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Abstract

We consider a second order gradient flow of the p-elastic energy for a planar theta-network
of three curves with fixed lengths. We construct a weak solution of the flow by means of an
implicit variational scheme. We show long-time existence of the evolution and convergence
to a critical point of the energy.
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1 Introduction

In this paper we consider a network composed of three inextensible planar curves. Each curve
vi = 7i(s) of fixed length L; > 0, i = 1,2,3, is parametrized by arc-length s over the domain

I; = [0, L;]. Without loss of generality we may assume that
(11) 0< Ly < min{Lg,Ll}.

Let T* = T%s) = v/(s) denote the unit tangent of the curve ;. It is well known that a
planar curve is uniquely determined by its tangent indicatrix 7%, up to rotation and translation.
Omitting for simplicity the indices of the curves, we recall the formulas 7" = £ = kN, N' = —xT,
as well as 0'(s) = k(s), where T' = (cos#,sinf). The map 6 : I — R is called the indicatrix of
the curve 7.

We shall consider a theta-network I' = {71, 72,73}, where the three curves satisfy

71(0) = 72(0) = v3(0),
Y1(L1) = v2(L2) = y3(L3).

Without loss of generality we shall assume that the first triple point is placed at the origin, that
is, 7;(0) = 0, for i = 1,2, 3. From the concurrency conditions above it follows immediately that

(1.2) /11 T'(s)ds = /12 T2(s)ds = /13 T3(s)ds.
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Letting p € (1, +00), the p-elastic energy of the network is defined as

3

EP(F) = Z Ep(lyi)a

i=1

where
1 . 1 : ;
By(y) i= — [ [Ralrds = = [ 017 Pds = Fp(T7).
pJ pJr

Minimizers for the elastic energy (i.e. with p = 2) plus an additional term penalizing the
growth of the length of the curves have been investigated in [9], where an angle condition at the
triple junctions has been imposed in order to avoid the collapse of a minimizing sequence to a
point. Here the situation is different, because the length of each curve is fixed. In particular it
is not necessary to impose the angle condition at the triple junctions.

Here we consider the evolution of the network I' via a second order gradient flow first intro-
duced by Y. Wen in [33] (see also [19, [31]). More precisely we will consider the L2-gradient flow

of the energy
3

Fy(D) =) F(T"),
i=1
when expressed in terms of the angles corresponding to the tangent vectors. This gives rise
to a second order parabolic system. We shall express the energy Fj,(I') and the corresponding
gradient flow by means of the three scalar maps ¢ : I; — R such that T% = (cos 6, sin 6%).
Let us now state our main existence results. We let

H .= {0 —(61,02,6%) € WEP(0, Ly) x WIP(0, Ly) x WHP(0, Ly) |

/(cos@l,sinel)ds:/(00892,81n92)ds:/ (00503,sin03)ds}.

I Iz I3

Theorem 1.1. Let 8y € H and let T > 0. Assume that the lengths of the three curves are such
that

(13) L3 < min{Ll, LQ}
Then, there exist functions 6 = (0%,62,0%), with 69 € L>(0,T; WlP(1;)) N H(0,T; L*(1;)), and

Lagrange multipliers \', N2, ut, u? € L?(0,T) such that the following properties hold:
(i) for any @ = (o', %, ¢3) with ¢/ € L>=(0,T;WHP(I;)), j = 1,2,3, there holds

3. T 3. T
ozz/ /6t9]<p3dsdt+2/ /|9g|p—29g-%dsdt
=0 R
T T
(1.4) —/ (AL —,ul)/ sin(@l)goldsdt—i—/ ()\Z—MQ)/ cos(0') pldsdt
0

I 0 I
T T
+/ )\1/ sin(92)<p2dsdt—/ )\2/ cos(6?) p2dsdt
0 I 0 I

T

T
- ul/ sin(93)cp3dsdt+/ /ﬂ/ cos(0%) p3dsdt ;
0 I3 0 I3



(ii) the maps |0s07|P~20567 belong to LW(O,T;L%(Ij)) N L%0,T; H'(I;)), j = 1,2,3, and
satisfy
(|0:01[P720,0%)s = 6} — (! — p)sin 6! + (A2 — 1) cos 0,
(|0s6%P~2056%)5 = 07 + A\ sin 6% — A\ cos 62,
(|0:6°P~20,0%), = 03 — 't sin 6% + 12 cos 62,
09(0,t) = 04(Lj, t) =0, for j =1,2,3 and for a.e. t € (0,T);

—_ = e

5)
6)
7)
8)

~—~~ ~~ —~~

(i) for all t € [0,T], there holds

(1.9) /(cos@l,sin91)ds:/(cos&z,sinﬁz)dSZ/(c0593,sin93)ds.

