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Abstract

In this article we study the anisotropic curve shortening flow for a planar network of three
curves with fixed endpoints and which meet in a triple junction. We show that the anisotropic
curvature energy fulfills a  Lojasiewicz-Simon gradient inequality and use this knowledge to
derive stability results for the flow. Precisely, in our main theorem we show that for any
initial data, which are C2+α-close to a (local) energy minimizer, the flow exists globally and
converges to a possibly different energy minimum.
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1 Introduction

For a regular, immersed curve Γ ⊂ R2 the length of Γ is given by

E(Γ) =

∫
Γ

1 ds, (1.1)

where s is the arc length parameter. The corresponding L2-gradient flow is the so called curve
shortening flow, which is also known as mean curvature flow in the case of higher dimensional sur-
faces. Originally the flow was suggested by Mullins [29] to model the evolution of grain boundaries
of heated polycrystalls. Afterwards the flow received a lot of interest both by mathematicians and
physicists. Now, in material sciences it is very natural that the surface energy also depends on
anisotropic effects. Then the energy above transforms to

E(Γ) =

∫
Γ

φ◦(ν)ds, (1.2)

where φ◦ : R2 → [0,∞) is an anisotropy and ν the unit normal of Γ. The corresponding L2-
gradient flow induces an anisotropic curve shortening flow and in the last thirty years a lot of
research on it was done, see for example [36, 16, 2, 41, 6, 31, 32, 28, 11] and references therein.
Note that, from a mathematical point of view, the anisotropic curve shortening flow is also a
natural generalization of the curve shortening flow when considering Finsler spaces, see e.g. [2].
In this article we consider this energy on a network of three regular, immersed curves Γ1,Γ2,Γ3 with
fixed distinct endpoints P 1, P 2, P 3, and meeting in a common triple junction Σ. This geometry
is pictured in Figure 1.
The study of the geometric evolution of networks received a lot of attention in the last years as
it can be used as a model for many applications (see for instance [27], [26], [21] and references
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Figure 1: This graphic illustrates the geometric situation we consider in this article. Both the blue
and the red lines have the form of the considered network consisting of three immersed curves.
Hereby, the blue configuration illustrates the shape of an energy minimum of the anisotropic length
energy and the red configuration the moving geometry itself. We will track the evolution of the
latter by writing it as a kind of graph over the minimum configuration. This leads then to the
green arrows. We will explain this in details in Section 3.1 and the whole notation in Section 2.1.

therein). The network we consider is one of the typical minimal configurations, which appears
often as subnetwork in more complicated situations. We denote the whole network by Γ and
compute its anisotropic length by

E(Γ) =

3∑
i=1

∫
Γi

φ◦(νi)dsi, (1.3)

where si denotes the arc length parameter of the i-th curve. Now, let γi, i = 1, 2, 3, be regular
parametrizations of Γi such that γi(0) = P i, γi(1) = Σ, i = 1, 2, 3. Furthermore, let ζi : [0, 1] →
R2, i = 1, 2, 3, be smooth functions with ζi(0) = 0, i = 1, 2, 3, and ζi(1) = ζj(1), i, j ∈ {1, 2, 3}.
For variations of type Γi

ε = im(γi + εζi), i = 1, 2, 3, we obtain that

d

dε

∣∣∣
ε=0

E(Γε) = −
3∑

i=1

∫ 1

0

(D2φ◦(νi)τ i · τ i)κiνi · ζidsi −
3∑

i=1

Dφ◦(νi(1)) · (ζi(1))⊥, (1.4)

where ⊥ denotes the anticlockwise rotation by 90 degree. From (1.4) one can derive a L2-gradient
flow with natural boundary conditions, which we will give in detail in Section 2.2 and which we
will study more in detail in this work. Note that typically a factor simulating the mobility of the
curves is included in the system, see e.g. [1].
This article is a continuation of the work presented in [23], where both short time existence for
motion by anisotropic curvature of the network Γ and the behavior at the maximal existence time
are studied: in particular there the authors show that if the maximal time of existence of the flow
is finite, then either the length of one of the curves goes to zero or the L2-norm of the anisotropic
curvature blows up. In this paper we show stability of local energy minima of (1.3). Precisely, we
show that the flow of any network, that is C2+α-close to a local energy minimum, exists globally in
time and converges to a possible different local energy minimum with the same energy. Our main
result is given in detail in Theorem 5.2. In Remark 5.3 we point out that due to our elementary
network setting and exploiting the assumptions on the anisotropy map φ◦, the energy landscape
for our functional is quite simple, in the sense that if a local minimum for E is non-degenerate
(i.e. it has a triple junction point that is distinct from Pi, i = 1, 2, 3) then it is in fact the unique
minimum for E, to which the flow converges for sufficiently close initial data. Analogous versions
of our main result restricted to the isotropic setting are presented in [22] and [30].
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Our analysis relies mainly on the application of the so called  Lojasiewicz-Simon gradient inequality.
Chill [7] established a very general framework to prove such an inequality. To make the application
easier we rely on a simplified framework from [14]. This technique has been applied successfully to
many other geometric flows, e.g. [8, 9, 17, 33, 30]. Indeed, our result and strategy is very similar to
[30]. In [30] the authors restrict to the (isotropic) curve shortening flow while our article generalizes
to the anisotropic setting. In particular the verification of the prerequisites of the  Lojasiewicz-
Simon gradient inequality is more technical due to the anisotropic angle conditions. On the other
hand [30] study general network situations. Concerning the proofs we want to note that we use
a different and elegant approach in the construction of a suitable graph parametrizations of the
evolving geometry. The proof of Lemma 3.5 works directly on the function spaces while the
construction in [30, Proposition 3.4] is done pointwise.
The paper is organized as follows. In Section 2 we will first clarify the notation, then give some
facts about anisotropies and finally sum up the needed results from [23]. In Section 3 we will
first introduce a way to track the evolution of our network as graph over a reference configuration
and show that it indeed is possible to parametrize all networks that are close enough in a certain
sense (Section 3.1). Then we will calculate the first and second variation of the anisotropic length
energy (Section 3.2) and use these results to prove a  Lojasiewicz-Simon gradient inequality (Section
3.3). In Section 4 we verify an existence and smoothing result if our flow is written in the graph
form from Section 3. Finally, we will carry out the stability analysis and prove our main result
Theorem 5.2 in Section 5.

2 Preliminaries

2.1 Notation

We will consider three curves Γ1(t),Γ2(t) and Γ3(t) in R2 meeting in a common triple junction
Σ(t) and having fixed outer boundary points. The time evolving parametrizations of these curves
over the interval [0, 1] will be denoted by γi. We will use x as space and t as time parameter.
The parametrizations are chosen such that γi(t, 1) = Σ(t) for i = 1, 2, 3, t ≥ 0. In general, the
upper index will always refer to the specific curve we are on. We will omit the upper index, if
it is either clear on which curve we are or to refer to the whole geometry. Furthermore, we use
the typical geometric quantities, such as the unit tangential vectors τ i, the unit normal vectors
νi, the curvature κi and the arc length parameter si. Hereby, the unit normal vectors arise
from the unit tangential vectors by anticlockwise 90◦-rotation. Such rotation will be denoted by
upper index ⊥. For (i, j, k) = (1, 2, 3), (2, 3, 1), (3, 1, 2) we will denote by θk(t) the angle between
νi(t, 1) and νj(t, 1) at the triple junction. Note that these angles might be not constant in time.
In case θk(t) ∈ (0, π), k = 1, 2, 3, they are related by θ1(t) + θ2(t) + θ3(t) = 2π and suitable
α̃i(t) ∈ R+, i = 1, 2, 3, fulfilling,

sin θ1(t, 1)

α̃1(t)
=

sin θ2(t, 1)

α̃2(t)
=

sin θ3(t, 1)

α̃3(t)
, (2.1)

which can be shown to be equivalent to

3∑
i=1

α̃i(t)νi(t, 1) = 0. (2.2)

A proof of the equivalence of (2.1) and (2.2) can be found in Lemma B.1. Note that (2.1) typically
appears from Young’s modulus, which is a force balance at the triple junction, see, e.g., [5] for
a mathematical motivation and [34] for a physical modelling. There, the α̃i are related to the
different energy densities of the surfaces. Furthermore, note that our assumption on the θi implies
that all α̃i have the same sign. So we may indeed choose them all positive.
For the definition of the anisotropic flow we will denote the Wulff-shape inducing anisotropy by φ
and the corresponding polar norm by φ◦. Then E(Γ) is the corresponding anisotropic curvature
energy given by

E(Γ) =

3∑
i=1

∫ 1

0

φ◦(νi)dsi.
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In the main part of the paper we will track the evolution of the considered curves as graph over
a given energy minimum Γ∗. Hereby, h will be referring to the normal and µ to the tangential
part of this parametrization. Additionally, lower index h will refer to the evaluation of a specific
quantity for the resulting curve due to this choice of h. For example, Γi

h will be the i-th curve
parameterized using h as normal part and κih will refer to the curvature on Γi

h. With some abuse of
notation E(h) will denote E(Γh). Finally, a lower index ∗ will refer to a quantity in the reference
geometry. For example, κ∗ will denote the curvature operator of Γ∗, ds∗ the length element on
Γ∗, and so on.

2.2 The geometric flow and known results

In this section we will give a precise definition of the anisotropic curve shortening flow we con-
sider. Additionally, for the reader’s convenience, we will state known results from [23] concerning
anisotropies and our flow. Note that we are being rather concise here. A more detailed introduction
can be found in [23, Section 2].
We will begin with some basic definitions and properties of anisotropies, see for example [2].

Definition 2.1 (Anisotropy).

i.) An anisotropy is a norm φ : R2 → [0,∞). We say that φ is smooth if φ ∈ C∞(R2\{0}) and
φ is elliptic if φ2 is uniformly convex, i.e., there exists C > 0 such that

D2(φ2) ≥ C Id (2.3)

in the distributional sense.

ii.) The set Wφ := {φ ≤ 0} is called Wulff shape. We say that φ is crystalline if Wφ is a
polygon.

iii.) For an anisotropy φ we introduce the polar norm φ◦ relative to φ by

φ◦(x) = sup{ζ · x|φ(ζ) ≤ 1}. (2.4)

Note that φ is smooth and elliptic if and only if φ◦ is smooth and elliptic. The following formulas
will be essential in a lot of computations we do in this article.

Lemma 2.1 (Properties of anisotropies).
Let φ be a sufficiently smooth elliptic anisotropy with ellipticity constant C. Furthermore, let
ν, τ ∈ R2 be unit vectors with ν · τ = 0 and p ∈ R2 with p ̸= 0. Then we have the following:

i.) D2φ(ν)τ · τ ≥ C̃ with C̃ := C(2 max{φ(ν̃)|ν̃ ∈ S1})−1.

ii.) Dφ(p) · p = φ(p).

iii.) D2φ(p)p = 0.

Proof. The first fact is proven in [28, Remark 1]. The other two results follow directly from the
homogeneity property of a norm.

We will need the following quantity for the definition of our flow.

Definition 2.2 (Anisotropic curvature).
Let φ be a sufficiently smooth, elliptic anisotropy and Γ a curve in R2 with the usual notation of
the geometric quantities. Additionally, denote by

N := Dφ◦(ν) (2.5)

the Cahn-Hoffmann vector. Then we define the (scalar) anisotropic curvature on Γ by

κφ := −Ns · τ = D2φ◦(ν)τ · τκ. (2.6)
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Now we are able to define the anisotropic curve shortening flow for a triple junction network
Γ(t). As our solutions will be of class C2+α for some Hölder coefficient α ∈ (0, 1), the initial
network Γ0 needs to fulfil some compatibility conditions to guarantee the existence of a solution
of such regularity. We sum up these compatibility conditions in the following definition before
we actually define solutions to our flow. For the reader’s convenience we include some basic facts
about parabolic Hölder spaces in Appendix A.

Definition 2.3 (Geometrically admissible networks).
Let P i ∈ R2, i = 1, 2, 3, and φ◦ an elliptic, smooth anisotropy. A network Γ0 is called (geometri-
cally) admissible if there exists regular parametrizations ui0 ∈ C2+α([0, 1],R2), i = 1, 2, 3 such that
Γi
0 = im(ui0), i = 1, 2, 3, and there holds

ui0(0) = P i i = 1, 2, 3,

u10(1) = u20(1) = u30(1),∑3
i=1Dφ

◦(νi0(1)) = 0,

κiφ(0) = 0 i = 1, 2, 3,

κiφ(1)φ◦(νi0(1))νi0(1) + λi0(1)τ i0(1) = κjφ(1)φ◦(νj0(1))νj0(1) + λj0(1)τ j0 (1) i, j ∈ {1, 2, 3}.

(2.7)

Hereby, the λi0 are geometrical, curvature dependent quantities on Γi
0 , which are given in detail

in [23, Section 2.0.4].

Definition 2.4 (Geometric solution and special flow).
Let T > 0, P i ∈ R2, i = 1, 2, 3, and φ◦ an elliptic, smooth anisotropy. Furthermore, let Γ0 be
an admissible network with respect to these data and the corresponding parametrizations of Γ0 be

given by ui0, i = 1, 2, 3. Then we call (ui)i=1,2,3 with ui ∈ C
2+α
2 ,2+α([0, T ) × [0, 1],R2) a geometric

solution of the anisotropic mean curvature flow, if

(uit · νi)νi = φ◦(νi)(D2φ◦(νi)τ i · τ i)κiνi on (0, T ) × (0, 1), i = 1, 2, 3,

ui(t, 0) = P i ∀t ∈ (0, T ), i = 1, 2, 3,

u1(t, 1) = u2(t, 1) = u3(t, 1) ∀t ∈ (0, T ),∑3
i=1Dφ

◦(νi(t, 1)) = 0 ∀t ∈ (0, T ),

ui(0, x) = ui0(x) up to reparametrization ∀x ∈ [0, 1], i = 1, 2, 3.

(2.8)

Up to reparametrization means that ui(0, x) = ui0(ϕi(x)) for some orientation preserving diffeo-
morphism ϕi ∈ C2+α([0, 1], [0, 1]). A geometric solution, which additionally fulfills, that

(uit · τ i)τ i = φ◦(νi)(D2φ◦(νi)τ i · τ i) u
i
xx

|uix|2
· τ iτ i on (0, T ) × (0, 1), i = 1, 2, 3, (2.9)

is called a special flow.

Remark 2.2 (Motivation of the solution and the boundary conditions).

i.) The boundary conditions (2.8)2 − (2.8)4 are natural for the geometric gradient flow. The
first two just fix the motion of the boundary points of the curves. The third one follows by
considering the variation of E, c.f. (1.4), if one wants to establish a natural L2-gradient
flow structure.

ii.) Note that the fact that (2.8)1 only fixes the motion in normal direction is normal for a
PDE system describing a geometric evolution. Tangential movements will not change the
geometry and thus have no influence on the geometric evolution law. But as we track the
geometric evolution using diffeomorphisms, we are not considering the geometric problem
itself anymore but the motion of particles of the curves. Such equations necessarily needs
additional information for the tangential motion not to be degenerated. To fix this we have
to make a choice for the tangential part. One - but not the only - possible choice is (2.9),
which gives us a well-defined system.
To see this from the point of view of partial differential equations note that the special flow
gives us that

uit = φ◦(νi)(D2φ◦(νi)τ i · τ i) u
i
xx

|ux|2
.
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Due to Lemma 2.1i.) the factor before uixx has a positive sign and therefore the whole equation
has the structure of quasilinear, parabolic equation. In the isotropic case this is very clear to
see, as the special flow reduces to ut = uxx

|ux|2 .

iii.) Observe that the positive factor φ◦(νi) in (2.8)1 does not come from the gradient flow struc-
ture with respect to the anisotropic surface energy E. Still such a factor is natural to be
included as it models the mobility, see e.g. [1].

iv.) Note that up to reparametrization all geometric solutions coincide with the special flow so-
lution, cf. [23, Lemma 4.1].

v.) The compatibility conditions (2.7) are a direct consequence from the boundary conditions

(2.8)2−(2.8)4 for solutions of class C
2+α
2 ,2+α. The first three are just the boundary conditions

postulated for the initial data. The others appear due to the fact that we can differentiate
(2.8)2 and (2.8)3 in time. As the precise formula of the λi will be not important for our
analysis, we do not provide the formula in this work.

In [23] the following short time existence result was proven.

