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Abstract

We consider local minimizers for a class of 1-homogeneous integral func-
tionals defined on BVioc(f2), with Q C R?. Under general assumptions on the
functional, we prove that the boundary of the subgraph of such minimizers is
(locally) a lipschitz graph in a suitable direction. The proof of this statement
relies on a regularity result holding for boundaries in R?> which minimize an
anisotropic perimeter. This result is applied to the boundary of sublevel sets
of a minimizer u € BVj,c(9).

We also provide an example which shows that such regularity result is
optimal.
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Regularity of solutions; Crystals

1 Introduction

In this paper we study the regularity properties of local minimizers of functionals
of the type

Fy(u) = / o(Du) + / fuds, (1)

where Q@ C R?, u € BVioc(2), f € L2.(Q) and ¢ : R2 — R is a generic positively
1-homogeneous convex function. Since Du is in general only a measure we shall
give a precise meaning to the integral [ ¢(Du).

A serious difficulty in considering minimizers of (1) comes from the fact that
the functional F,, is not strictly convex in u and has only a linear growth, hence we
cannot apply the usual techniques [4], [9] which lead to C*® regularity, as for exam-
ple in the prescribed mean curvature problem, i.e. when p(Du) = /1 + |Vu|? [10],
[3]. In the case p(Du) = |Dul, it is easy to find minimizers of (1) which are not
even continuous. Nevertheless, in the case f = 0 and ¢(Du) = |Du| it has been
proved [11] that, if we prescribe sufficiently regular boundary conditions, a lipschitz
minimum always exists.

However, the homogeneity property of the functional allows us to conclude that
if u is a minimizer of F,, then x{,<¢} is also a minimizer for any ¢ € R. This implies
that each sublevel set of u is itself a minimum of an anisotropic prescribed curvature
problem [6], [7], [12]. Such minimizers have been considered in [2], [13] and it is
known (in dimension n = 2) that their boundary is locally the graph of a lipschitz
function.

*Dipartimento di Matematica Universita di Pisa, via Buonarroti 2, 56127 Pisa Italy, email:
novaga@dm.unipi.it

Dipartimento di Matematica Universita di Firenze, viale Morgagni 67 /A, 50134 Firenze Italy,
email: paolini@math.unifi.it



Using this information we are able to conclude that the boundary of the subgraph
of u, as a subset of Q x R is itself locally a lipschitz graph, even if not necessarily in
the vertical direction. To perform this step we need an assumption on the convex
set {¢ < 1}, which we call fatness condition (see Section 2), and we show with
an explicit example that such condition is necessary to get this kind of regularity.
Moreover, such an example shows that in some cases the minimizers of a crystalline
perimeter (in dimension n = 3) are not locally lipschitz graphs.

We conjecture that, without any assumption on ¢, the graph of a minimizer is
locally parameterizable by means of a bilipschitz map.

The study of the functional (1) is a first step in the analysis of the regularity of
the minimizers of

/Qf(Du) u € BVioe(Q),

where f : R® — R is a generic convex function. Our result gives a suggestion on
which kind of regularity can be expected in the general case.

The plan of the paper is the following. In Section 2 we describe the notation that
we shall use in the sequel. In Section 3 we introduce the class of local minimizers for
F,, and we prove a compactness results for sequences in this class (Theorem 3.4).
Moreover, in Theorem 3.12 we prove the main result of the paper, which states that
the graph of a local minimizer is itself (locally) the grapf of a lipschtz function,
when ¢ satisfies the fatness condition. Finally, in Section 4 we give an example
which shows that this condition is really necessary to conclude that the graph of
the minimizer is locally a lipschitz graph.

2 Notation

Let ¢:R? — RT be a function such that
1. o(z) = 0 & 2 = 0 (coercivity);
2. p(tr) = te(x) Vt > 0 (positive 1-homogenity);
3. ¢(z +y) <o(z) + ¢(y) (convexity).
We define ¢°: R2 — Rt as

where (-,-) is the usual scalar product of R?. It is not difficult to check that ¢°
satisfies the same properties of ¢ and that

(& v)
&) =sup .
o(£) P o (0)
We call Wulff shape the set W, := {z € R?: ¢°(z) < 1} and Frank diagram the
set F, := {€ € R?: p(£) < 1}. We define the following (multivalued) duality maps

vt o= {EE R p(E) = ¢7(v), (£0) = (©)¢°(v)}
& = {veR:p°(v) = ¢(§), (&) = p()¢°(v)}.

