Pi,n(ui,n) S E(ui—l,n) - E(uz n)7

)
i.e.,
1

2.1 —
( O) 2Ty Q

(Uin — Uim10)? dr < E(uim10) — E(uin).

)

Combining (2.10) with definitions (1.14) and (1.17), we obtain

// Vi (, t) [ dedt = / /IVm 2 dadt
(i—1)7n

Z Uz ln - (uz,n)) = E(UO) - E(un,n) < E(“O)a

ie., (2.7).
By (2.9), we obtain that E(u;,) < E(u;—1,) for each i =1,--- ,n, and then
1
(2.11) 3 / (Au;)* dz = E(uin) < Elug).
Q
It is clear that (2.11) is equivalent to (2.8). O

By the definition of u; ,,, we see that

1
/ A (i + 202 dr+ — / (s — i1+ 2C)2 da
Q 27, Q

1
> / |Au;p|* do + — / (uin — ui—10)” da
Q 27—71 [¢)
for any ¢ > 0 and ¢ € H3(Q2) with ¢ > 0. This implies
1
/ Auz,nAC dr + — / (ui,n - ui—l,n)cdx >0,
Q n JQ
so that
(2.12) i = AUy + Vi > 0

in the sense of the distribution. Hence p; , is a measure in Q (e.g., see [25]).
Regarding the finiteness of 1; ,, we have the following:



Theorem 2.3. Let u;,, be the solution of (M;,) obtained by Theorem 2.1. Then fi;, defined
in (2.12) is a measure in § for each i = 1,--- ,n. Moreover there exists a positive constant C
being independent of n such that

(2.13) Tn Y pin()? < C.
i=1
Proof. FixT >0,n€ Nandi=1,---,n arbitrarily. For any € > 0, we define
AZ
— if A<0
(2.14) 7\ ={ ¢ 1 <y,
0 it A>0,
(2.15) Be(A) =L(A).

Let us consider the minimization problem: min,¢p2(q) Gs,,(v), where

(2.16) G5 (v) = /Q [;(AU)Q + 2;(1) —ui1)? e (v — f)] de.

A standard argument implies that the problem has a unique solution w.. Since the variational
principle yields that for any ¢ € HZ (1)

/ [Anggo + i(u)E — Ui—1n)p + Be(we — f)go} dx =0,
Q

Tn
we have
1
(2.17) A%, + —(we —ui—1n) + Be(we — f) =0 in Q.

Tn

The standard elliptic regularity theory implies that w, is a classical solution of (2.17).
For any ¢ € H3(Q) with ¢ > f a.e. on Q, the minimality of w. asserts that

1 1
7(A4p)2 +—(p— ui,Ln)Q dx.

(218) Gialue) = GLalo) = [ |3 o

Since Theorem 2.1 allows us to take u;—1, as ¢ in (2.18), we have

(2.19) G () < 1 / (A1) dz < Elup),
) 2 Q
i.e.,
1
. > | (Aw.)® dz < E(u),
(2.20) 5 | (v ds < Bw)
(2.21) 2; Q(wg — ui—1,n)” dz < E(ug),
and
(2:22) [ et = e < Bwo).
Q



The inequality (2.20) implies that there exist a sequence {¢’} and a function @ € H3(Q) such
that, as &/ — 0,
(2.23) we — @ in HE(Q),

(2.24) we — U a.e. in L.

By (2.14) and (2.22), we obtain

/ (w. — f)~|” dz < Ce.
Q

Combining (2.24) with Chebychev’s inequality, we deduce that (z — f)~ = 0 a.e. in Q, i.e.,
u > f a.e. in ). Thus it holds that « € K. In the following we shall prove that « is a minimizer
of (M;y), i.e.,

1 1
{]Iél‘r/l/g {Q(Avy + H(v — Ui—l,n)ﬂ dx.

To prove the assertion, fix v € K arbitrarily. Then we observe that

/Q B(AU)Z -+ 271_71(1) — ui—17n)2] dz = E(v) + P, »(v) + /Q Ye(v — f) da

> B(w.) + Pon(uw.) + /Q re(we — f)da

> [ 50+ 5t = via?| o

27

Making use of (2.23)-(2.24), we have

1 1 1 1
/ —(Av)* + —(v —uj_1,)?| dz > lim inf/ —(Awe)? + —(wer — ui_1.)?| da
al2 27y, ’ e—0 Jo |2 27y, ’

1 1

Z /Q |:2(Au)2 + H(U — ui—l,n)2:| dz.

This implies that @ is a minimizer of (M;,,). Then the uniqueness of minimizer yields @ = w; .
Recalling 3. < 0, we find

1
AQ"UE + 7(w€ - Uifl,n) = _ﬁe(ws - f) >0,

Tn
ie.,
£ ._ A2
Hin = Awe + ?(ws — Ui—1,n)
n

is a measure in ). To begin with, we shall prove that Wi, converges to a measure as € — 0 up
to a subsequence. To do so, we claim that, for each ¢ and n, {;,(U)} is uniformly bounded
with respect to e for any compact subset U of . Indeed, for each i, n and fixed ¢ € C§°(Q)
with ¢y =1 on U and 0 < ¢ < 1 elsewhere, it follows from (2.20) and (2.21) that

(2.25) 160 (U) = / iyt < / i,
U Q

8



= / [Angw + l(we — ui—l,n)¢:| dx
Q r

n

: (/Q(Awafdx)% ( /Q (qu)?dx)%
' Jlf? (rln /Q(“’E - “H,n)zdxf </Q v dﬂc>; .
1

(2.26) H Q(ws - Ui—l,n)2 dr < E(Uifl,n) - E(ws) - /Q'Vs(ws - f) dx

Since (2.19) yields that

< E(uj—1n) — E(we),

and 1) is fixed, combining (2.25) with (2.20) and (2.26), we obtain

E(ui—1,n) — E(wa))%] '

(2.27) 2 (U) < C(U) @E@m»5+<

Tn

Then, for each i and n, there exist a sequence {¢”} C {¢’} and a measure fi in §2 such that, as
"
e’ — 0,

1"

(225) W~ i

where (2.28) means that for any function ¢ € Cp(92)

(2.29) [ iy~ [ can
Q ’ Q

Furthermore, taking ¢ € C3(Q) in (2.29), we find
1
/ (dip = lim |:ACAZUEN + —(wer — uil,n)] dx
QO e”"—0 Jq Tn
1
= / {ACAU + —((u— Ui—l,n):| dx,
Q Tn

so that i = p; p.
Next we shall prove that 7, > i 1 i (U) is uniformly bounded with respect to n for any
compact set U C Q. Combining (2.27) with (2.23) and (2.28), we see that

+CWWmm(E%4M—Ewaf

NI

pin(U) < C(U) (2E(uo))

e—0 Tn
1
E - _ E . 2
< C(U)2E(u))* + C(U) ( (i) = Elin) )
n
Multiplying 7,, and summing over ¢ = 1,--- ,n, we obtain

7o Y in(U)? < C(U)E(ug)T + C(U)' [E(ug) — E(un)]
=1

< O(UY E(ug)(T +1).