Theorem 2.3 (Short time existence for the geometric flow).
Let P i ∈ R2, i = 1, 2, 3, α ∈ (0, 1) and φ (resp. φ◦) be a smooth, elliptic anisotropy. Furthermore,
let ui0 ∈ C2+α([0, 1],R2), i = 1, 2, 3 be regular maps fulfilling (2.7). Then there exists a TSTE > 0

and regular maps ui ∈ C
2+α
2 ,2+α([0, TSTE ] × [0, 1],R2) i = 1, 2, 3, such that (2.8) are fulfilled.

Additionally, we have that ui ∈ C∞((0, TSTE ] × [0, 1],R2), i = 1, 2, 3.

Proof. The proof is given in Theorem [23, Theorem 4.1] and hinges on the short time existence of
the special flow (recall (2.9) and see [23, Theorem 3.1] and [23, Corollary 3.1]).

3 Parametrization and  Lojasiewicz-Simon inequality

3.1 Parametrization as graphs over reference frames

In order to be able to prove a  Lojasiewicz-Simon inequality (short LSI) we have to eliminate the
typical tangential degeneracy of the flow. For this we use an idea introduced in [12]. Precisely, we
want to track the evolution of Γ(t) as graph over a reference frame Γ∗, for which we will fix some
assumptions for the rest of this article.

Assumption 3.1 (Assumptions for Γ∗).
In the rest of this article Γ∗ will be a fixed local minimum of E. Hereby, we say that Γ∗ -
parametrized by some γ∗ - is a local minimum, if there is a δ > 0 such that for all triple junction
networks Γ̃ with the same fixed endpoints parametrized by some γ̃ with ∥γ∗ − γ̃∥H2 ≤ δ we have
that E(Γ∗) ≤ E(Γ̃). In particular, Γ∗ consists of three curves Γi

∗ with zero curvature, i.e., three
straight lines. The three lines start in the points P i and then meet in a common triple junction
where the normal vectors νi∗(1) fulfill (2.8)4. As the normal and tangent vector are constant on
each Γi

∗, we will omit the space variable for them.
Additionally, we require the contact angles θi∗ to fulfill

∀i = 1, 2, 3 : θi∗ ∈ (0, π), θ1∗ + θ2∗ + θ3∗ = 2π. (3.1)

Then, by (2.1) we can find positive α̃i
∗ ∈ R+, i = 1, 2, 3, such that

3∑
i=1

α̃i
∗ν

i
∗ = 0. (3.2)

We fix a triplet (α̃1
∗, α̃

2
∗, α̃

3
∗). Finally, we fix for i = 1, 2, 3 any regular parametrizations γi∗ of Γi

∗
such that

(γi∗)′(1) = τ i∗. (3.3)
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Remark 3.2. Note that by the assumptions on the anisotropy map equation (3.1) is automatically
realized. To see this first of all observe that the assumption that φ◦ is an elliptic smooth anisotropy
yields that the unit balls ∂Bφ◦ and ∂Bφ are strictly convex, i.e. they contain no straight segments
(cf. for instance [32, §. 2]). Now let νi ∈ R2 be Euclidean unit vectors |νi| = 1, such that (2.8)4
is fulfilled, i.e.

3∑
i=1

Dφ◦(νi) = 0

and set ξi = νi

φ◦(νi) . Then φ◦(ξi) = 1 for i = 1, 2, 3. Moreover Dφ◦(νi) = Dφ◦(ξi) is normal to

∂Bφ◦ in the point ξi ∈ ∂Bφ◦ . Furthermore it holds φ(Dφ◦(νi)) = 1. Due to the strict convexity
of the balls the correspondence

∂Bφ◦ ∋ ξi → Dφ◦(νi) ∈ ∂Bφ

is bijective.
If the angle θ3 between the vectors ν1 and ν2 (or equivalently between ξ1 and ξ2) were equal to
π, then, using the symmetry of the unit ball, we infer ξ1 = −ξ2, and therefore also Dφ◦(ξ1) =
−Dφ◦(ξ2), that is Dφ◦(ν1) = −Dφ◦(ν2). But then we obtain a contradiction since

0 =

3∑
i=1

Dφ◦(νi) = Dφ◦(ν3) ̸= 0.

If the angle θ3 between the vectors ν1 and ν2 (or equivalently between ξ1 and ξ2) were equal

to 0, then ξ1 = ξ2 and hence Dφ◦(ν1) = Dφ◦(ν2). From 0 =
∑3

i=1Dφ
◦(νi) it follows that

2Dφ◦(ν1) = −Dφ◦(ν3) yielding again a contradiction since then

2 = φ(2Dφ◦(ν1)) = φ(−Dφ◦(ν3)) = 1.

Finally, if the angle θ3 between the vectors ν1 and ν2 (or equivalently between ξ1 and ξ2) lied
in (π, 2π), then using the strict convexity of ∂Bφ◦ we infer that the vectors Dφ◦(νi) (which are

normal to ∂Bφ◦ in ξi) point in the same half plane contradicting the fact that 0 =
∑3

i=1Dφ
◦(νi).

Note that this section and Section 4 do not require Γ∗ to be a local minimum. But the proof of
our main result Theorem 5.2 uses the property of local decrease of the energy.
Now, we can define curves Γi

h,µ by

Γi
h,µ := im(γih,µ : [0, 1] → R2), γih,µ(x) : = γi∗(x) + hi(x)νi∗(x) + µi(x)τ i∗(x) (3.4)

= γi∗(x) + hi(x)νi∗ + µi(x)τ i∗.

Hereby, h and µ are scalar functions tracking the displacement in normal and tangential direction.
Clearly, if we want to guarantee the preservation of the triple junction at x = 1, we will need some
boundary conditions at x = 1. With this in mind we give the following result.

Lemma 3.3 (Relation between normal and tangential part).
Let Γ∗, α̃

i
∗ be as in Assumption 3.1. Consider for i = 1, 2, 3 regular curve parametrizations Φi :

[0, 1] → R2. Furthermore let N i, T i ∈ R for i = 1, 2, 3 be such that

Φi(1) − Σ∗ = N iνi∗ + T iτ i∗. (3.5)

Hereby, the unique existence of such N i, T i is clear due to the fact that for all i = 1, 2, 3 the pair
(νi∗, τ

i
∗) forms a basis of R2. Then the triple junction condition

Φ1(1) = Φ2(1) = Φ3(1) (3.6)

is equivalent to the conditions

0 =

3∑
i=1

α̃i
∗N

i, (3.7)

T 1

T 2

T 3

 = I

N1

N2

N3

 , I =

 0 c2

s1 − c3

s1

− c1

s2 0 c3

s2
c1

s3 − c2

s3 0

 , (3.8)

with si = sin θi∗ and ci = cos θi∗.
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Proof. The proof is carried out in [12, Lemma 2.3] for the case where the Φi are of the form as in
(3.4). The proof there only relies on the geometric situation at the triple junction, i.e., what is the
motion of Σ∗ in direction of νi∗(1) and τ i∗(1) for i=1,2,3. Due to (3.5) we retrieve this information
from the Φi. Therefore, we can apply the same proof in the general situation.
Note that the conditions (3.7) and (3.8) simply arise from forming a linear equation system out
of the triple junction preservation condition Φi(1) = Φj(1) for i, j ∈ {1, 2, 3}.

Remark 3.4 (On the Matrix I in (3.8)).
A straightforward calculation shows that det(I) = 0, so I has a kernel. This might be irritating
at first as a triple junction preserving motion will need a tangential part, if the normal motion is
unequal to zero. To see that this is indeed true, assume that (N1, N2, N3)T ∈ R3 fulfills (3.7).
Observe that vectors solving (3.7) are in the hyperplane spanned by v = (0,−(α̃2

∗)−1, (α̃3
∗)−1)T and

w = (−(α̃1
∗)−1, 0, (α̃3

∗)−1)T . Then, we have

Iv =


− c2

s1α̃2
∗
− c3

s1α̃3
∗

c3

s2α̃3
∗

c2

s3α̃2
∗

 , Iw =


− c3

s1α̃3
∗

c1

s2α̃1
∗

+ c3

s2α̃3
∗

− c1

s3α̃1
∗

 .

We see directly that neither Iv = 0 nor Iw = 0 holds, as this would imply c2 = c3 = 0 resp.
c1 = c3 = 0 and thus θ2, θ3 ∈ {π

2 ,
3π
2 } resp. θ1, θ3 ∈ {π

2 ,
3π
2 }. But this would contradict (3.1).

Now assume that there is a d ̸= 0 with dIv = Iw. The discussion of the system so obtained yields
c2 = c3 = 0. So again, we have that θ2, θ3 ∈ {π

2 ,
3π
2 }, which contradicts (3.1). In total, we see

that for any normal part fulfilling (3.7) the tangential part given by (3.8) does not vanish.

Lemma 3.3 tells us in particular that the preservation of the triple junction eliminates the tan-
gential degree of freedom at x = 1. Indeed, we want to eliminate the tangential degree of freedom
also for all x ∈ [0, 1). The reason for this is that otherwise we will have problems in the verification
of the  Lojasiewicz-Simon gradient inequality in Section 3.3. Now the idea is to use (3.8) for every
x ∈ [0, 1] to get µ as function in h. Precisely, we proceed as in the following definition.

Definition 3.1 (Definition of tangential component µ = µ(h)).
For any h ∈ (C([0, 1],R))3 fulfilling (3.7) we define µ = µ(h) ∈ (C([0, 1],R))3 by

∀x ∈ [0, 1], i = 1, 2, 3 : µ(h)(x) = I

h1(x)
h2(x)
h3(x)

 (3.9)

where I is as in (3.8).

Note that the fixed point boundary condition at x = 0 is then equivalent to h = 0 and h = 0
implies µ(h) = 0. The curve resulting from a specific choice of h together with µ(h) will be denoted
by Γi

h and, if not stated otherwise, µ will always be this specific choice depending on h. Now, we
have to see that this kind of parametrization is universal in the sense that every network Γ, which
is C2+α-close to Γ∗, can indeed (up to reparametrization) be written in the form (3.4). This result
is stated in the following lemma.

Lemma 3.5 (Existence of reference frame graph parametrization).
Let Γ∗, γ

i
∗, α̃

i
∗, i = 1, 2, 3 be as in Assumption 3.1 and α ∈ (0, 1). Then, there exists σ(Γ∗, α) > 0

such that any regular parametrizations (γi)i=1,2,3 with

γi ∈ C2+α([0, 1],R2), γi(0) = γi∗(0), γ1(1) = γ2(1) = γ3(1) (3.10)

and

3∑
i=1

∥γi∗ − γi∥C2+α([0,1],R2) ≤ σ(Γ∗, α), (3.11)

there exists for i = 1, 2, 3 functions hi, µi ∈ C2+α([0, 1],R) fulfilling (3.9) and reparametrizations
Φi : [0, 1] → [0, 1] of class C2+α such that

∀x ∈ [0, 1], i = 1, 2, 3 : (γi ◦ Φi)(x) = γi∗(x) + hi(x)νi∗ + µi(x)τ i∗. (3.12)
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Moreover, for any δ > 0 there is σ̃ ∈ (0, σ(Γ∗, α)) such that

3∑
i=1

∥γi∗ − γi∥C2+α([0,1],R2) ≤ σ̃ ⇒
3∑

i=1

∥hi∥C2+α([0,1]) + ∥Φi(x) − Id[0,1]∥C2+α([0,1]) ≤ δ. (3.13)

Proof. The proof is very similar to the proof of [9, Lemma 4.1]. The main difference is the
triple junction geometry and - as a consequence - that we have a tangential part in the sought
reparametrization. Nevertheless, the main idea is to construct the reparametrization using the
implicit function theorem (cf. Theorem C.1).
Before we start with the proof itself we want to give a short motivation for it. For technical
reasons we will loose one order of differentiability in the construction of Φ and h. Afterwards we
can regain it by an implicit differentiation. To that end it is convenient that Φ and h do not appear
as free independent parameters. Therefore, we have to find a formulation which only needs Φ as
a independent parameter. By rearranging (3.12) we see that for its solutions we have that(

(γi ◦ Φi)(x) − γi(x)
)
· νi∗ = hi,

(
(γi ◦ Φi)(x) − γi(x)

)
· τ i∗ = µi. (3.14)

Additionally, we want the relationship (3.9) to be fulfilled. Plugging these two facts together
allows us to to find a suitable functional analytic setting. We just choose a functional, which tests
if (3.9) is fulfilled for h and µ given by (3.14).
To begin with we have to introduce some functions spaces. We set

X := {(γiP )i=1,2,3 ∈ C2+α([0, 1],R2)|(∀i = 1, 2, 3 : γiP (0) = 0) ∧ γ1P (1) = γ2P (1) = γ3P (1)},
Y := {(Φi

P )i=1,2,3 ∈ (C1+α([0, 1],R))3|∀i = 1, 2, 3, x = 0, 1 : Φi
P (x) = 0},

D := {g ∈ C1+α([0, 1],R3)|g(0) = 0 ∧ g(1) = 0}.

Before we can actually define the function to use the implicit function theorem on, we have to
choose suitable subsets in the spaces above. This is to ensure that the whole construction will
be well-defined. For this let 0 ∈ U ⊂ X be an open neighborhood of zero such that γi∗ + γiP is
immersed and regular for all i = 1, 2, 3 and (γiP )i=1,2,3 ∈ U . Furthermore, let 0 ∈ V ⊂ Y be an
open neighborhood such that

∥(Φi
P )′∥∞ <

1

2
(3.15)

for all i = 1, 2, 3 and (Φi
P )i=1,2,3 ∈ V . The reason we want to have (3.15) is, that it guarantees

that for all (Φi
P )i=1,2,3 ∈ V we have that Id[0,1] +Φi

P is a C1-diffeomorphism for all i = 1, 2, 3. To

see this note that with (3.15) we have pointwise that |(Id[0,1] +Φi
P )′| ≥ 1

2 > 0. Thus, Id[0,1] +Φi
P is

strictly increasing on [0, 1] and with (Id[0,1] +Φi
P )(0) = 0 and (Id[0,1] +Φi

P )(1) = 1, which hold due
to the boundary conditions in Y , it follows bijectivity. Additionally, the inverse function theorem
yields the fact that we have a C1-diffeomorphism.
Now we define the map

F : U × V → D,

(γP , ΦP ) 7→
(
[(γi∗ + γiP ) ◦ (Id[0,1] + Φi

P ) − γi∗] · τ i∗
)
i=1,2,3

− I
(
[(γi∗ + γiP ) ◦ (Id[0,1] + Φi

P ) − γi∗] · νi∗
)
i=1,2,3

,

where I is the matrix from (3.8). As we already saw before, the first summand is just the
tangential part µ and the vector after I is the normal part h, which we would regain from the
choice Id[0,1] + ΦP as reparametrization. Thus, F checks if the pair (h, µ) resulting from the
reparametrization Id[0,1] +ΦP fulfills (3.9). Note that the right-hand side is indeed of class C1+α.

To see this observe that the composition of Ck+α-functions is again in Ck+α for k ≥ 1, cf. [10,
Remark B.4]. Thus, we obtain that (γi∗ +γP )◦ (Id[0,1] +ΦP ) ∈ C1+α. Additionally, the right-hand
side fulfills the boundary conditions at x = 0 and x = 1 included in the definition of the space D.
For this note that in both points we have due to the boundary values of ΦP that

F (γP , ΦP ) =
(
γiP · τ i∗

)
i=1,2,3

− I
(
γiP · νi∗

)
i=1,2,3

.
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Now, F (γP , ΦP )(0) = 0 is clear due to γP (0) = 0. On the other hand, F (γP , ΦP )(1) = 0 follows
from Lemma 3.3. In total, we see that F is well-defined. Furthermore, F is clearly continuous.
We now have to study the Fréchet-derivative with respect to the second component, which we will
denote in the following by ∂2. This reduces to the Fréchet-derivative of (γi∗ + γiP ) ◦ (Id[0,1] + Φi

P ).

For this we observe for (γP , ΦP ) ∈ U × V, Φ̃P ∈ Y small enough and i = 1, 2, 3 that we have
pointwise

(γi∗ + γiP ) ◦ (Id[0,1] + Φi
P + Φ̃i

P ) − (γi∗ + γiP ) ◦ (Id[0,1] + Φi
P ) − Φ̃i

P (∂x(γi∗ + γiP )) ◦ (Id[0,1] + Φi
P )

=

∫ 1

0

Φ̃i
P [∂x(γi∗ + γiP ) ◦ (Id[0,1] + Φi

P + tΦ̃i
P ) − ∂x(γi∗ + γiP ) ◦ (Id[0,1] + Φi

P )]dt.