We say that W, is slim if there exists an edge | C OW,, such that the sum of
the two angles of W, adjacent to [ is less than or equal to 7. We say that W,, fat
if it is not slim.

For example, all triangles and quadrilaterals are slim, whereas strictly convex
Wulff shapes are fat.



Given E C R", we let xg : R® — R be the characteristic function of F, i.e.
xe(x) =1if z € E, and xg(z) = 0 otherwise.

We will denote with #*, k > 0, the k-dimensional Hausdorff measure in R", and
we let |E| := H"™(E) be the Lebesgue measure of the set £ C R”.

Given v € R® \ {0} we say that a set S C R® is a graph along v, if it is not
possible to find two different points x,y € S such that © — y = Av for some X € R.

The anisotropic perimeter of a set E in the open set A C R? is defined by

P, A) = sup { o [ vt desp € CLATE), i) <1 vy € A}

The usual notion of perimeter of E in A will still be denoted by P(E, A).

We let B,(z) := {y:||z — y|| < p} be the usual euclidean ball of R? and we set
for simplicity B, := B,(0).

Given a set £ C R™ of locally finite perimeter, we define

OB = {z€R":VYp>0 |ENB,(z)€]0,|B,(z)[[},
E = {zeR":Vp>0 |ENB,(z)| #0},
E = {£eR“V¥p>0 |ENB,(z) =|B,(x)}.

It holds, as usual, that E,JF are closed sets, whereas E=E \ OF is an open set.
Notice that if [EAF| =0 then OF = 0F (where EAF := (E\ F)U (F\E)).
We let 0*E be the reduced boundary in the sense of De Giorgi [5], and

ve(z) := lim _M
E( ) pl_)0+ |DXE(Bp(."L'))|

be the exterior unit normal to OF in = € 0*E.
Given a vector-valued Radon measure y on Q C R?, we define the measure ¢(u)
as the p-total variaton of u:

o(u)(B) := sup Z o(u(By))

where the supremum is taken over the family of all partitions {B;}icr of the Borel
set B C Q. With this definition, if u € BVjo.(Q2) then ¢(Du) is a positive measure
on © and the integral [, ¢(Du) makes sense.

For u € BVipe(Q) we define S = S, := {(z,t) € Q@ x Ru(z) < t} and let
=T, :=0S,N (2 x R). Notice that T, is always a closed set in  x R and
T'y =T, whenever u = v a.e.

For t € R we define E; := {o € Q:u(z) >t} and F; := {z € Q:u(x) > t}.

3 Local minimizers and regularity result

As explained in the Introduction, we shall consider local minimizers of the functional

F,(u) = /Q o(Du) + /Q fude

where (2 is an open subset of R?, u € BVioc(Q2), f € LZ.(R2) and ¢ is a convex
positive 1-homogeneous function.

Remark 3.1 Observe that for any u € BViec(Q2) there holds

Fy(u) = sup { - /Q (udive) + fu) de: $ €CHQ), ") <1} (2)



In particular, from (2) it follows that F,, is lower semicontinuous in Li, (), i.e.

[ o+ [ fuds <timint [ oD+ v + [ s+ da,

whenever 1, — 0 in LY(B), vy € BV (B), B € Q.

Definition 3.2 We say that u € BVioc() is a (local) minimizer for F,, if

/ p(Du) +/ fudz 5/ p(Dv) +/ fvdz,
By(z) By(z) By(z) B, ()

whenever B,(z) € 2, v € BVioe(R) and {z € Q:u(z) # v(z)} C By(z).
Notice that, by approximation, we can restrict the class of test functions to the
functions v = u + ¢, where € C(B,(x)).

We denote by M () the family of all local minimizers of F, in 2. With a little
abuse of notation, when E C §) is a measurable set, we write E € M(Q) instead of

XE € M(Q).