I Ip) I

Notice that the time T" > 0 can be chosen arbitrarily, so that the weak solutions € and the
Lagrange multipliers X = (AL, \2), ji = (u!, 4?) can be defined globally on the whole of (0, +oc0),
and Theorem provides long-time existence of the evolution.

Concerning the behavior of the solutions as ¢ — +00, we will show that they converge, on a

suitable sequence of times, to a critical point of the energy F,(T").

Theorem 1.2. Assume ([1.3)) and let @y € H. Let @ = (6',6%,63), with 07 € L5° (0, co; WHP(I;))N
HL (0,005 L2(1})), and A, N2, ut, u? € L°°(0,00) be the solutions given by Theorem . Then
there ewist a sequence of times t, — oo, Lagrange multipliers Mo A2l p2 € R, and limit

functions O = (0L,,02,,03,), with 65, € WLP(I;), such that the following system holds:

(e ohihdie okl o]

(10505 [P720,01 )y = —(A! — p) sin @) + (A2 — %) cos 1, in I,
(1.10) (10562, [P~20,6%)s = A sin 6%, — A\ cos #% in Iy,
(|0s03.|P720,03.)s = —p' sin 03 + p? cos 62, in I3,

together with the boundary conditions
(1.11) 0509,(0) = 9509, (L;) =0 forj=1,2,3.

Observe that Theorem together with Remark [2.2] below yields the existence of configu-
rations of planar theta-networks that are critical with respect to the elastic energy Ea (p = 2)
and are subject to natural boundary conditions and given fixed lengths. This result is relevant
for the investigations undertaken in [8], [14].

We notice that, by direct method of the Calculus of Variations (see for instance [9]), the
energy F, always admits a global minimizers among theta-networks with curves of fixed length,
moreover such a minimizer is regular and satisfies the natural boundary conditions at the triple
junctions, so that it is also a critical point of E,. However, uniqueness of minimizers is not clear,
and there might exist critical points of E, which are not global minimizers.

If we do not assume we are not able to show long-time existence, due to a technical
difficulty in estimating the Lagrange multipliers A, A%, !, 2. However, if we assume that at
least two initial curves are not flat, the same method yields the following short-time existence
result.

Theorem 1.3. Let 6y € H be such that

(1.12) min (oscffj1 961 (1), oscr,, 962 (t)) >c¢>0 for some ji, j2 € {1,2,3},

3



where oscy, 96 denotes the oscillation of 96 on the interval I;. Then there exist T = T(6y) > 0
and functions @ = (0*,62,0%), with 67 € L>(0,T; WYP(1;)) N HY(0,T; L*(1;)), M\, A% pt, pw? €
L?(0,T) such that properties (i), (ii), (iii) of Theorem hold. Moreover, letting Tyma. be the
mazximal existence time of the evolution, if Tha: < +00 there holds

(1.13) }in;{nf max (OSijl 671 (t), oscr, 672 (t)) =0 for some j1,j2 € {1,2,3}.
—Thmas

In order to show existence of weak solutions in Theorems and we apply an implicit
variational scheme to the energy F,(I') expressed in terms of the functions 6. Such time-discrete
schemes have been used in the study of geometric evolutions starting from the pivotal works by
Almgren, Taylor and Wang [2] and by Luckhaus and Sturzenhecker [20] in the case of the mean
curvature flow. An extension of these techniques to multiple-phase systems can be found in [4],
while an adaptation to the L2?-gradient flow for the elastic energy (p = 2) of an open curve,
which gives rise to a fourth order flow, has been recently proposed in [13] [3].

Starting from the work by Polden [32], the fourth order evolution of elastic curves has been
extensively studied in the literature, under various constraints and boundary conditions, we
refer for instance to [18] [10} 25] 26, [7,, 6, 11}, 32} 16, 12 17, [34], 29, 30}, 28, 27, B5] and references
therein. On the other hand, not many works treat the second order evolution that we consider
here (see [33, [19] 31]).

The geometric evolution of planar networks is more complicated, since a network is intrin-
sically singular, due to the presence of the multiple junctions, and the evolution is typically
described by a system instead of a single equation. However, the evolution by curvature of a
network has been studied in many papers, starting from the work [5] where the authors first
establish the short-time existence of solutions. We refer to [24] 211 22| 23] for a discussion of the
long-time existence in some particular cases, and the formation of singularities.

Finally, for the fourth order evolution of elastic networks we refer to [I5] for the short-time
existence of smooth solutions and to [8, [I4] for the long-time existence, under the assumption
that the tangent vectors of the three concurring curves are not collinear at a triple junction.
With our approach we don’t need such a condition, even if our notion of solution is considerably
weaker than the one considered in [ [I4].