Using the monotonicity of the integral we conclude that

∥(γi∗ + γiP ) ◦ (Id[0,1] + Φi
P + Φ̃i

P ) − (γi∗ + γiP ) ◦ (Id[0,1] + Φi
P ) − Φ̃i

P (∂x(γi∗ + γiP )) ◦ (Id[0,1] + Φi
P )∥C1+α([0,1],R)

∥Φ̃i
P ∥C1+α([0,1],R)

≤
∫ 1

0

∥∂x(γi∗ + γiP ) ◦ (Id[0,1] + ΦP + tΦ̃P ) − ∂x(γi∗ + γiP ) ◦ (Id[0,1] + ΦP )∥C1+α([0,1],R)dt.

Using again [10, Remark B4] we see that the integrand tends to zero uniformly in t for ∥Φi
P ∥C1+α([0,1],R) →

0. This shows that ∂2F exists on U × V and is given by

∂2F (γP , ΦP ) : Y → D,

Φ̃P 7→
(

[Φ̃i
P∂x(γi∗ + γiP ) ◦ (Id[0,1] + Φi

P )] · τ i∗
)
i=1,2,3

− I
(

[Φ̃i
P∂x(γi∗ + γiP ) ◦ (Id[0,1] + Φi

P )] · νi∗
)
i=1,2,3

.

Clearly, ∂2F is continuous in (0, 0) and we have that

∂2F (0, 0)Φ̃P =
(

[Φ̃i
P∂xγ

i
∗ ◦ Id[0,1]] · τ i∗

)
i=1,2,3

− I
(

[Φ̃i
P∂xγ

i
∗ ◦ Id[0,1]] · νi∗

)
i=1,2,3

=
(
Φ̃i
P (∂xγ

i
∗ · τ i∗)

)
i=1,2,3

= diag(∂xγ
1
∗ · τ1∗ , ∂xγ2∗ · τ2∗ , ∂xγ3∗ · τ3∗ )Φ̃P .

Due to Assumption 3.1 we have that diag(∂xγ
1
∗ · τ1∗ , ∂xγ2∗ · τ2∗ , ∂xγ3∗ · τ3∗ )−1 exists and is smooth.

Therefore, we see immediately that ∂2F (0, 0) is bijective.
Finally, we see that

F (0, 0) =
(
(γi∗ − γi∗) · τ i∗

)
i=1,2,3

− I
(
(γi∗ − γi∗) · νi∗

)
i=1,2,3

= 0.

In total we have shown that all prerequisites to apply the implicit function theorem (see Theo-
rem C.1) are valid. This gives us the existence of σ > 0 and r > 0 such that Bσ(0)×Br(0) ⊂ U×V
and that for any γP ∈ U with ∥γ∥X ≤ σ we have exactly one ΦP (γ) ∈ V with ΦP ∈ Br(0) such
that F (γP , ΦP (γ)) = 0. Consequently, we can write any family of curves of the form γ∗ + γP with
γ ∈ Bσ(0) in the form (3.4) by choosing Id[0,1] + ΦP (γ) as reparametrization and

h = [(γ∗ + γP ) ◦ (Id[0,1] + ΦP ) − γ∗] · ν∗. (3.16)

Now we have to verify the C2+α-regularity of ΦP , which then directly implies the C2+α-regularity
of h. This is done by implicit differentiation, i.e., differentiating the identity F (γP , ΦP (γP )) = 0
with respect to the space variable. This yields that

0 =
(
[(1 + ∂xΦ

i
P (γP ))∂x(γi∗ + γiP ) ◦ (Id[0,1] + Φi

P (γP )) − ∂xγ
i
∗] · τ i∗

)
i=1,2,3

− I
(
[(1 + ∂xΦ

i
P (γP ))∂x(γi∗ + γiP ) ◦ (Id[0,1] + Φi

P (γP )) − ∂xγ
i
∗] · νi∗

)
i=1,2,3

.

This can be rearranged to

A(γP )(1 + ∂xΦ
i
P (γP ))i=1,2,3 = (∂xγ

i
∗ · τ i∗)i=1,2,3 − I

(
∂xγ

i
∗ · νi∗

)
i=1,2,3

= (∂xγ
i
∗ · τ i∗)i=1,2,3, (3.17)

with

A(γP ) = diag(
(
[∂x(γi∗ + γiP ) ◦ (Id[0,1] + Φi

P (γP ))] · τ i∗
)
i=1,2,3

)

− Idiag(
(
[∂x(γi∗ + γiP ) ◦ (Id[0,1] + Φi

P (γP ))] · νi∗
)
i=1,2,3

).
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Note that

A(0) = diag(
(
∂xγ

i
∗ · τ i∗

)
i=1,2,3

),

which is invertible due to Assumption 3.1. Thus, for γiP and Φi
P (γP ) close enough to 0 in the

C1+α-norm we see that A(γP )−1 exists and has entries in C1+α using Cramer’s rule and the
general properties of Hölder continuous functions . Then (3.17) shows that ∂xΦP is in C1+α and
thus ΦP is in C2+α.
The second part of the claim follows by the fact that due to the regularity of F the mapping
γ → ϕ(γP ) is continuous, (3.17) and (3.16). The precise calculations are similar to [9, Appendix
B.5].

3.2 Variational formulas

In this section we want to study the anisotropic energy E(·) as a functional on function spaces
suitable for the LSI approach we want to use later in the stability analysis. Precisely, we consider
the functional

E : h 7→ E(Γh,µ),

where Γh,µ is the network given by (3.4) (with Γ∗ a reference geometry fulfilling Assumption 3.1),
h = (hi)i=1,2,3 is a triplet of sufficiently smooth height functions and µ = µ(h) is the tangential
part according to Definition 3.1.
Note that as already mentioned in Section 2.1 we will usually denote Γh,µ by Γh. Also, we will
denote by a lower index h a geometric quantity of the curve Γh. For example, νh will denote the
unit normal of Γh.
We will calculate the first and second variation of E, which are essential for the application [14,
Theorem 2] (and also the original work [7], which is the foundation to most works on this topic).
For the reader’s convenience we state [14, Theorem 2] in the Appendix as Theorem C.2. Note that
we changed the notation from the original article in the way we will use it in this article. We set

V :=

{
h ∈ H2([0, 1])3|

3∑
i=1

α̃i
∗h

i(1) = 0,∀i = 1, 2, 3 : hi(0) = 0

}
, (3.18)

W := L2([0, 1])3 × R2, (3.19)

V ⊂W : ((hi)i=1,2,3) 7→ ((hi)i=1,2,3, 0, 0), (3.20)

W ⊂ V ′ : ((ui)i=1,2,3, a
1, a2) 7→

(
(vi)i=1,2,3 7→

3∑
i=1

∫ 1

0

uividx+ a1v1(1) + a2v2(1)

)
. (3.21)

Before we move on, we want to give some more explanations on the four lines above. The real
Banach space V gives us the domain for the height functions (and thus the considered curves Γh).
As the application of Theorem C.2 basically involves solving an elliptic PDE of second order on
Γ∗, we will need boundary conditions, which fit to the boundary conditions of our flow. Therefore,
we encode (2.8)2 − (2.8)3 in the definition of the space V for the height function h (see the results
from Lemma 3.3 and Remark 3.4). The condition (2.8)4 cannot be encoded directly into V and
will therefore appear as a part of the gradient of E. This is the reason why we have the factor R2

in the space W . Now, the embedding W ⊂ V ′ defines us in which way we consider the gradient
of the energy functional E (see for this the definition of gradient maps in Definition C.1) and the
first factor of W determines how the gradient is measured. As we saw in the introduction that our
flow is a L2-gradient flow of the anisotropic length functional, these are reasonable choices. To
fully understand the choices one has to go through the calculations in Section 5, especially (5.7).
Finally, we want to mention that we choose the above spaces in order to apply Theorem C.2 easily.
To work with the precise gradient structure of our flow we will need a more geometric version of
Theorem 3.11. We will prove this version in the beginning of Section 5.
Now with the setting having been introduced we can calculate the variations of E : V → R and
write them as elements of W , i.e., as M, whereby M is a gradient map as in Definition C.1. To
clarify the notation we note that when we write the first variation of E, we have that

E′(h0)h1 =
d

dε

∣∣∣
ε=0

E(γh0
+ εh1ν∗ + εµ1τ∗), (3.22)
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with γh0
= γ∗ + h0ν∗ + µ0τ∗, and µ1 = µ(h1) resp. µ0 = µ(h0) according to Definition 3.1.

Lemma 3.6 (First Variation of E).
There is an open neighborhood U ⊂ V of 0 such that for any h0, h1 ∈ U we have that

E′(h0)h1 = −
3∑

i=1

∫ 1

0

(D2φ◦(νih0
)τ ih0

· τ ih0
)κih0

νih0
· (hi1ν

i
∗ + µi(h1)τ i∗) dsih0

(3.23)

−
3∑

i=1

Dφ◦(νih0
(1)) · (hi1(1)νi∗(1) + µi(h1)(1)τ i∗(1))⊥.

For the corresponding gradient M with respect to the embedding W ⊂ V ′ yielding

E′(h0)h1 = ⟨h1,M(h0)⟩V×V ′ =

3∑
i=1

∫ 1

0

hi1u
idsi∗ + a1h11(1) + a2h21(1)

we have that

M(h0) = ((ui)i=1,2,3, a
1, a2) (3.24)

with

ui =
[
− (D2φ◦(νih0

)τ ih0
· τ ih0

)κih0
(νih0

· νi∗) + (D2φ◦(νi+1
h0

)τ i+1
h0

· τ i+1
h0

)κi+1
h0

(νi+1
h0

· τ i+1
∗ )

ci

si+1

− (D2φ◦(νi+2
h0

)τ i+2
h0

· τ i+2
h0

)κi+2
h0

(νi+2
h0

· τ i+2
∗ )

ci

si+2

]
J i
h,

a1 = Dφ◦(ν1h0
) · τ1∗ +

c1

s2
Dφ◦(ν2h0

) · ν2∗ − c1

s3
Dφ◦(ν3h0

) · ν3∗

− α̃1
∗
α̃3
∗

(
Dφ◦(ν3h0

) · τ3∗ +
c3

s1
Dφ◦(ν1h0

) · ν1∗ − c3

s2
Dφ◦(ν2h0

) · ν2∗
)
, evaluated at x = 1

a2 = Dφ◦(ν2h0
) · τ2∗ +

c2

s3
Dφ◦(ν3h0

) · ν3∗ − c2

s1
Dφ◦(ν1h0

) · ν1∗

− α̃2
∗
α̃3
∗

(
Dφ◦(ν3h0

) · τ3∗ +
c3

s1
Dφ◦(ν1h0

) · ν1∗ − c3

s2
Dφ◦(ν2h0

) · ν2∗
)
, evaluated at x = 1.

Hereby, all appearing upper indices are to be understood modulo 3 plus 1, i.e., 4 equals 1, 5 equals
2 and 6 equals 3. Also, we denote by J i

h the length element of Γi
h, i.e.,

dsih = J i
hdx.

Proof. The first formula (3.23) is a direct consequence from [23, P. 7] applied to the specific
variation (3.22). Now to rewrite this as a gradient with respect to W ⊂ V ′, we have to write the
µi(h1) in terms of the hi1. Using (3.8) we have that

µ1(h1)τ1∗ =

(
c2

s1
h21 −

c3

s1
h31

)
τ1∗ ,

µ2(h1)τ2∗ =

(
c3

s2
h31 −

c1

s2
h11

)
τ2∗ ,

µ3(h1)τ3∗ =

(
c1

s3
h11 −

c2

s3
h21

)
τ3∗ .

In other words

µi(h1)τ i∗ =

(
ci+1

si
hi+1
1 − ci+2

si
hi+2
1

)
τ i∗ i = 1, 2, 3.

Then the result for the ui follows by sorting the terms from the µi(h1) by hi1. For the boundary
terms it is a bit more complicated as we also have to rewrite h31 in terms of h11 and h21 as we can
only have two components here. To begin with we observe - again using (3.8) and the facts that
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(νi∗)⊥ = −τ i∗ and (τ i∗)⊥ = νi∗ - that the boundary terms at x = 1 - so the second line in (3.23) -
equals

−
3∑

i=1

Dφ◦(νih0
(1)) · (hi1(1)νi∗(1) + µi(h1)(1)τ i∗(1))⊥

=

3∑
i=1

hi1

(
Dφ◦(νih0

) · τ i∗ +
ci

si+1
Dφ◦(νi+1

h0
) · νi+1

∗ − ci

si+2
Dφ◦(νi+2

h0
) · νi+2

∗

) ∣∣∣
x=1

.

To rewrite h31 we observe that

h31 = − α̃
1
∗
α̃3
∗
h11 −

α̃2
∗
α̃3
∗
h21. (3.25)

Again resorting terms gives the sought formulas.

Before we also give formulas for the second variation of E in 0 we recall that for h0, h1 ∈ V we
have that

E′′(0)h0h1 =
d

dε

d

dη

∣∣∣
ε=0,η=0

E(γ∗ + εh0ν∗ + ηh1ν∗ + εµ0τ∗ + ηµ1τ∗).

again with µ1 = µ(h1) resp. µ0 = µ(h0) according to Definition 3.1. Note that due to Defini-
tion C.1 we can use E′′(0) to calculate M′(0).

Lemma 3.7 (Second Variation of E in 0).
For any h0, h1 ∈ V we have that

E′′(0)h0h1 = −
3∑

i=1

∫ 1

0

(D2φ◦(νi∗))τ i∗ · τ i∗)

(
(hi0)′′

|(γi∗)′|2
− (hi0)′⟨(γi∗)′′, τ i∗⟩

|(γi∗)′|3

)
hi1ds

i
∗ (3.26)

+

3∑
i=1

(hi0)′(1)hi1(1)
(
D2φ◦(νi∗(1))τ i∗(1) · τ i∗(1)

)
.

As a consequence we obtain for M′(0)

E′′(0)h0h1 = ⟨h1,M′(0)(h0)⟩V×V ′ =

3∑
i=1

∫ 1

0

hi1u
idsi∗ + a1h11(1) + a2h21(1)

that

M′(0)(h0) = ((ui)i=1,2,3, a
1, a2) (3.27)

with

ui = −(D2φ◦(νi∗))τ i∗ · τ i∗)

(
(hi0)′′

|(γi∗)′|2
− (hi0)′⟨(γi∗)′′, τ i∗⟩

|(γi∗)′|3

)
J i
∗,

a1 = (h10)′(1)D2φ◦(ν1∗(1))τ1∗ (1) · τ1∗ (1) − α̃1
∗
α̃3
∗

(h30)′(1)D2φ◦(ν3∗(1))τ3∗ (1) · τ3∗ (1),

a2 = (h20)′(1)D2φ◦(ν2∗(1))τ2∗ (1) · τ2∗ (1) − α̃2
∗
α̃3
∗

(h30)′(1)D2φ◦(ν3∗(1))τ3∗ (1) · τ3∗ (1).

Hereby, the J i
∗ denote the length element of Γi

∗, i.e.,

dsi∗ = J i
∗dx.

Proof. Before we calculate E′′(0) we observe that due to the homogeneity of the norm we have
for a network Γ parametrized by (γi)i=1,2,3 that

E(Γ) =

3∑
i=1

∫
Γi

φ◦(νi)dsi =

3∑
i=1

∫ 1

0

φ◦((γix)⊥|(γi)x|−1)|γix|dx =

3∑
i=1

∫ 1

0

φ◦((γix)⊥)dx.
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Using this identity and the fact that τ i∗ and νi∗ are constant on Γi
∗ for i = 1, 2, 3, we see directly

that

E′′(0)h0h1 =

3∑
i=1

∫ 1

0

D2φ◦((γi∗)⊥x )((hi0)′νi∗ + (µi(h0))′τ i∗)⊥((hi1)′νi∗ + (µi(h1))′τ i∗)⊥dx

=

3∑
i=1

∫ 1

0

|(γi∗)x|−1D2φ◦(νi∗)((hi0)′νi∗ + (µi(h0))′τ i∗)⊥((hi1)′νi∗ + (µi(h1))′τ i∗)⊥dx

=

3∑
i=1

∫ 1

0

|(γi∗)x|−1(D2φ◦(νi∗)τ i∗ · τ i∗)(hi0)′(hi1)′dx.