Finally we shall prove 7, Y ;" | i »(£2) is uniformly bounded with respect to n. Multiplying
the equation (2.17) by w. — f, we find

230 [ |8t D) - o= [ o - as <o,

Tn

Let Qs denote the intersection of 2 and §-neighborhood of 9€2. Since f < 0 in 0f), there exists
a positive constant ¢ such that

(2.31) f(z) < —c in Qs

for 6 > 0 small enough. From (2.31), we observe that

(2.32) /Q [AQwe + i(wg - uil,n)] fdx

Tn

Tn Tn

< —c/ [AQwa + i(wE — Ui—l,n):| dx + / [A2w5 + i(wE — ui—l,n):| fdx.
Qs Q\Q5

On the other hand, it follows from (2.26) and [, A*w.w. dz > 0 that

1
1 1 2
Q Ta JQ

Tn n

E(ui—1n) — E(ws))é |

> - (2w’

Then (2.30), (2.32), and (2.33) imply that

SIS
N
&
&
|
\:—‘
3
N~—
|
o
—
g
™
N—
~__
N

[ At < Wlimnay [ dnia-+ CE@)
Qs Q\Qé

so that

E(ui—1n) — E(w€)>é |

Tn

_ R _ 1
() < Lo g Hn (@ 925) + ¢ (2B o) (

Thus we get

b
Tn

HEn(Q) < C1pE o (2 ) + ¢ (2B (up))? (E(ui_l’n) - E(w6)> 5

where C1 = 1+ ¢ || fll oo (\0;)- Then, by (2.23) and (2.28) we obtain

11in () < Crpin (2 Q) + c_l(QE(uO))% 1i£n_>i(1)nf <E(Uz'—1,n) — E(w5)>2

Tn

E(ui—15) — E(uin) )é )

Tn

< Cl,uiyn(Q \ Q(;) + Cil(QE(uO))% (

Since Q\ Qs is a compact subset of 2, multiplying 7,, and summing over i = 1, --- , n, we observe
that

T Y Hin(R)? < CFCs + 2¢2E(uo) (E(uo) — E(unpn))
=1

< 01205 + 2672E(u0)2,
where Cs := 7, > v | pin(Q2\ Q5)? is independent of n. This completes the proof. O

10



In the rest of this section, we shall prove that u; , € W2’°°(Q) if N < 3. In what follows, we
denote the mollifier as follows:

L)@ = [ e = )bty dy

ol =) = =i <"’“:y>

and the function j(x) = jo(|z|) satisfies

where

Jo € C®(R), jo(t) =0 if [t|>1, Jjo(t) >0, /Njo(]a;\)d:c _1.
R

Here we show a property of the support of j; .

Lemma 2.1. Let xg € Q. Assume that there exist a neighborhood W of xo and a constant § > 0
such that

(2.34) Je(uin)(x) — f(z) >6 in W.
Then p;pn =0 in W.

Proof. We extend u;,, € HZ(2) to become a function in H%(R"). By the assumption (2.34), it
holds that u;,, = ¢ € K for any ¢ € C°(W) with |(| < 6. Since u;,, is the unique minimizer of
(M; ), one can verify that for any ¢ € C3°(W) with [(] < ¢

1 1
(2.35) - / |AJ€(U1 n)|2 dx + — / (Jg(ul n) — Uj—1 n)2 dx
2 Q ’ 2Tn Q ) El
1 1
< / ’AJE(UZ n):l:AC|2 d$+/(J5(UZ n):tcfuifl n)2 dr.
2 Jo ’ 21, Ja ’ ’

Letting € | 0 in (2.35), we find

1 1
/ | A | dx+/(um—ui—1n)2d95
2 Ja ’ 21, Jo o ’
1 1
S/\AuiniAC|2 dw+/<umic—um>2dx,
2 Jo ’ 2, Jo 7 ’
so that
1 1
(2.36) 0<+£ </ {Au; n AC+ Vi nC} dx) —|—/ \AC|2 dw+/ C2dat
Q ’ ’ 2 O 27—71 (e}

for any ¢ € C*(W) with |¢| < §. Fix ¢ € C°(W) with [(|] < ¢ arbitrarily. Then we asserts
from (2.36) that

2 2
(2.37) 0<+e / {AuinAC + V() da ) + 6/ IACI? da + E/ 2 da.
0 ’ ’ 2 Jo 27, Jo
Since pipn > 0, it follows from (2.37) that

— 2 1 2 s¢€
3 Jo |AL]" do + 5 [, (P dx

11



Since € > 0 is arbitral, this inequality implies that

/ {Au; nAC+ Vi n(} dz = 0.
Q
This completes the proof. ]

We denote the inverse operator of the Laplacian by A™!, i.e., if w satisfies

—Aw=gyg in €,
w =70 on O0f),

then we write A™'g = w. We note that the estimate
(2.39) 1879 iy < C ey

is followed from the elliptic regularity (e.g., see [21]).
We start with the following lemma:

Lemma 2.2. For each n € N and i € {1,--- ,n}, there exists a function v;, satisfying the
following properties:

(a) vip = Aujp + A7, a.e. in
(b) vy is upper semicontinuous in ;
c) For any 2° € Q and for any sequence of balls B,(z°) with center z° and radius p, it holds
y y seq p p
that

1

(2.39 S -
) B, /i, 0

Vipdx | vi’n(xo) as p|0.