Remark 3.3 The semicontinuity of F, guarantees that (when € is bounded) min-
imizers do exist in the closure of any nonempty subset of BV (Q) which is bounded
in L'. In particular, given ug € BV (), there always exists a minimizer for F,,
among the functions u € BV (Q) which coincide with ug outside of a set B € Q.
However, it may be convenient for the minimizers to have jumps on 0B

In the following theorem we state a fundamental compactness property of the

class M(Q).

Theorem 3.4 (compactness) Ifu, € M(Q), u € L], () and up = u in L}, ()
then u € M(Q).

Proof.

Let B,(z) € Q and v € BVjoc(Q2) be such that K = {y € Q:u(y) # v(y)} C By(x).

Let moreover p' € ]0, p[ be such that K C B, (z). Suppose for simplicity of notation

xz = 0. Since the proof does not change significantly we shall also assume f = 0.
We claim that it is possible to find a sequence of radii ng,n € |p', p[ with ng 71

such that it holds

vk |Du| = 0, (3)
8B,

lim |[Dup| = 0, 4)
k— o0 BW\BTIk

lim inf ‘D((U —Uk)XBnk)

k—o0 aBnk

If this is true we can conclude the proof by considering the functions vy =
(v — uk)xjgmc + uy, which are variations of u; in B, and coincide with v in By, so
that, by the semicontinuity of u — fU p(Du), the minimality of u with respect to
vk, the locality of u — [, ¢(Du), we get

/ ¢(Du) < lim inf p(Dug) < lim inf/ (D)
Bn k—o0

k—o0 B”l B”l

= liminf [/ (D) +/ p(Dwy,) +/ w(Duk)]
k—oco /B 8B, B,\Bn,

Mk



< / @(Dv) + Clim inf / ‘D((u — uk)XB,, + uk)‘ +/ | Dug|
By koo 9Bn, B,,\B,,k

< / ©(Dv) + Clim inf HD((u — up)Xxs,, )|+ |Duk|]
Br, k— o0 8B"Ik

= /B o(Dv),

n

where C' > 0 is such that ¢(¢) < C|z|.

Let us prove the claim. Let T1 = (N, {t € ]¢',p[: [5p, |Dux| = 0}. Since uy, €
BV (B,) the set T; is an intersection of countably many sets with measure p — p’
that is 7} has itself measure p — p'. So, for (3) to hold, we just need ny € T} for all
k.

Regarding (5), we notice that [1, Sec. 3.7] for a.e. t > 0 we have

/ 1D ((u — wi)xs,)| < / lu(z) — u(z)| dH (2),
OBy

t

where the second integral must be intended in the Lebesgue sense.
Consider the functions fi(t) = [5p |u(z) — uk(z)|dH' () defined for t € ]p', p[.
By Fubini-Tonelli formula we know that fr € L!(]p', p[) and

||fk||L1(]p’,p[) :|u—uk|L1(BP\B—p,) -0 fO’I‘k—)O.

So, applying Egoroff theorem, there exists To C |p’, p[ with |T>| > (p — p')/2 and
a subsequence of fr which converges to 0 uniformily on T5. Let now T3 be the set
of points n € T> NT} such that there exists an increasing sequence 7; ,* 1 with
n; € To NT. Since T, NT} is uncountable also T3 is uncountable and in particular
not empty. Therefore there exist € T3 and n; /7, with n; € T5 N T}, such that

lim inf sup/ |u(z) — ug(z)|dH' (z) < liminf sup |fi(t)| = 0,
oB,,

k—o0 j k—00 teTy

since (up to a subsequence) f — 0 uniformily on T%.
Concerning (4), we simply note that if n; 7, then for all £ € N we get

lim |Duk| =0

J=ree By\By;

since (;(By\ By,) = 0. So, given k € N, we can find j(k) such that an\an |Duy| <
1/k. By letting m; = n;(x) we have thus determined the sequence WhiC}Jl satisfies
(3), (4) and (5). O

The following lemma, which strictly depends on the homogeneity property of F,,
allows us to prove that the characteristic function of a sublevel set of a minimizer
is also a minimizer for F, (see [8]).

Lemma 3.5 Let u € M(Q). Then uV C,u A C, u € M(Q) for any C € R and
A>0.

Proof.