Here, we used in the second line the homogeneity of φ◦ and in the third line Lemma 2.1iii.). Now
using integration by parts we see that

E′′(0)h0h1 = −
3∑

i=1

∫ 1

0

(D2φ◦(νi∗))τ i∗ · τ i∗)

(
(hi0)′′

|(γi∗)′|
− (hi0)′⟨(γi∗)′′, τ i∗⟩

|(γi∗)′|2

)
hi1dx

+

3∑
i=1

[
|(γi∗)x|−1(hi0)′hi1

(
D2φ◦(νi∗)τ i∗ · τ i∗

)]1
0

= −
3∑

i=1

∫ 1

0

(D2φ◦(νi∗))τ i∗ · τ i∗)

(
(hi0)′′

|(γi∗)′|2
− (hi0)′⟨(γi∗)′′, τ i∗⟩

|(γi∗)′|3

)
hi1ds

i
∗

+

3∑
i=1

(hi0)′(1)hi1(1)
(
D2φ◦(νi∗(1))τ i∗(1) · τ i∗(1)

)
.

Hereby, we used in the second step the boundary conditions for hi1 due to the definition of V and
(3.3). In total we showed (3.26).
Concerning the second part of the claim, the formula for the ui is trivial. For the boundary terms
we will use the abbreviation

Di := D2φ◦(νi∗(1))τ i∗(1) · τ i∗(1). (3.28)

Using (3.25) we can rewrite the boundary terms to

(h10)′(1)h11(1)D1 + (h20)′(1)h21(1)D2 + (h30)′(− α̃
1
∗
α̃3
∗
h11(1) − α̃2

∗
α̃3
∗
h21(1))D3.

Sorting the terms by h11(1) and h21(1) gives the wished result.

3.3  Lojasiewicz-Simon gradient inequality

In this section we will show the prerequisites to apply Theorem C.2. These are analyticity of
M : U →W for some neighborhood 0 ∈ U ⊂ V and that M′(0) : V →W is a Fredholm operator
of index 0. We will do this in Lemma 3.9 and Lemma 3.10. Before we tackle the first result, we
shortly recall the definition of analytic operators (see, e.g., [40, Definition 8.8]) and some basic
properties.

Definition 3.2 (Analytic operator).
Let X,Y be Banach spaces and U ⊂ X open. A map f : U → Y is analytic in x0 ∈ U if there is
a sequence (ak)k∈N0

, where ak : Xk → Y is a k-linear, symmetric and continuous map for each
k ∈ N0, such that on a neighborhood of x0 we have that

∞∑
k=0

∥ak∥ ∥x− x0∥kX converges and f(x) =

∞∑
k=0

ak(x− x0)k.

Note that when we write ak(x− x0)k we mean ak(x− x0, · · · , x− x0︸ ︷︷ ︸
k−times

).
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Lemma 3.8 (Properties of analytic function).
Let X,Y, Ỹ , Z Banach spaces, U ⊂ X open, f1, f2 : U → Y, g : U → Ỹ analytic in x0 ∈ U and
g̃ : Ỹ → Z analytic in im(g). Then we have the following properties.

i.) Analyticity in one point implies analyticity in a neighborhood of that point.

ii.) f1 + f2 : U → Y is analytic in x0.

iii.) If · : Y × Ỹ → Z is a bilinear, continuous mapping, then

f1 · g : U → Z, x 7→ f1(x) · g(x),

is analytic in x0.

iv.) The map g̃ ◦ g : U → Z is analytic in x0.

v.) Any bounded affine map is analytic.

Proof. The first part follows directly from the definition of analyticity. For ii.) we just add the
power series. For iii.) one can argue similar to the situation for the Cauchy product of real valued
analytic functions. Part iv.) is for example discussed on [39, p. 1079]. Finally, the last part is
obvious as one can choose in the power series ak ≡ 0 for all k ≥ 2.

Lemma 3.9 (Analyticity of M).
Let V,W, V ⊂ W ⊂ V ′ be as in (3.18)-(3.21). There is a neighborhood U ⊂ V of 0 such that
M : U →W is analytic, where M is as in (3.24).

Proof. Similar calculations for all geometric quantities were done in [9, Lemma 3.4] for a curve
without additional tangential part and in [17, Lemma 8.1] for a higher dimensional triple junction
geometry with the same tangential part. For the reader’s convenience we will sum up the most
important ideas.
Studying the formula for (3.24) wee see that it consists of sums and products of elemental geometric
quantities. So if we prove their analyticity as functions in h0, we can use Lemma 3.8ii.) and iii.)
together with the fact that H2([0, 1]) and H1([0, 1]) are Banach algebras (see e.g. [4, Cor. 8.10])
to show that the whole composition is analytic. We have to make one exception for the factor κih0

as it takes values in L2. But we will take care of this later.
We begin with the tangential vector τ ih0

, for which we have the formula

τ ih0
=

γ′h0

|γ′h0
|

=
(γi∗)′ + (hi0)′νi∗ + (µi(h0))′τ i∗
|(γi∗)′ + (hi0)′νi∗ + (µi(h0))′τ i∗|

.

Let us first study the numerator. Note that due to Lemma 3.8v.) and (3.9), the tangential part
µ forms an analytic function V → H2([0, 1])3, h0 7→ µ(h0). Thus, the numerator is an analytic
function

V → H1([0, 1];R2)3, h0 → γ′∗ + h′0ν∗ + µ(h0)′τ∗

due to Lemma 3.8v.). Consequently, the denominator is also an analytic function V → H1([0, 1];R2)3

due to Lemma 3.8iv.). Using again Lemma 3.8iv.) and then Lemma 3.8iii.) we get that h0 → τh0

is an analytic function U → H1([0, 1];R2)3 for a neighborhood 0 ∈ U ⊂ V small enough such that
τh0 is well-defined. Note that we used the fact that x−1 is analytic on R\{0}. The same holds
for h0 7→ νh0 using Lemma 3.8iv.) and v.). Furthermore, U → H1([0, 1],R2×2)3, h0 → D2φ◦(νh0)
is analytic due to the prior results and Lemma 3.8 iv.) using that D2φ◦ is analytic. For the
metric tensor we see that Jh0

is analytic as map U → H1([0, 1])3 due to Lemma 3.8 iv.). For the
curvature a direct calculation shows that

κh0
=

det(γ′h0
, γ′′h0

)

|γ′h0
|3

=
(|γ′∗| + µ(h0)′)h′′0 − h′0(⟨γ′′∗ , τ∗⟩ + µ(h0)′′)√

(h′0)2 + (|γ′∗| + µ(h0)′)2
3 . (3.29)

Here we have to be a bit careful as both h′′0 and µ(h0)′′ take values in L2, which is not a Banach
algebra. But as we only take products between L2 and H1 functions, we can use the fact that the
pointwise multiplication forms a bounded, bilinear operator

H1([0, 1]) × L2([0, 1]) → L2([0, 1]), (f, g) 7→ fg. (3.30)
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Using again Lemma 3.8iii.) we can argue similarly as before to see that κh0
: U → L2([0, 1])3 is

analytic. To finish the argumentation for the u-terms in the formula for M(h0) in (3.24) we again
use that (3.30) is a bounded, bilinear operator and argue similarly as for κh0 .
For the a1 and a2 the argumentation is even easier as these are only real valued and therefore all
appearing products are easier to handle. In total this finishes the proof.

Lemma 3.10 (Fredholm property of M′(0)).
Let V,W, V ⊂ W ⊂ V ′ be as in (3.18)-(3.21) and M′(0) as in Lemma 3.7.The function M′(0) :
V →W is a Fredholm operator of index 0.

Proof. Note that compact perturbations of a Fredholm operator preserve both the Fredholm prop-
erty and the index, c.f. for example [40, Proposition 8.14]. Furthermore, the (hi0)′-terms in the
ui-terms in (3.27) are compact perturbations as they take values in H1 and we have the compact
embedding H1 ⊂ L2. Therefore, we can ignore these terms. Thus, for the u-terms in (3.27) it
remains to study

−J i
∗

(D2φ◦(νi∗))τ i∗ · τ i∗)

|(γi∗)′|2
h′′0 .

Observe that the coefficient before h′′0 is bounded above by a negative constant due to Lemma
2.1i.). Therefore this forms a surjective mapping H2([0, 1])3 → L2([0, 1])3, whose kernel are affine

functions. The boundary conditions of V , namely hi0(0) = 0, i = 1, 2, 3, and
∑3

i=1 α̃
i
∗h

i
0(1) = 0,

only allow affine functions, which are elements of

Vaff :=

{
h0 : [0, 1] → R3, x 7→ (ψ1x, ψ2x, ψ3x)

∣∣ψ1, ψ2, ψ3 ∈ R ∧
3∑

i=1

α̃i
∗ψ

i = 0

}
. (3.31)

Obviously Vaff is a two dimensional subspace of V and

ψ3 = − α̃
1
∗
α̃3
∗
ψ1 − α̃2

∗
α̃3
∗
ψ2. (3.32)

Our goal is now to see that the mapping

Vaff → R2, h0 → (a1(h0), a2(h0)), (3.33)

where a1, a2 are as in Lemma 3.7, is bijective. This then shows that the main part of M′(0) is
bijective and consequently a Fredholm operator of index 0. The perturbation argument mentioned
in the beginning yields then the claim.
In order to study (3.33) we have to write the right-hand side as function solely in ψ1 and ψ2 using
the sum condition for ψi, where the ψi are as in (3.31). This yields - using (3.32) as well as again
the abbreviation (3.28) - that

a1 = ψ1D1 +
(α̃1

∗)2

(α̃3
∗)2

ψ1D3 +
α̃1
∗α̃

2
∗

(α̃3
∗)2

ψ2D3,

a2 = ψ2D2 +
α̃1
∗α̃

2
∗

(α̃3
∗)2

ψ1D3 +
(α̃2

∗)2

(α̃3
∗)2

ψ2D3.

This can be written as(
a1

a2

)
= F

(
ψ1

ψ2

)
, F =

D1 +
(α̃1

∗)
2

(α̃3
∗)

2D
3 α̃1

∗α̃
2
∗

(α̃3
∗)

2D
3

α̃1
∗α̃

2
∗

(α̃3
∗)

2D
3 D2 +

(α̃2
∗)

2

(α̃3
∗)

2D
3

 .

Now we observe that

det(F ) = D1D2 +D1D3 (α̃2
∗)2

(α̃3
∗)2

+D2D3 (α̃1
∗)2

(α̃3
∗)2

.

As the Di are positive due to Lemma 2.1i.), we conclude that det(F ) > 0. Thus, F is invertible
and so (3.33) is bijective. In total, this shows that the main part of M′(0) is a bijective mapping
V →W . This finishes the proof.
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With these two properties we can prove the first version of a LSI for the anisotropic length energy.

Theorem 3.11 ( Lojasiewicz-Simon gradient inequality for E - Analytic Version).
Let V,W, V ⊂W ⊂ V ′ be as in (3.18)-(3.21) and M as in Lemma 3.6.There exist σLSI , CLSI > 0
and θ ∈ (0, 12 ] such that for all h ∈ V with ∥h∥V ≤ σLSI it holds that

|E(h) − E(0)|1−θ ≤ CLSI∥M(h)∥W . (3.34)

Hereby, M(h) ∈W is given by (3.24).

Proof. We first check that V ⊂ V ′ with respect to (3.20), (3.21) is a definite embedding, cf.
Appendix C. For this we observe that the canonical pairing yields the bilinear form

F : V × V → R, (f, g) 7→
3∑

i=1

∫ 1

0

f igidx.

Note that the additional components in (3.21) vanish due to the embedding (3.20). In other words,
F is the L2 product on V , which is clearly definite. Thus, V ⊂ V ′ is definite.
Now, Lemma 3.8iv.) and the considerations in Lemma 3.9 show that there is neighborhood
U ⊂ V such that (considered as functions in the variable h0) νh0 : U → (H1([0, 1],R2))3, Jh0 :
U → (H1([0, 1]))3 and φ◦(νh0) : U → (H1([0, 1]))3 are analytic. Together with the analyticity of∫

: H1([0, 1])3 → R and again Lemma 3.8iv.) this shows that E : U → R is analytic and thus in
C2(U,R), cf. [40, p. 362].
With these two facts the claim follows directly from Theorem C.2 using Lemma 3.9 and Lemma 3.10.

4 Analytic properties of the height function

Before we can finally carry out the stability analysis in the next section, we have to verify three
properties for the height function h we used so far. These properties will play a crucial role also
in the stability analysis later on. Firstly, we will derive time regularity, when h parametrizes a
geometric solution of (2.8) over a given reference frame (cf. Assumption 3.1). Lemma 3.5 alone
is not sufficient to guarantee this. Thus, we will prove a short time existence result for h in
Lemma 4.1. Secondly, we need a bound for the higher norms of such a solution, i.e., a parabolic
smoothing property. This is proven in Lemma 4.4. Finally, we need continuous dependency on
the initial data of the norm of the solution from Lemma 4.1. This is carried out in Lemma 4.6.
For our convenience and for consistency with the short time existence analysis carried out already
in [23] we work in the following with Hölder spaces.

To begin with, we have to translate (2.8) into the resulting system for h. We recall that due to
the work in Section 3.1 we have that

Γi
h(t) = γih(t, [0, 1]), i = 1, 2, 3,

with

γih(t, x) = γi∗(x) + hi(t, x)νi∗ + µi(t, x)τ i∗,

whereby

(µi(t, x))i=1,2,3 = I(hi(t, x))i=1,2,3,

with I as in (3.8). Using Lemma 3.3 we deduce from (2.8) the following problem for h, whereby
as usual an index h denotes a geometric quantity of Γh.

V i
h = φ◦(νih)(D2φ◦(νih)τ ih · τ ih)κih on (0, T ) × (0, 1), i = 1, 2, 3,

hi(t, 0) = 0 ∀t ∈ [0, T ], i = 1, 2, 3,∑3
i=1 α̃

i
∗h

i(t, 1) = 0 ∀t ∈ [0, T ],∑3
i=1Dφ

◦(νih(t, 1)) = 0 ∀t ∈ [0, T ],

h(0, x) = h0(x) ∀x ∈ [0, 1], i = 1, 2, 3.

(4.1)
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Although this system seems to have no good structure for an equation in h, it can actually be
written as a parabolic PDE system for h. To see this, observe that

V i
h = ∂th

i(νi∗ · νih) + ∂tµ
i(h)(τ i∗ · νih). (4.2)

Now, ∂tµ(h) can be written in terms of ∂th using (3.9), yielding

(V i
h)i=1,2,3 = Fh∂th, Fh = diag(ν1h · ν1∗ , ν2h · ν2∗ , ν3h · ν3∗) + diag(ν1h · τ1∗ , ν2h · τ2∗ , ν3h · τ3∗ )I.

Thus, (4.1)1 can be written as

Fh∂th = (φ◦(νih)(D2φ◦(νih)τ ih · τ ih)κih)i=1,2,3 (4.3)

As Fh = Id for h ≡ 0, we have that Fh is invertible as long as ∥h∥C1 is small enough. With this
we can rewrite (4.1)1 to an equation for ∂th. Using (3.29) and again (3.8) to express the space
derivatives of µ in terms of space derivatives of h, this shows that we indeed have a parabolic
problem for h.
For this system we can readily prove the following short time existence result.

Lemma 4.1 (Short time existence for (4.1)).
Let Γi

∗, γ
i
∗, α̃

i
∗, i = 1, 2, 3 fulfil Assumption 3.1 and α ∈ (0, 1). Then there exists positive con-

stants εSTE(α), TSTE(α) and RSTE(α) such that the following holds: for any initial data h0 ∈
(C2+α([0, 1]))3 fulfilling the compatibility conditions

h0 fulfills (4.1)2 − (4.1)4,

κih0
= 0 in x = 0, i = 1, 2, 3,∑3

i=1 α̃
i
∗F

−1
h0

(φ◦(νih0
)(D2φ◦(νih0

)τ ih0
· τ ih0

)κih0
) = 0 in x = 1,

(4.4)

and ∥h0∥(C2+α([0,1]))3 ≤ εSTE(α) there exists h ∈ (C
2+α
2 ,2+α([0, TSTE(α)] × [0, 1]))3 with

∥h∥
(C

2+α
2

,2+α([0,TSTE(α)]×[0,1]))3
≤ RSTE(α),

that solves (4.1).