Proof. Let us define

1

o (z) = U 1y .
o) = T o 187000+ 2 o]

We claim that, for any 2% € €, vﬁ ,(20) is decreasing in p. Indeed, if u;, € C*(2), we obtain
from Green’s formula that

1
=B, S0 |

- / (A% () + Vip(2)] Golz — m0) da,
BP(IO)

Augp(2°) + ATV (2Y) Ay + AW ,] dS

where G, is Green’s function given by

%(r ~p) it N =1,
1 P .

(240) GP(T) = % log ; if N= 2,
1 2—N 2—N :

NV 2w pn) i N 23

12



Remark that w(IN) denotes the volume of unit ball in RY. From (2.12) and G, > G, if p’ > p,
we get

I S [
10B,(z°)| Jop,(20)

and, by integration,

1

Aujpn+A WV, 1dS < —————
i, 7] ‘83[,/(1}0)‘ BBP/(zO)

[Auip + ATV ,] dS,

1
|Bp(29)| JB,(20)

= m /B a0 [Auipn(z) + ATV, (2)] da.

(2.41) [Aw; () + A_lvi,n(a:)] dz

For general u;,, € HZ(Q2) with (2.12), we introduce the C* functions
Un = J1ym(Dtti g + A7 Vig).

Since AU, > 0, we can deduce from (2.41) that

a7 ), =i
_ Uypde < ——— U,,dx.
|By(29)| JB,(20) By (2°)] JB , (0)

Letting m — +oo, we obtain (2.41) for general u; ,, € H3(2). Thus we conclude that

(2.42) vf () Lvip(z) as plO,

where v;,, is a some function.

Since vf ,, 1s continuous in z, we see that v; , is upper semicontinuous. Recalling that Aw; , +
b

AV, € L?(), we also obtain that, as p | 0,
”f,n — A + A7V, ae in Q.
Consequently we have
Vim = Aujp + Aflvm a.e. in €.
This completes the proof. O

Lemma 2.3. Let 1 < N <7, then for any point 2° € Q that belongs to the support of in, it
holds that

(2.43) Vin(20) = ATV (2%) > Af(a°)
for eachneNandi=1,--- n.

Proof. With the aid of Lemma 2.1, we asserts that supppu;, is contained in the set of points
where (2.34) is not satisfies. Thus, if 2 € supp lin, then there exist sequences x,, — 20 and
€m | 0 such that

(2.44) (Jeptin)(@m) — f(xm) — 0.

By Green’s formula, we have

1
(2.45) (Jettin) (@m) Jeip dS — A(Jewin) (y)Gp(zm — y) dy,

- |S ,m‘ Sp.m Bym
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where B, , := {|ly — x| < p}, Spm := 0B, . Similarly it holds that

(2.46) (Jof) () = ,Slm‘ /S J.fdS - /B A ) () Colm — ) dy.

Since it follows from wu;, > f, also J.u > J.f, that

1

1
— Jotti p dS > ——— J.fdS,
‘S ,m| Sp,m

‘S ,m| Sp,m

using the inequality and (2.44), we obtain, by comparing (2.45) with (2.46), that

(2.47) lim inf

m—-+00

5 A(Jeuz,n)(y)Gp(xm - y) dy - 5 A(Jaf)(y)Gp(xm - y) dy] 2 0.

Using a change of variables and integrating by parts, we can reduce the first term in (2.47) to

(2.48) /B A(Jeuin)(y) - Gplam —y) dy = /B (JoGp)(xm — y) Auin(y) dy + Aem,
P,M pPym
where
Aa,m = Gp(xm - y)A(JEuz,n)(y) dy + Gp(xm - y) / Ja(y - Z)Aui,n(z) dy
Bp+s,m\Bp7m Bp+a,m Bp+2s,m\Bp,m

and Ac, — 0 as ¢ | 0 uniformly in m. A similar relation holds for the second integral in (2.47).
Therefore we obtain

(2.49) lim in / (e, G @on — 9)0in (4) — A Win() — AF())dy > 0.

m——+oo
pym

Recalling that V;, € Hg(Q) for each n € N, we see that Aflvm € H4(Q) by the elliptic
regularity (see [21]). Then it follows from Sobolev’s embedding that A=1V;,, is continuious in
for 1 < N < 7. Furthermore since v; ,, is upper semicontinuous, there exists a point z, , € Ep,m
such that the maximum of the function v; ,(x) — A7V ,,(x) —Af(z) in B, attains at & = 2y, .
Then (2.49) implies that

Vin(Tm,p) — A_lvm(xm,p) —Af(xmyp) > —0m, Om —0 as m — +oo.

We may assume that z,, , — x, for some x, € {y € RV : |y —2°| < p}, for the sequence {z,, ,}
is bounded. By the upper semicontinuity of v;,, as m — 400, it holds that

Vin(tp) = A" Win(zp) — Af(x,) > 0.
Letting p — 0 and using again the upper semicontinuity of v; ,, we see that z, — 2% and

Vin(20) = AT Vi (%) — Af(2°) > 0.
Making use of Lemmas 2.2 and 2.3, we can obtain a local bound of Awu; ,:
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Lemma 2.4. Let N < 3. It holds that

(2.50) Au;p € LS (Q)
for each n € N and i = 1,--- ,n. Moreover, for any R > 0 with Br C 0, there exist positive

constants Cp, Ca, and Cs being independent of i and n such that

(2.51) | A p,

L®(Brs) = C1E(ug)® + Cs WVinll L2y + Cattin(Dry2) + 1Af sy, ) »
where Dg/y := Br \ Br/s-

Proof. Set

(2.52) Uin = tin + (A%) 71V p,

where (A?)71V;,, denotes a unique solution of

—Aw = A—lvm in Q,
w=20 on Of).