It is clear that u+C € M(Q) and Au € M(Q) since D(u+C) = Du and ¢(D(Au)) =
Ap(Du). Write now w = u™ + u~, where u* := u V0 (resp. u~ := u A Q) is the
positive (resp. negative) part of u. Given U € 2, ¢ € C°(U), we have

/Ucp(Dqu)+/Ufu+dx+/Ucp(Du_)+/Ufu_d:1:



/Ucp
/Uso

+ +d + + dz.
/U(p(Du )—I—/Ufu wS/Ugo(Du +D¢)+/Uf(u + ) dz

(Du)-l—/Ufuda:S/Ucp(Du+D¢)+/Uf(u+w)dx
(

IA

Du++D1/J)+/ f(u++1/))d;c+/ cp(Du_)+/ fu~ dz,
U U U

hence

Theorem 3.6 Let u € M(Q). Then for any t € R we have E¢, Fy € M(Q).

Proof.
Given € > 0 consider u.(z) = (u(z) —t)/e A1V 0. An easy check assures that
ue — XE, pointwise as ¢ — 0T. Since u. are dominated by the constant 1, by
Lebesgue convergence theorem u. — xg, in Li .(Q). So, by compactness we get
E; € M(Q)

If we instead consider u.(z) = (u(z)—t+€)/eA1V0 we conclude that F; € M(RQ).
O

We point out that, as a consequence of Theorem 3.6, from [2, Corollary 3.6] it
follows that |0E; \ 0*E;| = 0.

Lemma 3.7 Let u € BVioc(R). Given (z,t) € 8*S, then x € OF; or vg(z,t) =
(0,1) (and both conditions can hold). Moreover, for a.e. t € R and for H!-a.e.
x € 0*E; it holds

vs(z,t) = (A1) or vs(z,t)=v (6)

V14 X2

for some A € R and for v =vg, ().

Proof. .
Suppose that ¢ € 0F;. If x ¢ E; then for some p > 0 we have

{y € B,y(z):u(y) <t}| = |B,(z)|-
On the other hand (z,t) € 0*S, means that

Su — (z,1)

——— = Hvs, (z,t)) = {(y,5): (4, 9), vs, (z,1)) <O} in Ljge,

for ¢ — 0. Since in this case e™!(Sy — (z,t)) N B,/ x {t} C H((0,1)), we have
necessarily vg, = (0,1). The proof is similar when z € E.

In order to prove the second statement, let us consider the orthogonal projection
I(y,s) = y. We recall that [1, Ch. 3] for a.e. ¢t € R and for H!-a.e. z € 0*E; there
holds I(vs, (z,t)) = svg,(z) for some s € R, which implies (6). O

Lemma 3.8 Let E,F C R? be Caccioppoli sets with lipschitz boundary such that
E C F. Assume that OEN By # 0, OF N By # 0, for some p > 0, and let
Ki,Ky C R? be two convex cones (i.e. A\K; = K, AKy; = Ky for any A\ > 0)
such that for H'-a.e. z € OEN B, and y € OF N B, it holds —vg(z) € K, and
—vp(y) € Ko. Then the following estimate holds

2 — _
dist(K; N 0By, Ks NOBy) < ;dist(aE NB;,0F N Bp). (7



Proof.
Let u € 9EN By, v € OF N By be the points for which the minimum on the right
hand side of the estimate is reached, and let D = |u—wv|. Let also d be the minimum
value of the left hand side.

Let Ki-, K5 be the convex cones “orthogonal” to K, Ko (respectively) defined
as

K ={n e R?: (n,v) <0, for all v € K;} i€ {l,2}.

It is not difficult to show that Kj-N(—Kj") is a (convex) cone of angle 2a such that
sin(a) = . Moreover, since E O (—Ki- +u) N B, and (K3 +v) N B, C B, \ F, it
follows that the two cones —Kj- +u and K3 +v do not intersect within the ball B,.
On the other hand, they must intersect in a ball of radius R < mi:ﬁ +2=042

therefore

pSR< -+

&l
SIES

’

which gives (7). O
We recall the following regularity result from [2, Theorem 6.19].