Remark 4.2 (Compatibility conditions).
The compatibility conditions have the same motivation as in Remark 2.2v.). Hereby, (4.4)1 postu-
lates the boundary conditions for the system at t = 0. (4.4)2 resp. (4.4)3 arise from differentiation
of (4.1)2 resp. (4.1)3 in time using (4.3). Note that (4.4)2 is a simplified statement using the
positivity of (φ◦(νih)(D2φ◦(νih)τ ih · τ ih) and the invertibility of F−1

h0
.

Remark 4.3. With the same notation and assumptions as in Lemma 3.5: if (γi)i=1,2,3 is a
geometrically admissible network according Definition 2.3, then (hi)i=1,2,3 satisfies (4.4).

Proof. This is a direct consequence of Lemma 3.3 and the geometric nature of the boundary
conditions.

Proof. The proof of Lemma 4.1 can be carried out analogously to [23, Section 3], using a fixed-
point argument after showing an existence result for a suitable linear problem. Additionally, we
want the uniform existence time TSTE(α) for small enough h0 as stated above. But by carefully
observing the contraction estimates one sees that directly. This is similar to the argumentation in
[18, Section 6], especially the choice of Xε

R,δ therein. As we will use the result on the linear problem
again in Lemma 4.4, we give now some comments on how to derive and solve it. Afterwards, we
will sketch the proof of the fixed-point argument.

Linear problem: As opposed to [23, Section 3] we have to study not any suitable linear problem
but the proper linearization of the problem, i.e., the linearization in h ≡ 0 of the differential ANL

and boundary operator BNL as functions in h, which are given by

ANL : (C
2+α
2 ,2+α([0, T ] × [0, 1]))3 → (C

α
2 ,α([0, T ] × [0, 1]))3, (4.5)

h 7→ (V i
h − φ◦(νih)(D2φ◦(νih)τ ih · τ ih)κih)i=1,2,3, (4.6)

BNL : (C
2+α
2 ,2+α([0, T ] × [0, 1]))3 → (C

2+α
2 ([0, T ]))4 × (C

1+α
2 ([0, T ]))2, (4.7)

h 7→ (h(t, 0),

3∑
i=1

α̃i
∗h

i(t, 1),

3∑
i=1

Dφ◦(νih(t, 1)), (4.8)
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where recall that (V i
h)i=1,2,3 = Fh∂th. Hence, for the linear analysis we compute

lim
ε→0

ANL(εh) −ANL(0)

ε
, lim

ε→0

BNL(εh) − BNL(0)

ε
,

and consider the resulting PDE system. First notice that due to κi∗ ≡ 0, i = 1, 2, 3, we have that

d

dε

∣∣∣
ε=0

ANL(εh) =

(
∂th

i − φ◦(νi∗)(D2φ◦(νi∗)τ i∗ · τ i∗)
d

dϵ

∣∣∣
ϵ=0

κiεh

)
i=1,2,3

and, upon recalling (3.29), we compute

d

dϵ

∣∣∣
ϵ=0

κεh =
hxx
|γ′∗|2

− hx⟨
γ

′′

∗
|γ′∗|3

, τ∗⟩.

For the boundary terms we observe that (4.1)4 is equivalent to the two conditions

3∑
i=1

Dφ◦(νih(t, 1)) · ν1∗ = 0,

3∑
i=1

Dφ◦(νih(t, 1)) · ν2∗ = 0.

Now we have that (recall Lemma 2.1iii.))(
d

dε
Dφ◦(νεh(t, 1))

) ∣∣
ε=0

= D2φ◦(ν∗)

(
d

dε
(νεh(t, 1))

) ∣∣
ε=0

= −D2φ◦(ν∗)(hx(t, 1)τ∗)

= −(D2φ◦(ν∗)τ∗ · τ∗)hx(t, 1)τ∗.

For the second last identity recall that the normal is given as anticlockwise rotation of the tangent,
thus

νh =

(
γ′∗ + hxν∗ + µ(hx)τ∗√
(hx)2 + (|γ′∗| + µ(hx))2

)⊥

. (4.9)

An easy calculation shows that

d

dε
νεh
∣∣
ε=0

=

(
|γ′∗|(hxν∗ + µ(hx)τ∗) − 1

|γ′
∗|
µ(hx)|γ′∗|γ′∗

|γ′∗|2

)⊥

.

Now using that we chose γ′∗ such that γ′∗(1) = τ∗ this shows

d

dε
νεh(t, 1)

∣∣
ε=0

= −hx(t, 1)τ∗.

Collecting all previous calculations, the linearization of (4.1) in h ≡ 0 is given by:

∂th
i = 1

|(γi
∗)

′|2φ
◦(νi∗)(D2φ◦(νi∗)τ i∗ · τ i∗)∂xxh

i + Ai
LOTh

i on [0, T ] × (0, 1), i = 1, 2, 3,

hi(t, 0) = 0 ∀t ∈ [0, T ], i = 1, 2, 3,∑3
i=1 α̃

i
∗h

i(t, 1) = 0 ∀t ∈ [0, T ],

∂xh
2(t, 1) = − (D2φ◦(ν3

∗)τ
3
∗ ·τ

3
∗ )(τ

3
∗ ·ν

1
∗)

(D2φ◦(ν2
∗)τ

2
∗ ·τ2

∗ )(τ
2
∗ ·ν1

∗)
∂xh

3(t, 1) ∀t ∈ [0, T ],

∂xh
1(t, 1) = − (D2φ◦(ν3

∗)τ
3
∗ ·τ

3
∗ )(τ

3
∗ ·ν

2
∗)

(D2φ◦(ν1
∗)τ

1
∗ ·τ1

∗ )(τ
1
∗ ·ν2

∗)
∂xh

3(t, 1) ∀t ∈ [0, T ],

h(0, x) = h0(x) ∀x ∈ [0, 1], i = 1, 2, 3.

(4.10)

Hereby, we used the abbreviation

Ai
LOTh

i := −φ◦(νi∗)(D2φ◦(νi∗)τ i∗ · τ i∗)⟨ (γi∗)
′′

|(γi∗)′|3
, τ∗⟩hix. (4.11)
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Note that the coupled system in (4.1) gets decoupled in the linearization as the tangential parts
do not contribute there. This is very natural due to the geometric nature of the problem.

Lopatinskii-Shapiro conditions: The system (4.10) can be discussed using the theory in [35]. Be-
sides the parabolicity, which is guaranteed due to Lemma 2.1i.), the most technical part in the
application is the verification of the Lopatinskii-Shapiro conditions. Thus we want to explain how
one can prove them. Hereby, we prefer to work with their ODE formulation which can be found,
e.g., in [24, (6), (7)]. A proof of the equivalence to the standard version can be found in [13,
Section I.2]. At the triple junction these read as follows: show that for any λ ∈ C with Re(λ) > 0

the only continuous solution (φi)i=1,2,3 with φi : [0,∞) → C, φi(y)
y→∞→ 0, i = 1, 2, 3 of

λφi − φ◦(νi∗)(D2φ◦(νi∗)τ i∗ · τ i∗)φi
yy = 0, y > 0, i = 1, 2, 3,

3∑
i=1

α̃i
∗φ

i = 0, y = 0,

φ2
y +

(D2φ◦(ν3∗)τ3∗ · τ3∗ )(τ3∗ · ν1∗)

(D2φ◦(ν2∗)τ2∗ · τ2∗ )(τ2∗ · ν1∗)
φ3
y = 0, y = 0,

φ1
y +

(D2φ◦(ν3∗)τ3∗ · τ3∗ )(τ3∗ · ν2∗)

(D2φ◦(ν1∗)τ1∗ · τ1∗ )(τ1∗ · ν2∗)
φ3
y = 0, y = 0,

is the zero solution. Note that the |γ′∗|−1-coefficient in the first line is equal to one due to (3.3). Ob-

serve that
(D2φ◦(ν3

∗)τ
3
∗ ·τ

3
∗ )(τ

3
∗ ·ν

1
∗)

(D2φ◦(ν2
∗)τ

2
∗ ·τ2

∗ )(τ
2
∗ ·ν1

∗)
and

(D2φ◦(ν3
∗)τ

3
∗ ·τ

3
∗ )(τ

3
∗ ·ν

2
∗)

(D2φ◦(ν1
∗)τ

1
∗ ·τ1

∗ )(τ
1
∗ ·ν2

∗)
have a negative sign due to Lemma 2.1i.)

and Assumption 3.1, which in particular implies that

τ3∗ · ν1∗
τ2∗ · ν1∗

< 0 ∧ τ3∗ · ν2∗
τ1∗ · ν2∗

< 0. (4.12)

This is due to the fact that the angles between any two tangents τ i∗ and τ j∗ lies in (0, π). Then the
normal ν2∗ resp. ν1∗ will have an angle increased by π

2 with one of the τ i∗ and an angle decreased by
π
2 with the other. Thus, one contact angle will be in (−π

2 ,
π
2 ) and the other one in (π

2 ,
3π
2 ). This

then implies (4.12). Now, testing the equation for

• φ1 with − (τ1
∗ ·ν

2
∗)

φ◦(ν1
∗)(D

2φ◦(ν3
∗)τ

3
∗ ·τ3

∗ )(τ
3
∗ ·ν2

∗)
α̃1
∗φ̄

1,

• φ2 with − (τ2
∗ ·ν

1
∗)

φ◦(ν2
∗)(D

2φ◦(ν3
∗)τ

3
∗ ·τ3

∗ )(τ
3
∗ ·ν1

∗)
α̃2
∗φ̄

2,

• φ3 with 1
φ◦(ν3

∗)(D
2φ◦(ν3

∗)τ
3
∗ ·τ3

∗ )
α̃3
∗φ̄

3,

summing up, integrating over
∫∞
0
. . . dy, and integrating by parts yields for the boundary term(

(D2φ◦(ν1∗)τ1∗ · τ1∗ )(τ1∗ · ν2∗)

(D2φ◦(ν3∗)τ3∗ · τ3∗ )(τ3∗ · ν2∗)
α̃1
∗φyφ̄

1 +
(D2φ◦(ν2∗)τ2∗ · τ2∗ )(τ2∗ · ν1∗)

(D2φ◦(ν3∗)τ3∗ · τ3∗ )(τ3∗ · ν1∗)
α̃2
∗φ

2
yφ̄

2 − α̃3
∗φ

3
yφ̄

3

) ∣∣
y=0

=
(
−φ3

yα̃
1
∗φ̄

1 − φ3
yα̃

2
∗φ̄

2 − φ3
yα̃

3
∗φ̄

3
) ∣∣

y=0
=

(
−φ3

y

3∑
i=1

α̃i
∗φ̄

i

)∣∣
y=0

= 0,

where we used the boundary conditions at y = 0.
Therefore we conclude that∫ ∞

0

−λ (τ1∗ · ν2∗)

φ◦(ν1∗)(D2φ◦(ν3∗)τ3∗ · τ3∗ )(τ3∗ · ν2∗)
α̃1
∗|φ1|2 − λ

(τ2∗ · ν2∗)

φ◦(ν3∗)(D2φ◦(ν3∗)τ3∗ · τ3∗ )(τ3∗ · ν1∗)
α̃2
∗|φ2|2

+λ
1

φ◦(ν3∗)(D2φ◦(ν3∗)τ3∗ · τ3∗ )
α̃3
∗|φ3|2 − (D2φ◦(ν1∗)τ1∗ · τ1∗ )(τ1∗ · ν2∗)

(D2φ◦(ν3∗)τ3∗ · τ3∗ )(τ3∗ · ν2∗)
α̃1
∗|φ1

y|2

− (D2φ◦(ν2∗)τ2∗ · τ2∗ )(τ2∗ · ν1∗)

(D2φ◦(ν3∗)τ3∗ · τ3∗ )(τ3∗ · ν1∗)
α̃2
∗|φ2

y|2 + α̃3
∗|φ3

y|2dy = 0

Again using Assumption 3.1, Lemma 2.1i.), (4.12) and the positive sign of the α̃i
∗ we see that all

appearing terms have a real part with a positive sign and therefore we conclude that φi ≡ 0, i =
1, 2, 3. This shows the Lopatinskii-Shapiro conditions in x = 1. In x = 0 they are easier to verify
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as the boundary conditions are easier to handle. In total we have seen that the linear problem
can be discussed using the theory in [35].

Fixed-point argument: With the knowledge about the solvability of the linear problem (4.10) we
are now able to construct the solution of (4.1) as a fixed-point of a suitable functional. We will not
do the detailed calculations here as they are quite voluminous and basically completely analogous
to the ones done in [23, Section 3.2]. We will only give the general structure and one exemplary
calculation.
For given h̃ ∈ (C

2+α
2 ,2+α([0, T ] × [0, 1]))3 we consider the mapping Λ : h̃ → h, where h is the

solution of

∂th
i − 1

|(γi
∗)

′|2φ
◦(νi∗)(D2φ◦(νi∗)τ i∗ · τ i∗)∂xxh

i −Ai
LOTh

i = fi(h̃) on [0, T ] × (0, 1), i = 1, 2, 3,

hi(t, 0) = 0 ∀t ∈ [0, T ], i = 1, 2, 3,∑3
i=1 α̃

i
∗h

i(t, 1) = 0 ∀t ∈ [0, T ],

∂xh
2(t, 1) +

(D2φ◦(ν3
∗)τ

3
∗ ·τ

3
∗ )(τ

3
∗ ·ν

1
∗)

(D2φ◦(ν2
∗)τ

2
∗ ·τ2

∗ )(τ
2
∗ ·ν1

∗)
∂xh

3(t, 1) = b3(h̃) ∀t ∈ [0, T ],

∂xh
1(t, 1) +

(D2φ◦(ν3
∗)τ

3
∗ ·τ

3
∗ )(τ

3
∗ ·ν

2
∗)

(D2φ◦(ν1
∗)τ

1
∗ ·τ1

∗ )(τ
1
∗ ·ν2

∗)
∂xh

3(t, 1) = b4(h̃) ∀t ∈ [0, T ],

h(0, x) = h0(x) ∀x ∈ [0, 1], i = 1, 2, 3.

(4.13)

with the right-hand sides

fi(h̃) := (∂th̃
i − V i

h̃
) −

(
φ◦(νi∗)(D2φ◦(νi∗)τ i∗ · τ i∗)

∂xxh̃
i

|(γi∗)′|2
− φ◦(νi

h̃
)(D2φ◦(νi

h̃
)τ i

h̃
· τ i

h̃
)κi

h̃

)
−Ai

LOT h̃
i,

b3(h̃) := ∂xh̃
2(t, 1) +

(D2φ◦(ν3∗)τ3∗ · τ3∗ )(τ3∗ · ν1∗)

(D2φ◦(ν2∗)τ2∗ · τ2∗ )(τ2∗ · ν1∗)
∂xh̃

3(t, 1) −
3∑

i=1

Dφ◦(νi
h̃
(t, 1)) · ν1∗ ,

b4(h̃) := ∂xh̃
1(t, 1) +

(D2φ◦(ν3∗)τ3∗ · τ3∗ )(τ3∗ · ν2∗)

(D2φ◦(ν1∗)τ1∗ · τ1∗ )(τ1∗ · ν2∗)
∂xh̃

3(t, 1) −
3∑

i=1

Dφ◦(νi
h̃
(t, 1)) · ν2∗ .

Now we can use the Schauder estimates, which are part of the linear existence theory in [35], and
obtain that

∥h∥
(C

2+α
2

,2+α([0,T ]×[0,1]))3
≤ C(∥f(h̃)∥

(C
α
2

,α([0,T ]×[0,1]))3
+ ∥b3(h̃)∥

C
1+α
2 ([0,T ])

+ ∥b4(h̃)∥
C

1+α
2 ([0,T ])

+∥h0∥(C2+α([0,1]))3).