Let fix z° € (Y arbitrarily and denote by B, the ball with center 2% and radius p. Choose R > 0
such that Bg C Q and ¢ € C§°(Bg), ( = 1 in Byg/3, 0 < ¢ < 1 elsewhere. For any z € Byp/s,
we have

A(JU; ) (@) = A(JU; ) (@) () = — ; Gr(z —y)A(A(JUin)C)(y) dy,

where G is Green’s function defined in (2.40). Expanding the right-hand side, we obtain

(2.53) A(JUip)(z) = — ; Gr(r — y)AQ(JEUi,n)(y) dy
R/2

-/ Gr(z = y)A*(JUin) (y)C(y) dy + ac (),
R/2

where Dpg /o := Br \ By and

ae(z) == =2 5 Gr(z —y)V(A(JUin))(y) - VC(y) dy
R/2

-/ Gr(z — y)A(JUin) () AC(Y) dy = oe1(2) + 0c2().
R/2

Noticing that supp V( is contained in Dp/3 := Bg \ Bag/3, we get

ae1(r) = — 5 A(JUin)(y)V - (Gr(z — y)V((y)) dy.
R/3

Since the fact that u;,, € HZ(£) implies

| 1AV 0P dy < 18T )
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the terms e 1(z) and e 2(x) are estimated for any = € Byg/3 as follows:

e 1 ()] < CllAU | 20y (IVCI 22D ) T 1ACH L2 (D )5
|z 2(2)] < C AUl 2 () 1AC] L2 (D ) -

Thus we deduce that

(2.54) las(z)| < C HAUMHLQ(Q) for all x € Bapgys,

where the constant C' is independent of ¢, ¢, and n.
Along the same line as in (2.48), the first term in the right-hand side of (2.53) is reduced to

(2.55) Gr(z —y)A*(JUin)(y) dy = / (J-GRr)(x = y) A?Uin(y) dy + Be(2),
Bpr/2 Bry2
where 3.(z) — 0 ase | 0 if z € Bg)s.
Consider the integral

Ggr(x) = Gr(z —y)dpin(y).
Br/o

The integral is well defined in the sense of improper integrals, that is, as
lim Gr(r —y)du;n(y) forae. =x.
0=0J{y€Brys: e—y|>6}

Indeed, this follows from Fubini’s theorem since for any k£ < 4oc0 it holds that

/ G — y) dedpin(y) <C [ duin(y) < +o.
Bprya|z|<k Br/2

Moreover one can verify that G is a superharmonic function (e.g., see [22]).
Since GR(z) is harmonic if |z| > ¢, one can verify that (J.Gr)(z) = Gr(z) holds for |z| > «.
On the other hand, from

(JeGRr)(z) = /

ly—z|<e

jely — 2)Crly) dy = /<|<1jo<¢>GR<z LeQ)dc <,

we see that there exists an € > 0 small enough such that (J.Ggr)(z) < Gg(z) for |z| < e.
Therefore Lubesgue’s convergence theorem gives us that

(2.56) liﬂf]l (J-:GR)(7 — y)dpin(y) = Gr(z) forae. =x€ Bp.
&0 JBpRy»

Analogously to (2.55) we have, for z € Bg/s,

G — 1) AX(L.U;) (W) (y) dy = / J(CW)Gr(z — ) A2U; n(y) dy + B (x),
Br\BRr/2 Br\BRr/»

where Bg(x) — 0 as € | 0. Thus we deduce from Lebesgue’s convergence theorem that for
x € Bgyp,as € | 0,

(2.57) Gr(z — y)A*(JUi ) (y)C(y) dy — | Grlz —y) AU, (y)¢(y) dy.
Br\BR/2 Br\BR/2
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We can write

AU, ) (@) = /| . Vinlgele =) bz = / AUsn(2)je( — 2) d=

|z—x|<e

—/ vin(2)] (3:—2:)alz—/(S ijo (p)/ Vin(p,8) dSpdp
- i,n e = i,n\ Py )
|z—x|<e 0 eN € OB, (x)

where (p,#) is the spherical coordinates about z and A.(p) is a smooth nonnegative function.
Since it follows from the proof of Lemma 2.2 that

1

0B, ()| JaB, ()

the mean value theorem yields that

v’i,n(p7 9) dS9 l vi,n(x) as p l 07

AU @) = ot [ vl 00y [ oo (£) o™ o
’ }83[0/ 8Bp/ ’ ’ 0 8N 9

1 .

=it [ 0as) [ allybay
} Pl JOB, lyl<1
1

= / Vin(p,0)dSe | vin(z) as €0,
98, Jor, " ’

where wyp ™! denotes the area of surface 0B, and p’ € (0,¢). Combining this with (2.55),
(2.56), and (2.57), letting € | 0 in (2.53), we obtain that for € Bp/, there holds

(2.58) vin(x) = —Gr(z) — A ((y)Gr(z — y) AU n(y) dy + 6(x).
R/2

Remark that (2.54) implies

(2.59) |0(x)] < Cy ||AUi,n”L2(Q) for all = € Bapys,

where the constant C1 is independent of ¢ and n. Recalling that G is superharmonic, we shall
apply a maximal principle for superharmonic functions to Gg. It follows from Lemma 2.3 that

Vin(z) > A7Vin(2) + Af(z) on  supp piin|Brya-
Since the integral on the right-hand side of (2.58) is non-negative, we see that
(2.60)  Gr(z) < —vip(x) +0(z) < —A"Wi,(z) — Af(x) + (z)
< HA_IVi,nHC(BR/Q) FNAS Lo (Brye) T 10l Loc(By,y) 00 SUPD ftin] Bryo:
Furthermore Proposition 2.1 and (2.38) assert that
(2.61) 1A Vinllo sy < IA™ Vinllorag) < CIATVinll g2y < Co Vil 20

where k =1and0 <y <1/2if N=1,k=0and 0 <y <2—N/2if N =2, 3, and the constant
(5 is independent of ¢ and n. Thus, combining (2.60) with (2.59) and (2.61), we observe that

Gr(z) < C1|| AUl 20y + C2 IVinll ) + 1Af e (py,) 00 sUPP Hin Bryo,
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and then, Theorems 1.5 and 1.6 in [22] give us that
GR(z) < LI AUl g2y + C2 Vil 2oy + 1AS] in RY.
1 Ll L2(( 2 || Vin L2(Q) L>°(Bg/2)

Observing that the integral in (2.58) is estimated as

; C(W)Gr(x = y)A?Uin(y) dy < Captin(Dpjs) in Bpgys,
R/2

we deduce that, for any x € B/,
|Ui,n( )| <20, HAUanp + Cy HVZ nHL2 + Csps n(DR/Q) + HAf||Loo (Bry2)’

so that

(2.62)  |Auin(2)] < 2C1 [[AUinl 2 () + 2C2 [Vinll 2 ) + Captin(Drs2) + 1AF || sy, ,) -

Since (2.8) yields that

HAUZ,YZHL2(Q) = Q) + HA_lw,nHL2(Q) S V 2E(UO) + C HWanHLQ(Q) 9
we obtain
HAui,nHLoo (Bry3) \/ 2E uO + C2 HVz n”L2(Q + CBNZ n(DR/2) + HAf”LOO(BR/z)
This completes the proof. O

Remark 2.1. We need to impose the restriction on the dimension N < 3 in Lemma 2.4 in order
to obtain the inequality

1A WVinll oo (Bryw) < CllVinllz2@)

n (2.61). Such an estimate will allow us to prove a uniform W2 bound on u;, with respect
to n.