Theorem 3.9 Assume that W, is not a triangle, and let Q@ C R? be an open set.
Then, for any E € M(Q), x € 0ENQ and p > 0 such that B,(x) € , there exists
a lipschitz graph T', whose lipschitz constant depends only on F, and p, such that
OENB,(z) CT.

Moreover, there exists a lipschitz function v:I' = OW,, such that

_VE(y) >* *
v(y €<7 Yy € 0*E N B,(x).
W e o) o)

Lemma 3.10 Let Q C R™ be a connected open set and E C R™ be a Caccioppoli
set. If there exist v € R™ |v] = 1 and X € ]0,1[ such that (v,vg(z)) < —X for
H* lge. x € O*ENNQ, then OF is an L-lipschitz graph in the direction v, with

L=/ 1.

Proof.

Let us choose mollifiers function p. € C°(R™) such that sptp. C B. and consider
the functions u. := xg * p.. Since E has locally finite perimeter, for sufficiently
small € the integral of = [, p-(y — x)d|Dxg|(y) is finite. Hence the measures
u® defined by dpZ(y) := (p-(y — z)/a®)d|Dxg| (y) are probability measures. By
the hypothesis we know that for #" '-a.e. y € OF and hence for p®-a.e. y the
vector —vg(y) lies in the convex set K = {£ € R":({,v) > A}. As dDxe(y) =
—ve(y) d|Dxe| (y), we obtain Vuc(z) = —a? [, ve(y) du?(y) that is Vu.(z)/a?
is a weighted mean value of vg(y) and hence Vu, € o2 K.

Suppose now by simplicity that v = (0,1) € R* ! x R and let (z,t) be the two
variables of R* 1 x R. Since Vu.(z) € aZ K we notice that %% (z) > 0 for all 7 € Q.
By the Implicit Function Theorem we obtain that {u. = 1/2} N Q is the graph of a
function f.:R"~! — R and we know that (letting x = (2, f-(2)))

Ous\| o a2 _ 1
ot )|~ (haz) X

Up to a subsequence, we may suppose that there exists a lipschitz function
f:R*~! — R such that locally f. — f uniformily. On the other hand since u, = xg
in L . we have {u. < 1/2} - R™ \ E locally in measure, that is the subgraphs of

fe converge in measure to R" \ E, hence OF is the graph of f.
Moreover, since the relation (vg,v) = —\/ﬁ holds almost everywhere, we

get the estimate |V f| < 4/1/A2 — 1, which gives the value of the lipschitz constant.
O

V.fel = \—vzus/ (

The following lemma, provides a characterization of fat Wulff shapes in R2.



Lemma 3.11 The set W, is fat if and only if the following property holds: there
exist g > 0, 6o > 0 and 0 < 0 < 1 such that given any X C OW,, the following
property holds:

diSt(Kl,KQ) <dg Vu,v3€ X — dp € 6W‘p S.t. (p,§> >e0 VEE€ X*,
(8)
where K; := {£ € 0F,:(§,vi) > 1 =6} and X* =, x v™*.

Proof.

Notice that W, is fat if and only if there exists 9 > 0 such that for all v;,v; € OW,,
with v} N} # 0 (that is vy, v, belong to the same edge) there exists p € 9W,, such
that given any £ € v} Uwvj it holds (£,p) > g9. The “if” part of the statement is
then simply proved (take X = {v1,v2}).

For the “only if” part, reasoning by contradiction with dg = § = 1/k, we can
find a sequence of sets X C OW,, such that (8) is false. Up to a subsequence we
may assume that X — X (in the sense of Kuratowski). We claim that there exist
v1,v2 € X such that X* = vf Uwv;. In fact given any couple vi,v2 € X there
exist vf € X, (i = 1,2) such that v¥ — v;. By (8) we can find ¢F € Kf = {¢ €
OF,: (&, vF) > 1 — 1/k} such that |€F — &§| < 1/k. Up to a subsequence we may
suppose that £F — &;, hence

(& vi) = lilgn(gf,vf) > li}gn(l —1/k) =1

that is & € vy. On the other hand it holds & = &, hence we have proved that
vi Nwy # (0 and this is true for any couple vi, v, € X. Since W, is different from a
triangle (because the triangle is slim) and n = 2 the claim is proved.