This shows that if we can prove contractivity of the mapping h̃ → (f(h̃), b3(h̃), b4(h̃)), Λ will
inherit this contractivity 1. More precisely, we will restrict the domain of Λ to sets of the form

Bh0

R,T := {h ∈ (C
2+α
2 ,2+α([0, T ] × [0, 1]))3

∣∣h∣∣
t=0

= h0, ∥h− h0∥
(C

2+α
2

,2+α([0,T ]×[0,1]))3
≤ R}

for h0 ∈ (C2+α([0, 1]))3. Then we are able to show that for arbitrary R we can choose T and
ε := ∥h0∥(C2+α([0,1]))3 small enough such that Λ is a 1

2 -contraction on this set. Then by choosing
R large enough we will also get that Λ is a self-mapping. The resulting values of ε,R, T then
correspond to the εSTE(α), RSTE(α), TSTE(α) from the statement of the result.
The main difficulty is to understand how the contraction estimates can be derived. We will discuss
the contraction estimates for the first summand in f(h̃A) − f(h̃B) to give an idea of the general
strategy. For simplicity we will state the function spaces without the domains where they are
defined on. Note that by the choice of domain Bh0

R,T all elements h̃ in this ball will have a norm

less than R + ε, where ε denotes the norm of h0. Now, for hA, hB ∈ Bh0

R,T we have that (recall
(4.2))

(∂thA − VhA
) − (∂thB − VhB

) = ∂thA(1 − νhA
· ν∗) − ∂thB(1 − νhB

· ν∗)︸ ︷︷ ︸
(I)

− (∂tµ(hA)(νhA
· τ∗) − ∂tµ(hB)(νhB

· τ∗)︸ ︷︷ ︸
(II)

).

1Note that the difference Λ(h̃A) − Λ(h̃B) for given h̃A, h̃B solves (4.13) with zero initial data and right-hand
sides f(h̃A)− f(h̃B), b3(h̃A)− b3(h̃B) and b4(h̃A)− b4(h̃B).
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Now, we can write (I) as

(I) = ∂thA(νhB
· ν∗ − νhA

· ν∗)︸ ︷︷ ︸
(A)

+ (∂thA − ∂thB)(1 − νhB
· ν∗)︸ ︷︷ ︸

(B)

.

For (B) we have that

∥(B)∥
C

α
2

,α ≤ ∥∂thA − ∂thB∥C α
2

,α∥(1 − νhB
· ν∗)∥

C
α
2

,α

≤ ∥hA − hB∥
C

2+α
2

,2+α(ε+ T β∥1 − νhB
· ν∗∥

C
1+α
2

,1+α)

≤ C∥hA − hB∥
C

2+α
2

,2+α(ε+ T β∥hB∥
C

2+α
2

,2+α)

≤ C((R+ ε)T β + ε)∥hA − hB∥
C

2+α
2

,2+α .

Hereby, we used product estimates for parabolic Hölder spaces, contractivity of lower order terms
(β is a suitable exponent in (0, 1)) and Lipschitz continuity of the function h 7→ νhB

· ν∗, which
maps the zero function to 1. All these results can be found for instance in [23, Appendix A] and
[18, Section 2]. Note that for the contractivity of the lower order terms we need [18, Lemma 2.7],
which allows for initial data unequal to zero. Therefore we see that for any R we can choose T
and ε small enough such that we have a 1

2 -contraction. The estimate for (A) is similar. Now, for
(II) we have that

(II) = ∂tµ(hA)(νhA
· τ∗ − νhB

· τ∗)︸ ︷︷ ︸
(A)

+ (∂tµ(hA) − ∂tµ(hB))(νhB
· τ∗)︸ ︷︷ ︸

(B)

.

For (B) we have that

∥(B)∥
C

α
2

,α ≤ ∥∂tµ(hA) − ∂tµ(hB)∥
C

α
2

,α∥νhB
· τ∗∥C α

2
,α

≤ C∥µ(hA − hB)∥
C

2+α
2

,2+α(ε+ T β∥νhB
· τ∗∥

C
1+α
2

,1+α)

≤ C((R+ ε)T β + ε)∥hA − hB∥
C

2+α
2

,2+α .

Again, we see that for any R we can choose T and ε small enough such that we have a 1
2 -contraction.

The estimate for (A) is similar. In particular, observe that all estimates do not depend directly
on h0 but only its norm. Thus, we get the sought uniform estimate for h0 small enough. For the
boundary conditions the discussion is slightly more complicated as we do not have a quasilinear
structure there. But one can argue as for (118) in [18, Lemma 6.5].

For the stability analysis we will additionally need that our solution has higher regularity and -
even more importantly - that we have a control for these higher norms. For this we use ideas
from [17, Section 4]. Mainly, we will apply Angenent’s parameter trick. This would allow us to
get space regularity of any order away from t = 0. But the required bootstrap argument would
be unnecessary complicated for what we need later, therefore we restrict to estimates for the
C3+α-norm in space.

Lemma 4.4 (Smoothing estimates for h).
Let Γi

∗, γ
i
∗, α̃

i
∗, i = 1, 2, 3 fulfil Assumption 3.1, α ∈ (0, 1). Moreover for h0 ∈ C2+α satisfying the

compatibility conditions (4.4), let h ∈ (C
2+α
2 ,2+α([0, T ] × [0, 1]))3 solve (4.1) for some T > 0 with

initial data h0. Additionally, let R(α) > 0 be small enough such that

∥h∥
(C

2+α
2

,2+α([0,T ]×[0,1]))3
≤ R(α). (4.14)

Then there exists for every Tk ∈ (0, T ) close to T a εk > 0 such that, if

∥h0∥(C2+α([0,1]))3 ≤ εk, (4.15)

then for any tk ∈ (0, Tk) there exists C(tk, Tk) > 0 such that for all t ∈ [tk, Tk] we have h(t, ·) ∈
(C3+α([0, 1]))3 and

∥h(t, ·)∥(C3+α([0,1]))3 ≤ C(R(α), C(tk, Tk))(1 + ∥h0∥(C2+α([0,1]))3). (4.16)
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Remark 4.5.

(i) The precise restriction on the constant R(α) > 0 will become clear in Step 3 in the proof.

(ii) As we will see in the proof of the lemma the constants C(tk, Tk) and C(R(α), C(tk, Tk)) blow
up like t−1

k as tk approaches zero.

Proof. The proof splits into three separate steps. The first one is of technical nature and is only
needed for the precise application of the parameter trick, which is carried out in the second step.
As a consequence we derive higher regularity for the time derivative. Finally, this is used in the
last step to also get higher space regularity. Before we start with the proof itself, we want to
give some ideas for the parameter trick, point out the problems that arise when working with
non-linear boundary conditions and our workaround for these issues.
Notation: We will denote by Alin the elliptic operator from (4.10)1, i.e.,

Alinh :=

(
1

|γ′∗|2
φ◦(νi∗)(D2φ◦(νi∗)τ i∗ · τ i∗)∂xxh

i − φ◦(νi∗)(D2φ◦(νi∗)τ i∗ · τ i∗)⟨ (γi∗)
′′

|(γi∗)′|3
, τ∗⟩hix

)
i=1,2,3

,

by Blin the boundary operator due to (4.10)2(4.10)5, i.e.,

Blinh := (h
∣∣
x=0

,

3∑
i=1

α̃i
∗h

i
∣∣
x=1

,(∂xh
2 +

(D2φ◦(ν3∗)τ3∗ · τ3∗ )(τ3∗ · ν1∗)

(D2φ◦(ν2∗)τ2∗ · τ2∗ )(τ2∗ · ν1∗)
∂xh

3)
∣∣
x=1

,

(∂xh
1 +

(D2φ◦(ν3∗)τ3∗ · τ3∗ )(τ3∗ · ν2∗)

(D2φ◦(ν1∗)τ1∗ · τ1∗ )(τ1∗ · ν2∗)
∂xh

3)
∣∣
x=1

),

the right-hand side for a general linear parabolic differential operator by f, and the right-hand
sides of the boundary conditions for a general differential system by b = (b1, b2, b3, b4) ∈ Xcomp,T

with

Xcomp,T := (C
2+α
2 ([0, T ]))3 × C

2+α
2 ([0, T ]) × C

1+α
2 ([0, T ]) × C

1+α
2 ([0, T ]).

In other words we will be considering the PDE-system:
∂th = Alinh+ f on [0, T ] × (0, 1),

Blinh = b ∀t ∈ [0, T ],

h(0, x) = h0(x) ∀x ∈ [0, 1].

(4.17)

Preliminary considerations and main ideas: Denote by hh0
the solution from Lemma 4.1 for some

initial data h0. Additionally, for λ ∈ (1 − δ, 1 + δ) for δ > 0 small enough, denote by hλ,h0
the

time scaled version of hh0 , i.e.,

hλ,h0
(t, x) := hh0

(λt, x) t ∈
[
0,
T

λ

]
, x ∈ [0, 1].

Using that ∂thλ,h0(t, x) = λ∂thh0(λt, x) and ∂xhλ,h0(t, x) = ∂xhh0(λt, x) one sees that hλ,h0 solves
a time scaled version of (4.1) with the same boundary and initial conditions, i.e. hλ,h0

solves the
λ-problem

Vh − λφ◦(νh)(D2φ◦(νh)τh · τh)

together with initial and boundary conditions h0, BNL(hλ,h0) = 0 on the time interval [0, T
1+δ ].

The idea is now to show smoothness in λ of the map hλ,h0 . This will then imply smoothness in t
(away from zero) of the original hh0

, since

∂λhλ,h0
(t, x) = ∂λ(hh0

(λt, x)) = t∂thh0
(λt, x).

The desired smoothness of hλ,h0
is obtained by application of the implicit functions theorem (cf.

Theorem C.1): a natural candidate for a suitable functional for this approach is given by

F : (1 − δ, 1 + δ) × (C2+α([0, 1]))3 × (C
2+α
2 ,2+α([0,

T

1 + δ
] × [0, 1]))3 →M
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with

M ⊂ (C2+α([0, 1]))3 × (C
α
2 ,α([0,

T

1 + δ
] × [0, 1]))3 ×Xcomp, T

1+δ

and

F : (λ, h0, h) 7→
(
h
∣∣
t=0

− h0, Vh − λφ◦(νh)(D2φ◦(νh)τh · τh)κh,BNL(h)
)
.

where BNL(h) is given by (4.7). Thus, BNL is just the boundary operator of (4.1). Clearly,
for any λ, h0 small enough a root of this map is given by hλ,h0

, i.e. F (λ, h0, hλ,h0
) = 0 (recall

Lemma 4.1). In particular F (1, 0, 0) = 0, i.e. the functional vanishes on the stationary config-
uration Γ∗ (which corresponds to h = 0.) If we are able to apply Theorem C.1 (by showing
the bijectivity of ∂3F (1, 0, 0) and smoothness of F around (1, 0, 0)), we get a unique solution
(λ, h0) → h((λ, h0))(which then has to coincide with hλ,h0

!) which is smooth in λ. The crucial
part for this now is to check bijectivity of ∂3F (1, 0, 0). This yields the map

h 7→ (h
∣∣
t=0

, ∂th−Alinh,Blinh).

This looks promising as the right-hand side is precisely the linear problem (4.10) for which we
already have a solution theory. The problem now is that the range of ∂3F (1, 0, 0) will only contain
(linear) compatible data while F does not. So, to make things work we have to force F to take
the right range. Our method for this is to project F onto the right space. The construction of
this projections is the subject of the next step.

Step 1: We consider the space Dlin, T
1+δ

of all triplets (h0, f, b) of initial data, and right-hand sides

in (4.17) fulfilling the necessary compatibility conditions for the system to be solvable.
Precisely, we have that

Dlin, T
1+δ

= {(h0, f, b) ∈ (C2+α([0, 1]))3 × C
α
2 ,α([0,

T

1 + δ
] × [0, 1])3 ×Xcomp, T

1+δ
: Blin(h0) = b

∣∣
t=0

,

Alin(h0)
∣∣
x=0

+ f
∣∣
x=0,t=0

= ∂tb
1
∣∣
t=0

,

3∑
i=1

α̃i
∗(Ai

lin(h0)
∣∣
x=1

+ fi
∣∣
x=1,t=0

) = ∂tb
2
∣∣
t=0

}

= ker(K T
1+δ

),

where K T
1+δ

: (C2+α([0, 1]))3 × C
α
2 ,α([0, T

1+δ ] × [0, 1])3 ×Xcomp, T
1+δ

→ R10 is defined by

K(h0, f, b) =

 Blin(h0) − b
∣∣
t=0

Alin(h0)
∣∣
x=0

+ f
∣∣
x=0,t=0

− ∂tb
1
∣∣
t=0∑3

i=1 α̃
i
∗(Ai

lin(h0)
∣∣
x=1

+ fi
∣∣
x=1,t=0

) − ∂tb
2
∣∣
t=0

 .

Note that K T
1+δ

is a linear operator and thus Dlin, T
1+δ

is a closed subspace. Now, to be able to find

a continuous projection onto Dlin it is sufficient - see [20, P. 34-36] - to find a closed complementary
space Z T

1+δ
in (C2+α([0, 1]))3 × C

α
2 ,α([0, T

1+δ ] × [0, 1])3 ×Xcomp, T
1+δ

, i.e.

Z T
1+δ

⊕ Dlin, T
1+δ

= (C2+α([0, 1]))3 × C
α
2 ,α([0,

T

1 + δ
] × [0, 1])3 ×Xcomp, T

1+δ
. (4.18)

To find such a Z T
1+δ

let d := dim(im(K)) and

e1, ..., ed ∈ (C2+α([0, 1]))3 × C
α
2 ,α([0,

T

1 + δ
] × [0, 1])3 ×Xcomp, T

1+δ

be maps such that ⟨K T
1+δ

(e1), ...,K T
1+δ

(ed)⟩ = im(K T
1+δ

). Then set

Z T
1+δ

:= span{e1, ..., ed} ⊂ (C2+α([0, 1]))3 × C
α
2 ,α([0,

T

1 + δ
] × [0, 1])3 ×Xcomp, T

1+δ
.

As dim(Z T
1+δ

) ≤ 10, we see that Z T
1+δ

is a closed subspace. Additionally, we have that Z T
1+δ

∩
Dlin, T

1+δ
= {0} by construction of Z T

1+δ
. Finally, let v ∈ (C2+α([0, 1]))3×C α

2 ,α([0, T
1+δ ]× [0, 1])3×

Xcomp, T
1+δ

. Then there exists a unique ṽ ∈ Z T
1+δ

such that K T
1+δ

(v) = K T
1+δ

(ṽ). Furthermore,
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K T
1+δ

(v− ṽ) = 0, thus v− ṽ ∈ Dlin, T
1+δ

. This shows that with this choice of Z T
1+δ

condition (4.18)

is fulfilled.
Consequently, we have a continuous projection Plin, T

1+δ
onto Dlin, T

1+δ
:

Plin, T
1+δ

: (C2+α([0, 1]))3 × C
α
2 ,α([0,

T

1 + δ
] × [0, 1])3 ×Xcomp, T

1+δ
→ Dlin, T

1+δ
.

Step 2: We are now able to perform the parameter trick itself. For this we consider for δ small
enough the mapping

F : (1 − δ, 1 + δ) × (C2+α([0, 1]))3 × (C
2+α
2 ,2+α([0,

T

1 + δ
] × [0, 1]))3 → Dlin, T

1+δ
,

(λ, h0, h) 7→ Plin, T
1+δ

((h
∣∣
t=0

− h0, Vh − λφ◦(νh)(D2φ◦(νh)τh · τh)κh,BNL(h))).

On this mapping, which is analytic due to similar arguments as performed in Section 3, we apply
now the implicit function theorem. For ∂3F (1, 0, 0) we get that

∂3F (1, 0, 0)h = (h
∣∣
t=0

,Alinh,Blinh).

Note that the projection Plin, T
1+δ

does not appear as by the essence of compatibility conditions

we already have that h
∣∣
t=0

is compatible with the inhomogeneities Alinh and Blinh. Now the
invertibility of ∂3F (1, 0, 0) follows directly from the linear existence theory discussed in the proof
of Lemma 4.1 and the choice of Dlin, T

1+δ
. Therefore, ∂3F (1, 0, 0) is bijective. So we can apply the

implicit functions theorem (see Theorem C.1) to get a unique solution hPT (λ, h0) of

F (λ, h0, h) = 0, (4.19)

which is smooth in λ and h0 for λ sufficiently close to one and ∥h0∥C2+α([0,1])3 < εk. On the other
hand, we easily see that the scaled solution

hλ,h0
:= h(λ·, ·)

with h as in the prerequisites of the lemma is also a solution of (4.19). Note that the projection
Plin, T

1+δ
is not a problem here as

F (λ, h0, hλ,h0) = Plin, T
1+δ

((0, 0, 0)) = (0, 0, 0).

By uniqueness of the roots of F we conclude that

hPT (λ, h0) ≡ hλ,h0
.