Theorem 2.4. Let N < 3. It holds that
(2.63) wiy € WH2(Q)

for each n € N and i = 1,--- ,n. Moreover, for any R > 0 with Br C 0, there exist positive
constants C and Ca being independent of n such that

(264) Tn Z HDQU'L nHLoo <C1+Cy ||AfHL°°(Q

Proof. Thanks to Theorem 2.2, we see that u;,, is uniformly bounded in HZ(f2). Then, Propo-
sition 2.1 asserts that wu; ,, is also uniformly bounded in C17(Q) with 0 <y < 1/2 if N =1, and
in C%7(Q) with v € (0,2 — N/2) if N = 2, 3. Since u;, = 0 on 9, there exists a neighborhood
Qs of 0 such that u;, > f in Q5. By the standard elliptic regularity theory, we observe that
Aum S H2(Q(§) with

(2.65) 1Az < CVanll2ap) + 1 Ausall o)
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where the positive constant C' depends only on {2s. Combining (2.65) with the interpolation
inequality
N/4 1-N/4
18U e ) < KN AU e 1A | g0y
where K is a positive constant depending only on N, we deduce that

(2.66) HAui,nHLoc(Qé) < C/(HVLNHL?(Q) + [ Auip

LZ(Qa))‘

In the sequel, we let N = 2, 3. Let fix 2° € Q\ Qs arbitrarily and B, denote the ball with
center 2V and radius p. Choose R > 0 such that Bgr C  and ¢ € C°(Bg), ¢ = 1 in Bsrys,
0 < ¢ <1 elsewhere. For any x € Br/o, we can write

(JeUin)(x) = ; W (z — y)A*(CJUin) (y) dy,

where U ,, is the function defined by (2.52) and W is the fundamental solution of A?:

Wiy = 4 WVEFQogle] =1) it N =2,
—N |z if N=3,

where vy are constants chosen such that
AW =6,

where & denotes the Dirac measure (e.g., see [15]). Expanding A%((J.U;,) and performing
integrations by parts, we obtain

(2.67) (JUin)(x)
= | W(—-yA* (LU (y)dy+ [ W —y)A* (Ui (y) dy
Barys Drys
=/ W (2 — y)¢(y)A*(JUi ) (y) dy
2R/3
n / Wz — )| A2C(JUip) + 4V(AC) - V(JUip) + 6ACA(JU; )
Dprys3

+4VC - VAU ) + CA*(JUi ) } (y) dy

= | W = y)CW)AY i) ) dy + (),
where Dpg /3 := Rg \ Byg/3 and
@)= [ Wa—y) [ A%(LU) +AV(AQ) - V(LUin) + 2ACA(LU;n) | () dy
Dry3

—4 b VW(x - y) ’ VC(y)A(JsUz,n)(y> dy.
R/3

Since it follows from a direct calculation that

( 8? 1A> — {w (2x§|x|—2—1) it N =2,

Oz 2 ’nyJ2|:c\_3 it N=3,
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one can verify that

0?2 1
. > —
(2.68) ( 92 2A> W ¢,

where c is a positive constant. Applying 92/ (9%2» — A/2 to the both sides of (2.67) and using
(2.68) and the fact that (A%(J.U; ) > 0, we obtain, if z € Bra,

82 1 82 1
(ax]Q QA) JeU; n( ) —C By C(y)AQ(JSUZ,n)(y) dy + <(‘9x]2 — 2A> ozg(:r).

Since the integral in the right-hand side can be written as

/B (1oQ)(0)A2U; n(y) dy + B,

where 5. — 0 as € | 0, we conclude that

569 82J6Ui,n > 1 AJU: J. A?U; d
@89) @) 2 g I8l gy~ [ VWA i) dy

9?1 _
—cf: + <x'2—2A>aa(m) in  Bpg/s.

J

On the other hand, it also holds that

62J5Uin 8 Ja ,n
(270) —F 5 = ‘]E zn
81‘]'2 ; axk
N—i— 1
< Vi) N = 1) [ (LOW)A (o) dy
R
0% 1
+ce(N—-1)8: = (N —1) W—§A ag(z) in Bpgys

Lemma 2.4 implies that

(2-71) HA(JeUi,n)HLoo(BR/3) < HAU',

(Brys)

1
< CiE(uo)> + (Co+ 1) [IVinll 20y + C3ptin(Dry2) + [|Af || oo 5y, ) -

Letting € | 0, we find
(2.72) /B VWA iy = [ 0 Vin0)d < (B

Furthermore it follows from the Gagliardo-Nirenberg type interpolation inequality that

”as||LOO(BR/3) < C{HJEUi,nH]ﬁ(Q) + ||V(J6Ui,n)”L2(Q) + ||A(J€Ui,n)||L2(Q)}
< C{HJsUi,n”L?(Q) + HA(JEUZ',TL)”B(Q)}
< C{||U;, o T ||AU’i7n||L2(Q)}'

Observing

o + (A% 71V

1Tiinll 20y < allz) < 3@ T CWVanllz)
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we obtain
(2.73) HasHLoo(BR/3) <CiE (UO)2 + Q5 HVanL2 + Capi, n(Dry2) + Ca HAfHLoo (Bry2)

Recalling 3. — 0 as ¢ | 0 and letting ¢ | 0 in (2.69) and (2.70), we deduce from (2.71)—(2.73)
that

a2ui,n

s < G5B (up)? + Cs |[Vi,
J

L*>(Bg/3)

(2.74) ‘

@ T Crttin(Br) + Cs | Al oo (,,0)

Since x; can be in any direction, the inequality (2.74) implies that

1
(2.75) HDQUMHLOO(BR/?,) < C5E(u0)2 + Cg Vil 20y + Crttin(Br) + Cy Al oo, .