Let now p € OW,, and choose v; € X, vF € Xy, &F € KF, & = & € vf N3
as before. Since we have supposed that (8) is false, there exist 51’,“ € X such that
<€£7p> S €o-

Again up to a subsequence we may assume that f{; — &p € X* = vf U} (indeed
if & — € and & € X} then £ € X*). It holds (&,p) = (& — &,p) + (&k,p) <
w(&p — Eﬁ) + €9 — €9, which contradicts the characterization of fatness given at the
beginning of the proof. m|

We can now prove the main result of the paper.

Theorem 3.12 Assume that W, is fat and let w € M(Q2). Then T, C @ xR is
locally a lipschitz graph. Moreover, the lipschitz constant depends only on ¢, on f
and on the distance from OS.

Proof.
Let 2o € Q and let po = dist(zg,0N)/2. Let g9, dg and J be the constants given by
Lemma 3.11 and set € = d¢/3. Let L be the lipschitz constant given by Theorem 3.9
with respect to p2. Choose C' > 1 such that for all £ it holds [£|/C < ¢(&) < CI¢|
and set p1 := §/(2CL), po := min{ep: /(4C), p1/2}.

We consider the family of subsets of Q2 defined by

Fi= {Et:t € R, OE; N B, (zo) # (2)} U {Ft:t € R, 9F; N B,y (o) # 0}.

By Theorem 3.6 we have 7 C M(Q), and by Theorem 3.9 given E € F there
exists an L-lipschitz function vg:0E N B,,(x9) — 0W,, such that (vg(z),ve(z)) =
—p(—vE(z)) for H'-a.e. z € OE.

Consider also the set

X = {UE(x):m € OEN B,y (z0), E € }'} C oW,



we want to apply Lemma 3.11 to prove that there exists p € 0W,, such that (¢, p) >
go for all £ € X*.

Given vi,v2 € X we let z1,22 € Bp,(20) and Ei, E» € F be such that (from
now on i = 1,2) z; € 0E; and v; = vi (x:) (we let vig(z) := vp(z)/p(—ve(z))),
so that v; € v;. Define also K; := {£ € R%:(§,v;) > (1 —8)p(€)}. By the L-
lipschitz continuity of vg we notice that for z € B, (29) NOE; it holds (vf, (x),v;) =
(v, (x),vg; (z)) + (vg, (%), v; —vg(2)) > 1~ CL|lz —2;| >1—2Lp; =1—6. We
have proved that —vg, (z) € K? for Hl-a.e. © € B,, (z0) N 0E;, and we can apply
Lemma 3.8 in the ball B,, (zo) in order to obtain dist(K{ N 8B, K3 N 0B2) <
4po/p1 < €/C. So there exist &; € K{ NOF, such that |& —&| < . By Lemma 3.11
we can find a vector p € OW,, such that (p,§) > g for all £ € X*, and in particular
for £ = v (z) with E € F and z € B,, N OF.

Notice that, given (z,t) € T, N (By,(2¢) X R), by Lemma 3.7 we get that
x € OF for some E € F or vg, (z,t) = (0,1). In both cases we can write vg, (z,t) =
(Avg(z),1)/v/1+ A2 for some A > 0 and we obtain

p AMrg(z),p) +1 _ 1 ¢(—vE(2)) €0
(Lo1) sty = EDDLL S L) py > 270D 5 &,
lp| IplV1 + A2 lp| lp| c?
since ;1%12 >aforall A\>0,a<1.
So, applying Lemma 3.10 we conclude the proof. O

4 Example

In this section we provide an example of a function u € M(R?) such that the set
of points where T',, is not locally the graph of a lipschitz function has positive H2-
measure. A point z € R? will be denoted by its coordinates z = (z1,22). We set
p(x) = |z1|+ |z2] so that W, is a square. It is not difficult to show that in a similar
way we can treat every other slim W,,.

Given a,b,t € R, a < b, we define the sets Q(a,b,t) := {(z1,22): (3a +b)/4 <
z1 < (a+3b)/4, za < t}, L(a,b,t) := {(z1,22) : a < 21 < (a +b)/2} \ Q(a,b,1),
R(a,b,t) := {(z1,22): (a+b)/2 < 21 < b} \ Q(a,b,t) and define uq bt = aXL(a,bt) +
bXR(a,b,t) T+ “THXQ(a,b,t):]a, b[xR — R (see Figure 1).