In particular, we see that hλ,h0
is smooth as function in λ and that

∂th(λt, x) =
1

t
∂λhPT (λ, h0)(x, t).

Consequently, we see that ∂th ∈ (C
2+α
2 ,2+α([tk,

T
1+δ ] × [0, 1]))3 for all tk ∈ (0, T

1+δ ). Furthermore,
using that hPT (λ, 0) = 0 for any λ, for h0 small enough we have that

∥∂λhPT (1, h0)∥
(C

2+α
2

,2+α([0, T
1+δ ]×[0,1]))3

≤ C

∫ 1

0

∥∂2∂λhPT (1, sh0)h0∥
(C

2+α
2

,2+α([0, T
1+δ ]×[0,1]))3

ds

≤ C

∫ 1

0

∥h0∥(C2+α([0,1]))3ds ≤ C∥h0∥(C2+α([0,1]))3 .

Hereby, we used analyticity of hPT in both λ and h0 in a small neighborhood of (1, 0). This shows
that

∥∂th∥
(C

2+α
2

,2+α([tk,
T

1+δ ],[0,1]))
3
≤ C(tk,

T

1 + δ
)∥h0∥(C2+α([0,1]))3 . (4.20)
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Step 3: The higher space regularity of ∂th gives us the higher space regularity of h as we can use
(4.1)1 and (3.29) to see that

κih =
(Ahxx)i − hix⟨(γi∗)′′, τ i∗⟩

[(hix)2 + (|(γi∗)′| + µi(hx))2]3/2
and

κih =
(Fh∂th)i

φ◦(νih)(D2(φ◦)(νih)τ ih · τ ih)
,

with

A := diag
(
|(γ1∗)′| + µ1(hx), |(γ2∗)′| + µ2(hx), |(γ3∗)′| + µ3(hx)

)
− diag(h1x, h

2
x, h

3
x)I.

Note that for h ≡ 0 we have that A = diag(|(γ1∗)′|, |(γ2∗)′|, |(γ3∗)′|). This is clearly invertible at
every point. Consequently, A is invertible as long as hx is small enough. This can be guaranteed
for R(α) small enough. Additionally, all entries of A are bounded in C1+α due to (4.14). The
same holds then for the inverse of A due to Cramer’s rule. With this and the the higher space
regularity of ∂th we conclude that hxx(t, ·) ∈ C1+α away from t = 0. Finally, (4.16) follows from
(4.20) and the bound (4.14).

It remains to show the continuous dependency of our solution on the initial data. To that end we
use similar ideas as in the previous lemma.

Lemma 4.6 (Continuous Dependency on initial data).
Let Γi

∗, γ
i
∗, α̃

i
∗, i = 1, 2, 3 fulfil Assumption 3.1, α ∈ (0, 1). Moreover for initial data h0 ∈ C2+α

satisfying the compatibility conditions (4.4), let h ∈ (C
2+α
2 ,2+α([0, T ]×[0, 1]))3 solve (4.1) for some

T > 0. Then, there exists an εk > 0 such that the mapping

(C2+α([0, 1]))3 ⊃ Bεk(0) → R
h0 7→ ∥h∥

(C
2+α
2

,2+α([0,T ]×[0,1]))3

is continuous.

Proof. We basically copy Step 2 from Lemma 4.4 but without the λ-parameter in the definition
of F (in other words we choose λ ≡ 1). Thus, we do not have to modify the time interval and get
the sought result from another application of Theorem C.1.

Remark 4.7 (On the condition (4.14)).
As a consequence of Lemma 4.6 we see that the smallness of the bound (4.14) can indeed guaranteed
for a possible smaller choice of εk. In the following, we will assume that εk is chosen in such a
way.

5 Stability analysis

The version of the LSI we proved in Section 3.3 is in itself not very useful for the stability analysis.
The reason for this is that Theorem 3.11 does not consider the geometrical structure of our flow.
But the argument we want to do now relies strongly on the geometric gradient flow we have.
Therefore, we will modify Theorem 3.11 for solutions of (2.8). Before we do so we want to specify

resp. recall some notations for this section. We will denote by u(t, x) ∈ (C
2+α
2 ,2+α([0, T ] ×

[0, 1],R2))3 any geometric solution of (2.8) with initial values u0(x) ∈ (C2+α([0, 1],R2))3. The
corresponding normal parametrization when Lemma 3.5 is applicable will be denoted by h(t, x).
The corresponding curves at time t will be denoted by Γi(t) and the whole triple network by Γ(t).
Geometric quantities on Γ(t) will be denoted with an index Γ(t): for example, νΓ(t) will denote
the unit normal on Γ(t). By abuse of notation we will use the same notation for the quantities as
functions on Γ(t) and in local coordinates as functions on [0, 1]3.

Corollary 5.1 ( Lojasiewicz-Simon gradient inequality for E - Geometric Version).
Let Γ∗, γ∗, be as in Assumption 3.1. Furthermore let T > 0, α ∈ (0, 1),

u ∈ (C
2+α
2 ,2+α([0, T ] × [0, 1],R2))3
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be a solution of (2.8) in the sense of Definition 2.4 with respect to some initial data u0 ∈
(C2+α([0, 1],R2))3 fulfilling (2.7), and let Γ(t) be the corresponding evolving geometry.
Then, there exist δLSI , CLSI > 0, and θ ∈ (0, 1/2] such that for all t ∈ [0, T ] with

∥u(t, ·) − γ∗∥C2+α ≤ δLSI (5.1)

we have that

|E(Γ(t)) − E(Γ∗)|1−θ ≤ CLSI

(
3∑

i=1

∫ 1

0

((D2φ◦(νiΓ(t))τ
i
Γ(t) · τ

i
Γ(t))κ

i
Γ(t))

2dsiΓ(t)

)1/2

. (5.2)

Proof. Due to Lemma 3.5 condition (5.1) guarantees for δLSI small enough that we can find
h ∈ (C2+α([0, 1]))3 parametrizing u in the sense of (3.12). Also, we have that h ∈ V due to
Lemma 3.3 (whereby V is as in (3.18)). Choosing δLSI possibly smaller we can use (3.13) to
guarantee that ∥h∥V ≤ σLSI as in Theorem 3.11. Therefore we can apply Theorem 3.11 to see
that (3.34) holds. Now it remains to rewrite (3.34) in the way we proposed.
We first note hat γh (i.e. u reparametrized over the reference frame γ∗) fulfills the anisotropic angle
condition (2.8)4 and therefore the terms at x = 1 in (3.23) vanish (recall (3.5) ). Consequently,
a1 and a2 in the formula (3.24) for M are zero. Thus the right-hand side in (3.34) only consists
of the L2-norms of the ui. Studying the definition of the ui in (3.24) we observe that the first
summand in each ui is already almost what we want. We only have an additional (νih · νi∗)-term.

The other two summands have additional (νjh · τ j∗ )-terms and constant factors consisting of the ci

and si. Also, the two additional factors are on the “wrong” curves. We will take care of these
three problems one by one.
The first two problems are easy to handle as we have pointwise for i, j = 1, 2, 3 that

|νih · νi∗| + |νih · τ j∗ | ≤ 2.

Especially both factors are controlled by a constant, which we can include into CLSI .
Finally, we observe that the metric tensors are uniformly bounded by each other, again assuming
that σLSI is small enough and therefore J i

h(x) ∈ [ 12 ,
3
2 ]J i

∗(x) for all x ∈ [0, 1], i = 1, 2, 3. Thus we
basically can shift the second and third summand in the ui to the right curve by changing the
metric tensor.
In total this shows that with CLSI , σLSI suitable adapted we can conclude (5.2) from (3.34).

Finally, we are able to prove the main result of this article.

Theorem 5.2 (Stability of the anisotropic curve shortening flow on networks).
Let Γi

∗, γ
i
∗, α̃

i
∗, i = 1, 2, 3 fulfill Assumption 3.1. Then for every α ∈ (0, 1) there exists δ(α) > 0

such that for all geometrically admissible networks Γ0 with a parametrization u0 such that

∥u0 − γ∗∥C2+α ≤ δ(α), (5.3)

the anisotropic curve shortening flow (2.8) has a geometric solution on [0,∞) in the sense of
Definition 2.4. The flow may either collapse in finite time or evolve in infinite time to some
stationary solution for E with the same energy as E(Γ∗) (but with the stationary solution being
possibly different from Γ∗).
More precisely, the flow converges (written in terms of the normal graph formulation as in (3.4))
with respect to the C2+α-norm and the limit is also a local minimum of E in the sense of Assump-
tion 3.1 with the same anisotropic length energy as Γ∗.

Remark 5.3 (Convergence to Γ∗).
Note that if Γ∗ is an isolated local minimum, then our result yields that the flow starting sufficiently
close to Γ∗ converges to Γ∗.
In our elementary geometry configuration this is indeed the case when a local minimum for our
energy has a triple junction point that is distinct from the boundary points P1, P2, P3. In this case,
by [15, Lemma 3.4] (which exploits the smoothness, ellipticity and symmetry of φ◦) the energy E
admits a unique minimizer.
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Proof. Given u0 (or any reparametrization thereof fulfilling (5.3) for some δ(α) small enough),
construct h0 as in Lemma 3.5. By Remark 4.3 and Lemma 4.1 we can let h flow according
to (4.1) on some time interval [0, TSTE(α)]. We will now do the usual procedure involved with the
application of  Lojasiewicz-Simon gradient inequalities to stability analysis. To this end set

σ :=
1

4
min(εSTE(α), δLSI , εk, 1), (5.4)

where εSTE(α) is from Lemma 4.1, δLSI from Corollary 5.1, and εk from Lemma 4.4 resp. Re-
mark 4.7. (Further smallness conditions on σ will be added throughout the argumentation as
needed along the proof.) In particular, this choice of σ will give us in the following good proper-
ties associated with the constants in the right-hand side of (5.4).
By Lemma 3.5 we know that we can find δ(α) > 0 such that for all initial u0 with

∥u0 − γ∗∥(C2+α([0,1];R2))3 ≤ δ(α)

we have
h0 ∈ (C2+α([0, 1]))3 with ∥h0∥(C2+α([0,1]))3 ≤ σ.

As already mentioned, by Lemma 4.1 the map h (with initial data h0) solves (4.1), and the
corresponding network parametrized by u ( with ui(t, x) = γi∗(x) + hi(t, x)νi∗ + µi(t, x)τ i∗ ) is
by construction a solution of (2.8), at least on some time interval [0, TSTE(α)]. We have that
Γ(t) = Γh(t,·). Now, define

Tmax ∈ (0,∞]

to be the largest time such that the solution h(t, x) exists2 and such that

∥h(t, ·)∥(C2+α([0,1]))3 < 2σ for all t ∈ [0, Tmax). (5.5)

The constant δ(α) and hence σ is here chosen so small that the network Γ(t) = Γh(t,·) falls in the
H2-ball around Γ∗ characterizing its local minimal property: in other words E(Γh(t,·)) ≥ E(Γ∗)
as long as the flow exists. Note that Tmax is indeed bigger than zero as we can guarantee for a
potentially smaller σ the continuous dependency on the initial data due to Lemma 4.6. Then, for
small enough initial data (i.e. σ small enough) Lemma 4.6 guarantees us that

∥h∥
(C

2+α
2

,2+α([0,TSTE(α)]×[0,1]))3
< 2σ.

In particular, for these initial data we have that

∀t ∈ [0, TSTE(α)] : ∥h(t, ·)∥(C2+α([0,1]))3 ≤ ∥h∥
(C

2+α
2

,2+α([0,TSTE(α)]×[0,1]))3
< 2σ.

Thus for these initial data we know that Tmax ≥ TSTE(α).
Now assume that Tmax is finite. We directly see that due to the choice of σ we can apply Lemma 4.1

in t = Tmax − TSTE(α)
2 using ∥h(t)∥C2+α ≤ 2σ ≤ εSTE(α) (recall (5.5)) to see that the solution

indeed exists at least on [0, Tmax + TSTE(α)
2 ]. So the only possibility for Tmax being finite is indeed

that (5.5) is not fulfilled anymore. Furthermore, at every t̃ ∈ [0, Tmax) we can apply Lemma 4.4
with T = TSTE(α), R(α) = RSTE(α)3 to conclude for arbitrary but fixed 0 < tk < Tk < TSTE(α)
and t ∈ [t̃+ tk, t̃+ Tk] that

∥h(t, ·)∥(C3+α([0,1]))3 ≤ C(tk, Tk, RSTE(α), σ).

As this estimate is independent of t̃ we see that for fixed tS ∈ (0, Tmax) we have that

∀t ∈ [tS , Tmax) : ∥h(t, ·)∥(C3+α([0,1]))3 ≤ C(σ, tS , RSTE(α)). (5.6)

Still holding onto the assumption that Tmax < ∞, we distinguish now between two cases: if
E(Γ(t̄)) = E(Γ∗) for some t̄ ∈ [0, Tmax] then Γ(t̄) is also a local minimum. Therefore, the flow
becomes stationary from t̄ on, and Γ(t̄) provides a stationary solution which has the same energy
as Γ∗ (but is possibly different from Γ∗).

2Hereby, we mean that h solves (4.1) classically and that h ∈ C
2+α
2

,2+α([0, T ]× [0, 1]))3 for any 0 < T < Tmax.
3Note that due to Remark 4.7 the smallness condition for R(α) is guaranteed because of the choice of σ.
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Now let us assume that E(Γ(t)) > E(Γ∗) for all t ∈ [0, Tmax]. Then, using that σ < 1, we have for
all t ∈ (0, Tmax) that4

− d

dt
|E(Γ(t)) − E(Γ∗)|θ = −θ|E(Γ(t)) − E(Γ∗)|θ−1 d

dt
E(Γ(t))

= θ|E(Γ(t)) − E(Γ∗)|θ−1
3∑

i=1

∫ 1

0

(D2φ◦(νiΓ(t))τ
i
Γ(t) · τ

i
Γ(t))κ

i
Γ(t)ν

i
Γ(t) · ∂tu

i(t)dsiΓ(t)

= θ|E(Γ(t)) − E(Γ∗)|θ−1
3∑

i=1

∫ 1

0

(
(D2φ◦(νiΓ(t))τ

i
Γ(t) · τ

i
Γ(t))κ

i
Γ(t)ν

i
Γ(t)

)2
dsiΓ(t)

≥ C−1
LSI

(
3∑

i=1

∫ 1

0

(
(D2φ◦(νiΓ(t))τ

i
Γ(t) · τ

i
Γ(t))κ

i
Γ(t)ν

i
Γ(t)

)2
dsiΓ(t)

)1/2

(5.7)

= C−1
LSI∥VΓ(t)∥L2(Γ(t)) ≥ C(CLSI ,Γ∗)∥∂th(t, ·)(ν∗ · νh) + ∂tµ(t, ·)(τ∗ · νh)∥(L2([0,1]))3

≥ C(CLSI ,Γ∗)|∥∂th(t, ·)(ν∗ · νh)∥(L2([0,1]))3 − ∥∂tµ(t, ·)(τ∗ · νh)∥(L2([0,1]))3 |
≥ C(CLSI ,Γ∗)∥∂th(t, ·)∥(L2([0,1]))3 .

Hereby, we used in the second line (1.4) and (2.8)4, in the third line (2.8)1, in the fourth line the
LSI (5.2), then (4.2) together with the fact that the length of Γ(t) is controlled above and below
by the length of Γ∗ thanks to (5.5) with possibly an even smaller σ, and in the fifth line the inverse
triangle inequality. For the last inequality we used that due to (3.8) we have that

∥∂tµ(t, ·)∥(L2([0,1]))3 ≤ C(Γ∗)∥∂th∥(L2([0,1]))3 ,

where the constant depends on the contact angles (and thus the entries in the matrix I). Now
assuming σ small enough such that

τ∗ · νh ≤ 1

4C(Γ∗)
and ν∗ · νh ≥ 1

2
(5.8)

pointwise for all t ∈ [0, Tmax) (this is possible again thanks to h fulfilling (5.5)) we have that

∥∂tµ(t, ·)(τ∗ · νh)∥(L2([0,1]))3 ≤ 1

2
∥∂th(t, ·)(ν∗ · νh)∥(L2([0,1]))3 .