where the constants Cf, Cf, C%, and C§ are independent of ¢ and n. Recalling (2.66), along the
same line as above, one can verify that

(2.76) 1D e sy < CIVanll 2,y + o)),

where the constant C' depends only on 5. Since 2\ €25 is compact, combining (2.75) with
(2.76), we obtain the assertion u;, € W2>(Q) and

1
@77 [ DPusnll ey < CE(0)? +C Vil 2y + Crtin () + C 1A | (e
Finally multiplying (2.77) by 7, and summing over ¢ = 1,--- ,n, we conclude from (2.7) and
(2.13) that
n ) )
Tn Z |D uiv”HLOO(Q)
i=1

<CTE(u0+C/ AGIS dt+CrnZum )2+ CT | Al 0
i=1

< CTE(U()) + QCE(U()) +C+CT HAfHLoo(Q)
This completes the proof. ]

When we restrict to dimensions N < 3, Proposition 2.1 implies that w;, is continuous.
Under such restriction, we define

(2.78) Cin={xe€Q: u,(x)= f(z)},
(2.79) Nip ={ze€Q: ui,(z) > f(z)}.

It is clear that C; UM,n = (). We can show a relation between the support of u;, and the sets.

Lemma 2.5. Let N < 3. If gy € Ny, then there exists a neighborhood of xy such that
Win(Nin) = 0. Furthermore we have

(2.80) supp fhin C Cin.
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Proof. Let N < 3 and fix 2° € N, arbitrarily. Since N, is an open set, there exist a constant
§ > 0 and a neighborhood W of 20 such that

Uin(z) — f(x) > 4§ forall xzeW.

Notice that u; , satisfies

(2.81) / Aui nA(uj g — @) dr < —/ Vin(uin — ) dx
Q Q

for any ¢ € K, for u;, is a solution of (M; ). Then for any ¢ € C§°(W) with 0 < ¢ < §/2, the
function

1/1=Ui,n—§

belongs to K. Taking this ¢ as ¢ in (2.81), we have

/ (At nAC + VinC] da < 0,
Q

Since p;, > 0, this asserts that

[ 18U+ Vil =
Q

ie., in=01in W. O

3 Existence and regularity of solutions to problem (P)
We first prove a convergence result which holds in any dimension N > 1.

Theorem 3.1. Let u,, be the piecewise linear interpolation of {u;,}. Then there exists a function
w e L([0, +00); HE()) N Hb (0, +00; L2(2))

such that

(3.1) U, —=u in L*0,T; H3(Q)NHY(0,T;L*(Q)) as n — +oo,

up to a subsequence, for any 0 <T < 4+o00. Moreover

T
/ / u? dz dt < 2E(ug),
0 Q

u(z,t) > f(z) for a.e. x € Q and for every t € [0,+00), and for each o € (0,1) it holds

(3.2) uy, —u in CO([0,T); L*(Q)) as n — +oo.
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Proof. Recalling that uy,(z, -) is absolutely continuous on [0, T, for all ¢, ta € [0,T] with t; < ¢,
Hoélder’s inequality and Fubini’s Theorem give us

1
L t23u 2 2

Up (-, t9) — Up (-, T = /< n;vtd,t) dx
(e 12) = 1)l 2y (0 [ S )

to 2 2
= / aun('7t) dt) (t2—t)2.
no || Ot £2(Q)
Then it follows from (2.7) that
to
(3.3) / /uf dx dt < 2E(ug)
t1 Q
and
(34) Jan -+ t2) = ey )l 20y < V/2B(uo)(t2 — t1)?.
Since (2.8) yields that
(3.5) sup [ At )l gy € D [ At oy < V2E (o),
t€[0,T] 1<i<n

there exists a function u € L*(0,T; H3(2)) such that w, — w in L*(0,T; H3(Q)) up to a
subsequence. On the other hand, the estimate (2.7) implies that
ou ou

: w=—"—— in L*0,T;L*Q)).
(3.6) Vo=~ =5 in L7(0,T5L%(Q)
This means that du/0t € L*(0,T;L*(Q)), i.e., u € H(0,T;L?*(€)). Combining (3.4) with
Ascoli-Arzela’s Theorem (see e.g. [4, Proposition 3.3.1]), we conclude (3.2).

Since (3.5) means that {u,(¢)} is uniformly bounded in H3 () with respect to t € [0,7] and

n € N, we deduce from (3.2) that, for each ¢ € [0, 7]

(3.7) un(t) = u(t) in HZ(Q)

up to a subsequence. This asserts that u € L>([0,T]; H3(£2)). Moreover, Proposition 2.1 implies
that for each ¢ € [0, 7]

C(Q) for 0<v<3 if N=1,
c%1(Q) for 0 2-4 if N=2,3
(3.8) un(t) — u(t) in (@) for O<y<2-% i "
L1(Q) for 0<qg<+o0 if =4,
LQ)  for 0<q<g; if N>
In particular, if N > 4,
(3.9) up(t) — u(t) ae in Q

up to a subsequence. Since u,(t) > f a.e. in § for each n € N and ¢ € [0, 7], the fact (3.8)-(3.9)
yields that u(t) > f a.e. in Q for each ¢ € [0,T]. This completes the proof. O

When N =1, we can improve the convergence result obtained in Theorem 3.1:
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Theorem 3.2. Let N = 1. Let u be the function obtained by Theorem 3.1. Then it holds that
u € L2(0,T; W2(Q)) N C%3([0, T]; C1%(Q)) and

(3.10) U, — u  weakly® in  L*(0,T;W>*®(Q)) as n — oo,
(3.11) Up — U 0N Co’ﬁ([O,T];Cl’O‘(Q)) as n — oo

for every o € (0,1) and B € (0, 22). Purthermore u(-,t) — ug in C1*() ast | 0.