Notice that Ty, ,, is not the graph of a lipschitz function in any direction and
in any neighbourhood of the point ((a + b)/2,t, (a + b)/2) € R*. However it can be
proved (for example using a calibration) that us ¢ € M(]a,b[xR).

We now merge such functions so that the singular points accumulate in a Cantor
like set with positive measure.

Let ag,by, € [0,1] be a sequence of points such that the intervals Ij, = [ag, by]
are disjoint and K = [, ([0,1] \ Jag, bx[) is a set with positive measure such that
K C {by: k € N}.

We then define a; = by, — bk;j”’“, br; = by — b;;ﬁ’“. The intervals Jax;, bi;[ are
all disjoint and accumulate in the points b;. Consider also an enumeration g; of the
rational numbers. The sets L(ax;,br;,q;), R(ar;j,brj,q;) and Q(ax;,br;,q;) are all
disjoint so that we can define

ag; if (z1,22) € L(akj, brj,q;)

_ brj if (z1,22) € R(arj,brj,q5)

u(@,z2) = (akj +brj)/2 if (21,22) € Q(ak;,brj, ;)
T elsewhere

Every point ((ax; + bk;)/2,q;, (ar; + bk;)/2) is a singular point for the function u
and the closure of these points contains the whole set {(z1, %2, 73) € R3: (z1,22) €
K, z3 = 21} whose H?-measure is greater than H2(K) > 0.



References

[1] L. Ambrosio, N. Fusco, and D. Pallara. Functions of Bounded Variation and
Free Discontinuity Problems. Oxford Mathematical Monographs. Clarendon
Press, Oxford, 2000.

[2] L. Ambrosio, M. Novaga, and E. Paolini. Some regularity results for minimal
crystals. Preprint: http://cvgmt.sns.it/, 2000.

[3] E. Bombieri. Regularity theory for almost minimal currents. Arch. Rational
Mech. Anal., 78:99-130, 1982.

[4] E. Bombieri, E. De Giorgi, and M. Miranda. Una maggiorazione a priori
relativa alle ipersuperfici minimali non parametriche. Arch. Rat. Mech. Anal.,
32:255-267, 1969.

[5] E. De Giorgi. Su una teoria generale della misura (r-1)-dimensionale in uno
spazio ad r dimensioni. Ann. Mat. Pura Appl., 36:191-213, 1954.

[6] M. Emmer, E. Gonzalez, and I. Tamanini. Sets of finite perimeter and cap-
illarity phenomena. Free boundary problems, theory and applications, Vol. I,
Proc. interdisc. Symp., Montecatini 1981, Res. Notes Math., 78:29-38, 1983.

[7] E. Finn. Equilibrium Capillary Surfaces. Grundlehren der Mathematischen
Wissenschaften, 284, Springer-Verlag, New-York, 1986.

[8] P. Hartman and G. Stampacchia. On some non-linear elliptic differential-
functional equations. Acta Math., 115:271-310, 1966.

[9] O.A. Ladyzenskaya and N. Uraltseva. Local estimates for gradients of solutions
of non—uniformly elliptic and parabolic equations. Comm. Pure Appl. Math.,
23:677-703, 1970.

[10] U. Massari. Esistenza e regolarita delle ipersuperfici di curvatura media asseg-
nata in R™. Arch. Rat. Mech. Anal., 55:357-382, 1974.

[11] M. Miranda. Un teorema di esistenza e unicita per il problema dell’area minima
in n variabili. Ann. Scuola Norm. Sup. Pisa, 19:233-249, 1965.

[12] F. Morgan. Clusters minimizing area plus length of singular curves. Math.
Ann., 1994.

[13] M. Novaga and E. Paolini. Regularity results for boundaries in R? with pre-
scribed anisotropic curvature. Preprint: http://cvgmt.sns.it/, 2000.

10



l Iry =
L(a,b,t)
: b,7)
- Q(a,
| a+3b
.’L'lml — % — |
R(a, b, t)m2 _,
ry = b

a,b,t
e 1: the t the function u

h

struction of

con

1: th

Figur

11