Due to this the last inequality in (5.7) holds. Summing these calculations up we conclude for a
suitable C = C(CLSI ,Γ∗) > 0 that

∥∂th(t, ·)∥(L2([0,1]))3 ≤ −C d

dt
|E(Γ(t)) − E(Γ∗)|θ. (5.9)

Integrating (5.9) in time yields for all t ∈ (0, Tmax) that

∥h(t, ·)∥(L2([0,1]))3 ≤
∫ t

0

∥∂th(t, ·)∥(L2([0,1]))3dt+ ∥h0∥(L2([0,1]))3

≤ −C|E(Γ(t)) − E(Γ∗)|θ + C|E(Γ0) − E(Γ∗)|θ + ∥h0∥(L2([0,1]))3

≤ C|E(Γ0) − E(Γ∗)|θ + ∥h0∥(L2([0,1]))3 (5.10)

≤ C∥h0∥θ(C1([0,1]))3 + ∥h0∥(C1([0,1]))3

≤ C∥h0∥θ(C1([0,1]))3 + ∥h0∥θ(C1([0,1]))3

≤ C∥h0∥θ(C1([0,1]))3 ,

with C = C(CLSI ,Γ∗, φ
◦) > 0 . Hereby, we used in the fifth step the general smallness assumption

on σ and in the fourth step the Lipschitz continuity of the anisotropic surface energy due to the
smoothness of φ◦ away from the origin, (5.8), the formula (4.9) for the normal νh, and the general
fact that

|(γh1)x||(γh2)x||τh1 − τh2 |2 + (|(γh1)x| − |(γh2)x|)2 = |(γh1)x − (γh2)x|2.
4For better readability we drop the time variable in h in the following!
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Applying real interpolation theory (see [38, (i) of Theorem at page 29 and (ii) of Theorem at page
5], [3, Theorem 6.4.5(3)] and [37, Theorem 4.6.1(e), page 328] ) we get with a suitable interpolation
exponent β ∈ (0, 1) and using (5.6) and (5.10) for any t ∈ [tS , Tmax) that

∥h(t, ·)∥(C2+α([0,1]))3 ≤ ∥h(t, ·)∥(C3([0,1]))3 ≤ C∥h(t, ·)∥β(L2([0,1]))3∥h(t, ·)∥1−β
(C3+α([0,1]))3

≤ C(σ, tS , RSTE(α), β,Γ∗, CLSI , φ
◦)∥h0∥βθ(C1([0,1]))3

≤ C(σ, tS , RSTE(α), β,Γ∗, CLSI , φ
◦)∥h0∥βθ(C2+α([0,1]))3 .

Now, by setting C1 := C(σ, tS , RSTE(α), β,Γ∗, CLSI , φ
◦) and choosing

∥h0∥(C2+α([0,1]))3 ≤ e
1
βθ ln( σ

C1
),

which is - again using Lemma 3.5 - guaranteed for u0 close enough to γ∗, it follows for all t ∈
[tS , Tmax) that

∥h(t, ·)∥C2+α([0,1]) ≤ σ. (5.11)

Note that due to Step 3 in the proof of Lemma 4.4 we see that [tS , Tmax +Tk] → R, t 7→ ∥h(t, ·)∥C3

is continuous. Using the interpolation property of Hölder spaces (see [25, Example 1.8]) we see
that

∥h(t1, ·) − h(t2, ·)∥C2+α ≤ C∥h(t1, ·) − h(t2, ·)∥1−α
C2 ∥h(t1, ·) − h(t2, ·)∥αC3

In particular ∥h(t, ·)∥C2+α is also continuous in time as the C2- and C3-norm both are continuous
in time. With this and (5.11) we conclude that (5.5) is also fulfilled beyond Tmax, yielding a
contradiction to the maximality of Tmax. If follows that Tmax = ∞.
If Tmax = ∞ in our assumption (5.5) then, if a local minimum is not attained in finite time, by
proceeding as above we can still choose σ so small that (5.10) holds.
Now we note that due to (5.9) and the fact that E is decreasing in time, we conclude that
∂th ∈ L1([0,∞), (L2([0, 1]))3). Therefore, there exists a unique h∞ ∈ (L2([0, 1]))3 - inducing a
network Γ∞ - with

lim
t→∞

h(t, ·) = h∞ in (L2([0, 1]))3.

In particular, h(t, ·) is a Cauchy sequence in (L2([0, 1]))3. Furthermore by (5.10) we have that
∥h∞∥(L2([0,1]))3 ≤ C∥h0∥θ(C1([0,1]))3 .

Observe that (5.6) is a local estimate that holds for all t > tS and the constant C(σ, tS , RSTE(α))
does not depend on the final existence time. Thus for any t, t̃ > tS we conclude with the same
interpolation argument as before that

∥h(t, ·) − h(t̃, ·)∥(C2+α([0,1]))3 ≤ C(σ, tS , RSTE(α), β,Γ∗, CLSI , φ
◦)∥h(t, ·) − h(t̃, ·)∥β(L2([0,1]))3 .

This implies that h(t, ·) is also a Cauchy sequence in (C2+α([0, 1]))3 and thus has a limit in this
space. By uniqueness of limits we infer that h∞ is this limit and has the higher regularity. As
there is a sequence (tn)n∈N ⊂ R+ with tn → ∞ and ∥∂th(tn, ·)∥(L2([0,1]))3 → 0, this implies by
(4.3) that

∥F−1
h∞

(φ◦(νh∞)(D2φ◦(νh∞)τh∞ · τh∞)κh∞)∥(L2([0,1]))3 = 0.

Due to Lemma 2.1 this implies that κh∞ ≡ 0. Thus Γ∞ consists of three straight lines. Finally,
as h∞ also fulfills ∥h∞∥(C2+α([0,1]))3 ≤ 2σ due to the convergence in the C2+α-norm, we can apply
Corollary 5.1 for h∞ and conclude that

|E(Γ∞) − E(Γ∗)|1−θ = 0, (5.12)

which directly implies that Γ∞ is a local energy minimum with E(Γ∞) = E(Γ∗). This finishes the
proof.
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A Parabolic Hölder spaces

In this section we want to introduce parabolic Hölder spaces and give some basic properties of
them. They can be found, e.g., in [35, p. 66 and 91].
We will only consider Ω = [0, 1] as space and I = [0, T ] for some T > 0 as time domain. Most of
the following is also true for more general situations. We first introduce the Hölder semi-norms in
space and time given by

⟨f⟩x,α := sup
x1,x1∈Ω,t∈I

|f(t, x1) − f(t, x2)|
|x1 − x2|α

,

⟨f⟩t,α := sup
x∈Ω,t1,t2∈I

|f(t1, x) − f(t2, x)|
|t1 − t2|α

,

for a function f : I × Ω → Rn and α ∈ (0, 1). Now, we define for α ∈ (0, 1), n ∈ N the spaces

C
α
2 ,α(I × Ω,Rn) := {f ∈ C(I × Ω,Rn)|⟨f⟩t,α2 <∞, ⟨f⟩x,α <∞},

∥f∥
C

α
2

,α(I×Ω,Rn)
= ∥f∥∞ + ⟨f⟩t,α2 + ⟨f⟩x,α,

C
1+α
2 ,1+α(I × Ω,Rn) := {f ∈ C(I × Ω,Rn)|∂xf ∈ C(I × Ω,Rn), ⟨∂xf⟩x,α <∞, ⟨f⟩t, 1+α

2
<∞,

⟨∂xf⟩t,α2 <∞},
∥f∥

C
1+α
2

,1+α(I×Ω,Rn)
= ∥f∥∞ + ∥∂xf∥∞ + ⟨∂xf⟩x,α + ⟨f⟩t, 1+α

2
+ ⟨∂xf⟩t,α2 ,

C
2+α
2 ,2+α(I × Ω,Rn) := {f ∈ C(I × Ω,Rn)|f, ∂xf, ∂xxf, ∂tf ∈ C(I × Ω,Rn), ⟨∂tf⟩x,α <∞,

⟨∂xxf⟩x,α <∞, ⟨∂xf⟩t, 1+α
2
<∞, ⟨∂xxf⟩t,α2 <∞, ⟨∂tf⟩t,α2 <∞},

∥f∥
C

2+α
2

,2+α(I×Ω)
:=

∑
0≤2i+j≤2

∥∂it∂jxf∥∞ + ⟨∂xxf⟩x,α + ⟨∂tf⟩x,α + ⟨∂xf⟩t, 1+α
2

+ ⟨∂xxf⟩t,α2 + ⟨∂tf⟩t,α2 .

Definition A.1 (Parabolic Hölder spaces).

We call (C
k+α

2 ,k+α(I×Ω), ∥·∥
C

k+α
2

,k+α(I×Ω)
) with k ∈ {0, 1, 2}, α ∈ (0, 1) parabolic Hölder spaces.

Note that parabolic Hölder spaces can be defined more generally. Then, the denominator depends
on the order of the considered PDE. The following two properties are crucial for our work.

Lemma A.1 (Product estimates in parabolic Hölder spaces).

Let k ∈ {0, 1, 2}, α ∈ (0, 1) and f, g ∈ C
k+α

2 ,k+α(I × Ω). Then we have

fg ∈ C
k+α

2 ,k+α(I × Ω), (A.1)

and furthermore we have that

∥fg∥
C

k+α
2

,k+α(I×Ω)
≤ C∥f∥

C
k+α

2
,k+α(I×Ω)

∥g∥
C

k+α
2

,k+α(I×Ω)
. (A.2)

Proof. Cf. [19, Lemma 2.16].

Lemma A.2 (Contractivity property of lower order terms in parabolic Hölder spaces).

Let k, k′ ∈ {0, 1, 2}, k′ < k, α ∈ (0, 1). Then, we have for any f ∈ C
k+α

2 ,k+α(I × Ω) that

∥f∥
C

k′+α
2

,k′+α(I×Ω)
≤ ∥f

∣∣
t=0

∥Ck′+α(Ω) + CT ᾱ∥f∥
C

k+α
2

,k+α(I×Ω)
. (A.3)

Hereby, the constants C and ᾱ depend on α, k, k′ and Ω. Especially, if f
∣∣
t=0

≡ 0, we have

∥f∥
C

k′+α
2

,k′+α(I×Ω)
≤ CT ᾱ∥f∥ k+α

2 ,Ck+α(I×Ω). (A.4)

Proof. Cf. [19, Lemma 2.17].

Further useful properties can be found for instance in [19] and [23].
As a final remark we want to note that to avoid confusion we denote the classical Hölder spaces
by Ck+α instead of Ck,α, which is the more common notation. So for example we have that

C2+α(Ω) = C2,α(Ω) := {f ∈ C2(Ω)
∣∣ 2∑
i=0

∥∂ixf∥∞ + [∂2xf ]x,α <∞}.
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B Additional proofs

Lemma B.1.
Suppose that θ1, θ2, θ3 ∈ (0, π) are such that θ1 + θ2 + θ3 = 2π. Furthermore, let ν1, ν2, ν3 ∈ R2

be such that ∠(ν1, ν2) = θ3,∠(ν2, ν3) = θ1,∠(ν3, ν1) = θ2 and |νi| = 1, i = 1, 2, 3. Finally, let
α̃1, α̃2, α̃3 ∈ R+. Then, (2.1) and (2.2) are equivalent.

Proof. W.l.o.g. assume that θ1 is the smallest angle. Then due to θ1 + θ2 + θ3 = 2π we have that
θ2, θ3 ∈ (π/2, π). We can illustrate the geometrical situation in the following image.

α1ν1

w

α̃2ν2 α̃3ν3

u

θ2θ3

θ̄3

θ̄2

θ̄1

θ1

Hereby, u ∈ R2 is parallel to ν3 and such that w := α̃2ν2 +u ∈ ⟨ν1⟩. Observe that −ν1 will always
be in the cone between ν2 and ν3 since by assumption θi < π for i = 1, 2, 3. Thus, u is always a
positive multiple of ν3. By construction we have that θ̄1 = π − θ1 and θ̄3 = π − θ3, so that using
that

∑
i θ̄i = π and

∑
i θi = 2π, we obtain θ2 = π− θ̄2. It follows that sin(θi) = sin(θ̄i) due to the

symmetry of the sine function. First assume that (2.2) holds. Then we have that w = −α̃1ν1 and
u = α̃3ν3. Then, (2.1) is a consequence of the law of sines. On the other hand if (2.1) holds, we
can use the law of sines to deduce that |u| = α̃3 and |w| = α̃1. Therefore we have that u = α̃3ν3

and w = −α̃1ν1. This implies then (2.2).

C Used results

Theorem C.1 (Implicit function theorem on Banach spaces).
Let X,Y, Z be real Banach spaces, (x0, y0) ∈ X × Y,Λ × Ω be an open neighborhood of (x0, y0) in
X × Y and F : Λ × Ω → Z such that

1. F (x0, y0) = 0;

2. ∂yF exists as partial Fréchet-derivative on Λ × Ω and ∂yF (x0, y0) : Y → Z is bijective;

3. F and ∂yF are continuous at (x0, y0).

Then there exist positive numbers r0 and r such that Br0(x0) × Br(y0) ⊂ Λ × Ω and for every
x ∈ X satisfying ∥x− x0∥X ≤ r0, there is exactly one y = y(x) ∈ Y for which ∥y − y0∥Y ≤ r and
F (x, y) = 0. Moreover,

• if F is continuous in a neighborhood of (x0, y0), then y(·) is continuous in a neighborhood of
x0.

• if F is a Cm-map for 1 ≤ m ≤ ∞ on a neighborhood of (x0, y0), then y is a Cm-map on a
neighborhood of x0.

• if F is analytic at (x0, y0), then y is analytic at x0.

Proof. See [40, Theorem 4.B] and [40, Corollary 4.23].
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In the following all Banach spaces are assumed to be real. Following [14], let V be a Banach
space and V ′ denote its continuous dual space. We call a bilinear form b : V × V → R definite
if b(x, x) ̸= 0 for all x ∈ V \ {0}. We say that a continuous embedding of a Banach space
into its continuous dual space, j : V → V ′, is definite if the pullback of the canonical pairing,
V × V ∋ (x, y) 7→ ⟨x, j(y)⟩V×V ′ → R, is a definite bilinear form.
Before we state the next result, we have to define gradient maps (see [14, Definition 1.5]):

Definition C.1 (Gradient map).
Let U ⊂ V be an open subset of a Banach space V and W a Banach space with continuous
embedding W ⊂ V ′. A continuous map M : U → W is called a gradient map if there exists a
C1-function E : U → R, such that

E′(x)v = ⟨v,M(x)⟩V×V ′ , ∀x ∈ U, v ∈ V,

where ⟨·, ·⟩V×V ′ is the canonical bilinear form on V × V ′. The real valued function E is called a
potential for the gradient map M.

Theorem C.2 (Theorem 2 in [14]).
Let V and W be Banach spaces with continuous embedding, V ⊂ W ⊂ V ′, and such that the
embedding V ⊂ V ′ is definite. Let U ⊂ V be an open subset, E : U → R a C2-function with real
analytic gradient map, M : U → W and x∗ ∈ U a critical point of E, that is, M(x∗) = 0. If
M′(x∗) : V → W is a Fredholm operator with index zero, then there are constants, CLSI > 0,
σLSI ∈ (0, 1] and θ ∈ (0, 12 ] with the following significance. If x ∈ U obeys

∥x− x∗∥V < σLSI ,

then

|E(x) − E(x∗)|1−θ ≤ CLSI∥M(x)∥W .

Proof. See proof of [14, Theorem 2].
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[8] Chill, R., Fašangová, E., and Schätzle, R. Willmore blowups are never compact. Duke
Math. J. 147, 2 (2009), 345–376.

[9] Dall’Acqua, A., Pozzi, P., and Spener, A. The  lojasiewicz-Simon gradient inequality
for open elastic curves. J. Differential Equations 261, 3 (2016), 2168–2209.

33



[10] Dall’Acqua, A., Lin, C.-C., and Pozzi, P. Elastic flow of networks: short-time existence
result. Journal of evolution equations 21, 2 (2021), 1299–1344.

[11] Deckelnick, K., and Nürnberg, R. An unconditionally stable finite element scheme for
anisotropic curve shortening flow. Arch. Math. (Brno) 59, 3 (2023), 263–274.

[12] Depner, D., and Garcke, H. Linearized stability analysis of surface diffusion for hyper-
surfaces with triple lines. Hokkaido Math. J. 42, 1 (2013), 11–52.

[13] Ejdel’man, S. D., and Zhitarashu, N. V. Parabolic boundary value problems. Operator
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