Proof. Fix T'> 0 and n € N. To begin with, we shall prove (3.10). By (2.64) we see that u,, is
uniformly bounded in L2(0,T; W2 (Q)) with respect to n € N. Since L?(0,T; W?°(Q)) is the

dual of L%(0, T; W21(Q)), Banach-Alaoglu’s Theorem asserts that u, subconverges to u weakly*
in L2(0,T; W2°°(€)). In particular, combining (2.64) with

lull 220, 2w2.00 (@) < Him inf [fuunl| L2 (o w220 ().

we observe that u € L2(0,T; W2>(Q)).
Next we prove (2.64). In the sequel we let Q = (0,L). Let us define the function g :=
Un (-, ta) — un(-,t1). Since g € H3(Q) for each t1, ty € [0,T] with ¢; < ta, we have

(3.12) /Q(g'(x))de = —/Qg(fc)g”(x) dz < |lgll 2 19"]] 120y
and
(3.13) / {(' (@))% dz < 2|9'|[ 120 [19”]] 12 -

Then (3.12) and (3.13) yield

3 1
(3.14) Hg/HLOO(Q) < \/5“9”“22@ 1911 72(q)

"
7, L2(Q

Since [|g"[j2(q) < 2sup;, ||u

) we observe from (3.5) that

3 1
Hg/HLOO(Q) < \/§<2 2E(ug))4 HgH22(Q)
Then, by (3.4), we obtain

Ooun,
B )Ty 1)

o5

< 25 \/E(uo)(ts — t2)5.

(3.15) } o

Moreover, by the Mean Value Theorem, there exists T € 2 such that

L
o@) = 1 | @ a.

and then
1
l9()| < lg(x) = 9(@)| + l9(@)| < L||¢'|| e e 7z lolia)
for each x € [0, L]. Thus, by (3.4) and (3.15), we find
E(u
(B16)  lunCt2) — )y < 2% L/Bug) 12— )% 4y Py
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<4L E(UO) (1 + 4T\/8Z> (tQ — tl)é.

Furthermore, for each « € (0, %), we have

’ o
(3.17) |g'|,, = sup {W } v,y € Qa# y} <1915 @119 o)~

Using Morrey’s inequality, it is followed from (3.5) that

Oouy, Ooun,
< Ky H(%r:("t2) — E('atl)

< 2KnCov/ E(uo),

‘ Oup Oun
H(Q)

5, (12— 5 ()

1
2

where K s denotes the constant of Morrey’s inequality. Then, from (3.15) and (3.17), we deduce
that

1-2«a

o 17% 1-2«
<2 E(uQ)(KMCO) 1+ ——= (tg — tl) 8

(3.18) ‘8“"

5y (12— 5 ()

4L

Therefore it follows from (3.15), (3.16), and (3.18), that for every o € (0, 1), u,, is uniformly
equicontinuous with respect to the C1®(2)-norm topology and that

«

1-2a

(3.19) [un (-, t2) = un( 1) [[oraq) < Clta —t1) %

for some C(L, E(up),a,T) > 0. We then obtain (3.11) by applying the Ascoli-Arzela’s Theorem
(see e.g. [4, Proposition 3.3.1]). Finally, since

||un('at) - un("tl)HCl,a(Q) —0 as t— tl,
we obtain the conclusion by selecting ¢; = 0. O

When N = 2, 3, we can also improve the result obtained in Theorem 3.1:

Theorem 3.3. Let N = 2, 3. Let u be the function obtained by Theorem 3.1. Then it holds
that v € L?(0,T; W**(Q)) N C%3([0, T]; 07 () and

(3.20) Uy — u  weakly* in L*(0,T;W?>®(Q)) as n — +oo,
(3.21) u, —u in COP([0,T);C%(Q) as n— 4oo
for every

0<pB< LN 1 v 0<y<?2 N
273 2-N/2)° 7 2

Furthermore u(-,t) — ug in C%(Q) ast | 0.

Proof. Let N = 2, 3. Fix T > 0 and n € N. To begin with, the convergence (3.20) follows
from the same line as in the proof of (3.10). In the sequel, we shall prove (3.21). For each ¢,
to € [O,T] with t1 < to, set

9(x) := up(x, t2) — up(x, t1).
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By (3.4), we have already known

(3.22) lgll 2y < (2E(u0))? (t2 — t1)%.

Since (2.8) asserts that

NI

190l 20y < 2(2E(uo))?,

combining this with (3.22) and the interpolation inequality

1_N N
(3.23) 191l oo 0y < Cllgll L2y 19117720
we obtain
1-I4 1N
(3.24) 90l ) < Cllgll agdy < Otz —11)3 7

where the constant C' is independent of n. For each v € (0,2 — N/2), we obtain

l9(z) — g(v)]

lz —y|?

2-N/2 o7
o = | sy € e £y < 5 @l o)

Since it follows from Sobolev’s embedding theorem that
1
I9llco2-nr2(q) < Cllgllmzia) < CE(uo)?,
we get,
(4-3) (1 2k)
(3.25) lgly < Clty —t1)\27 3 3-N/2

Therefore we deduce from (3.24) and (3.25) that u, is uniformly equicontinuous with respect to
the C%7-norm topology for each v € (0,2 — N/2), and that

(3.26) ltin-,£3) = tm ey 1) gy < Clt — )3 %) (1755373)

for some constant C' = C(Q, E(ug),v,T) > 0. By the Ascoli-Arzela’s Theorem (see e.g. [4,
Proposition 3.3.1]), we get (3.21). Finally, since

un(:st) — un('atl)Hco,«/(Q) —0 as t—t,
we obtain the conclusion by selecting ¢; = 0. O

Regarding the piecewise constant interpolation @, for {u;,} defined in Definition 1.3, we
can verify the following:

Lemma 3.1. Let 4y, be the piecewise constant interpolation of {u;,}. If N =1, then
(3.27) Uy —u in L®([0,T]);CM(Q) as n— 400

for every v € (0,1/2), where u is the function obtained in Theorem 3.1. If N = 2, 3, then
(3.28) iy —u in L®([0,T);C*(Q)) as n — +oo

for every v € (0,2 — N/2). Furthermore, for any N > 1, it holds that

(3.29) At, = Au in L*0,T;L*(Q) as n— +oo.
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Proof. By (2.8) we see that @, € L°°([0,T]; H3(Q)). Since N < 3, Proposition 2.1 implies that

_ L=([0,T]);C(Q)) for 0<y<i if N=1,
U L(0,T);0%(Q)) for 0<y<2-8  if N=23.

Then, along the same line as in the proof of Theorem 3.1, we verify that @, (t) converges to a
function (t), with @(x,t) > f(x) in Q, for each t € [0,7] in C17(Q) if N = 1 and C%7(Q) if
N =2,3.

We shall show that @ coincides with u which is obtained as the limit of u, . Let us fix
t € [0, 7] arbitrarily. Then there exists a sequence of intervals {[(iy, — 1)7p, inTn) fnen such that
t € [(in, — 1)Tp,inTy) for each n € N. Recalling Definitions 1.2-1.3, if N = 1, we observe from
(3.19) that

[[an(t) — un(t)Hclw(Q) = [Juin — un(t)Hclw(Q)

= [[un(inTn) — un(t)Hcl Q)
1— 2'y

< ClinTn — t) T <Cm® —0 as n— 4o,

and if N =2, 3, we deduce from (3.26) that

l[an(t) — Un(t)HCOw(Q) = [[un(inTn) — un(t)HCO»’Y(Q)

3-¥)(1-5%5)

<CTt, —0 as n— +oo.

Hence we obtain (3.27) and (3.28).
Finally we prove (3.29). It follows from Definitions 1.2 and 1.3 that

U (2, 1) — i (2, £) = Tln(t i) (Ui (2) — i1 (@),
so that,
(3.30) — sup / |t (2, 1) — T (2, 1)) da

te[o T)
n

—i1,)?
<> s B 0) - ) da

= tel—D)rima] o 27y,

n

< Z(E(Ui—l,n) — E(uin))
i=1
= Tno(E(u) — E(unyp)) < mE(up) -0 as n — +oo.

Then we observe that for any ¢ € C2°(Q)

//AunAun pdzrdt = // n)Apdrdt — 0 as n — oo.

Let us define p, as

(3.31) pn(t) = pipn if € [(i — 1), i1).
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Proof of Theorem 1.1. Let u be the function in Theorem 3.1. To begin with, we prove that u is
a weak solution of (P). Since w;, and V;,, satisfy

Q

for any ¢ € K, we observe that
T
/ / V(w0 — i) + Al A(w — i) dadt
0./
= Z/ ! / Vin(w —uin) + Auj n A(w — u;p)] dedt > 0,
i—1 Y (1)1 JQ
ie.,
T
(3.32) // [Vow + At Aw] dedt > // v il + \Aanﬁ] drdt for all w e K.
0/

It follows from (3.6) that

T T
(3.33) // Vow dxdt — // wpwdxdt as n — +oo.
0JQ 0J/Q

Moreover Lemma 3.1 gives us that

T T
(3.34) // AanAwdfndtH//Aqudxdt as n — +o0,
0/o 0/o
and
T T
(3.35) liminf// | A, |* dmdtZ// |Aul? dzdt.
=+ Jo /o 0/Q

Combining (3.2) with (3.30), we have
(3.36) iy —u as n—4oo in L*0,T;L*(Q)).

Then (3.6) and (3.36) imply that
T T
(3.37) // Vi, dzdt — // wudrdt as n — +o0o,
0J/Q 0J/Q
e.g., see [27], Proposition 23.9. By virtue of (3.32)—(3.35) and (3.37), we assert that

T
(3.38) // [ut(w —u) + Aul(w — u)] dedt >0 for all we K,
0/o

i.e., u is a weak solution of (P).
For any ¢ € C°(Q x (0,T)) with ¢ > 0, we verify that w := u+ ¢ € K. Hence it follows
from (3.38) that

T
(3.39) /0 /Q [ug(z, t)o(x, t) + Au(z, t) Ap(z, t)] dedt > 0.
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Since ¢ is arbitrary, (3.39) implies that
(3.40) ug(z,t) + A%u(z,t) >0 ae in Qx(0,7T),

where A2y is written in the sense of distribution. Moreover, the regularity of u follows from
Theorems 3.1-3.3.

We now prove (1.7). By (3.31) and Theorem 2.3, we observe that

T 2
BAD) o miney == /0 ( /Q dun) dt

n

n T 2 n
=3[ (L) =t <
This implies that
tn — T weakly in - L%(0,T; M(Q))
up to a subsequence. Setting
wi=uy + Au,

we observe from (3.40) that u is a measure on Q x (0,7), and there holds ft = p by uniqueness
of the limit. Since p, converges to p weakly in L2(0,7T; M(Q)), it follows from (3.41) that

l1ell 2 0mme)) < Hminf [l | 220mm)) < €

This is equivalent to (1.7), and implies that p is a positive Radon measure on {2 for a.e. ¢ € (0,7)).

Finally, when N < 3, we prove that u satisfies the problem (P) in the sense of distribution.
To prove this assertion, it is sufficient to show that, if u > f, then u; + A%u = 0 holds. Let us
set

N ={(z,t) e 2 x (0,T) : u(x,t) > f(z)}.

Since wu is continuous in 2 x (0,7) by Theorems 3.2 and 3.3, A/ is an open set, so that, for any
(2°,t%) € N, there exist § > 0 and a neighborhood W x (t1,t2) of (2°,t") such that

(3.42) u(z,t) — f(x) > in W x (t1,t2).
Lemma 3.1 implies that there exists a number N > 0 such that
_ 5 .
U (z,t) > u(z,t) — 5 In W x (t1,ta) for any n > N.

Combining this with (3.42), we have, for any n > N,

(3.43) Un(x,t) > f(x) + g in W x (t1,t2).
Let ¢ € C§°(W X (t1,t2)) with 0 < ¢ < §/2. Then (3.43) asserts that

Y(x,t) = tp(z,t) — ((x,t) € K for each ¢ €0,T].
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Taking this ¢ as ¢ in (2.81) and integrating it with respect to ¢ on (0,7"), we obtain

(3.44) /0 ' /Q A (2)C (@, t) dadt < — /0 ! /Q Vi (2)C(x, t) dadt.

From the definition (3.31), the inequality can be reduced to

(3.45) ;/( /Qg(x,t)dundt <0.

1)
Since p,, > 0, we see that the integral in (3.45) must be equal to 0, i.e.,
(3.46) n(W x (t1,t2)) = 0.

It follows from (3.41) that

T
[tnllm@x o)) == /0 /Qdundt < C.

Thus we deduce that p, converges to p; weakly in M(Q2 x (0,7)), i.e.,

T T
| [ ettt =[] otat) dui
0JQ 0JQ

for any ¢ € C5°(2 x (0,7)). This fact also yields that

(3.47) 12l meex 0,7)) < lim inf | 4nll M 0,1))-
Combining (3.46) with (3.47), we conclude that

(3.48) p(W x (t1,t2)) =0,

which completes the proof. O
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