We conclude by observing that the result in Theorem can be extended without significant
modifications to the case of a network of three curves with a single triple junction and three
fixed endpoints, which is the situation considered in [8, 15 [I4]: this fact is briefly discussed in
Remark

The article is organized as follows: in Section [2[ we derive and motivate the system (|1.5[)—
and discuss the well-posedness of the Lagrange multipliers. In Section |3[ we investigate
the construction of a weak solution via minimizing movements and provide proofs of our main
results. For the reader’s convenience some proofs are collected in the Appendix.
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2 First variation and preliminary results

Let us compute the first variation of the energy F,(I") = Z?:1 F,(T"). We consider variations

T! = \?zi?pm for € small enough and ¢ € C*(I;,R?), i = 1,2,3. Then

a4
de

Since we want to include the constraint ((1.2)) we compute

3
— S F(T]) |+ X </ Tjds—/ T3d3> + - (/ Tjds—/ Tjds>
=01\ I I I3 bl
where X = (A}, A2), i = (u!, u2) € R? are Lagrange multipliers. A direct computation gives

o_z/|aTZ|p 20,7 . 9,(p')ds

+X- (/ oltds —/ gouds> + i (/ ©3tds —/ gouds>
I I I3 I

— / [ 0,(10T P-20,T") + (X — fi)] - *Lds + / = 0.(10:T2P~20,T2) — X] - o> ds
Il 12

=g = (T =
€=

=0,

+ [ ooty + - s

3
_ /I [~V (0T 20,1 + (X — i) - NYN'] - o' ds
1

B /1 (Vo(10:T2P~20,7%) + (X- N*)N?] - % ds
2

+ [ 90T 20T+ (- NN P,
3

where Vo = 05 — (0s¢ - T)T denotes the normal component of the derivative ds¢ and where

we have used the fact that 9,7 vanishes at the boundary.
This motivates the study of the second-oder problem

(2.1) T = V(|0 T |P~20,T") — (X — i) - NY)N' in I x (0,t,)
(2.2) O, T? = V(|0 T?|P720,T%) + (X - N?)N? in I x (0,t,)

(2.3) HT? = V(|0 T3[P~20,T3) — (ji - N*)N? in I3 x (0,t,)

(2.4) dsT'=0 on 9L x (0,t,), i=1,23,

(2.5) T(-,0) =1T¢, i=1,2,3,

for some t, > 0, and for smooth initial data T satisfying (1.2)) and
(2.6) Ri(s) = 0sTa(s) =0 for s € {0,L;}, i =1,2,3.
Here X = X(t) = (AL(£),\2(¢)), fi = fi(t) = (u'(t), u2(t)) are such that

(2.7) 0T HPT ds — (X — i) - A = | |0, T?|PT?ds + X - A
I I



(2.8) 0, T PT ds — (X — i) - A' = | |0, T3PT3ds — i - A3
11 13

hold, where
(2.9) At = Al(t) :/ Ni® Nids, i=1,2,3,
I;

are 2 x 2 time-dependent matrices. Note that if det A* = 0 then the Lagrange multipliers might
not be well defined. We will comment on the well-posedness of the Lagrange multipliers below.

Under the assumption that such Lagrange multipliers exist, we observe that as long as the
flow is well defined and smooth the constraint is satisfied. Indeed, we have

d
— (/ Tlds—/ T2ds> :/ ngs—/ T?ds
dt \Jr, I L I

= [ V(10T P20,T") — (X — ) - NYN'ds — | V(|0 T?P~20,T) — (X - N>)N2ds
Il 12

_ / 0,(10s T P~20,T")ds — / (0518, T P~20,T") - THT ds — (X — ji) - A!
Iy

I

— ( Ds(|0s T2 P20, T%)ds — / (05(|10:T%P~20,T2) - T*)T?ds + X -A2> =0
Iz

Iy

due to the boundary conditions (2.4) (with the convention that |[0[P=20 = 0), the fact that
OssT - T = —|0sT|?, T - 0sT = 0, and (2.7). Similarly, using now (2.8)), one verifies that

4 </ T3ds—/ Tlds> =0.
dt IS 11

In other words the constraint (1.2)) is satisfied along the flow.
Note also that the energy Fj,(I') decreases along the flow. Indeed, using the computation
above, the fact that T} are normal vector fields and 0y( [}, T"ds — [}, T?ds) = 0 = 9(f;, T?ds —

[;, T'ds), we find

3
d . . .
_ — _ i |p—2 i\ . i
ety Z;/I[ Vo[0T P~20,TY)) - Tids
:Z/[—vs(‘asTl‘p—Zast)]_Ttld8+)\,/ Ttlds—)\/ des
i=1"1i n I

+ﬁ/ Tt?’ds—ﬁ'/ Tlds
I3 I

— [ Evaaat o) T+ (- ) NN Tids
I
+ [ Vo) 1 - (X N)N® - Tids

I

* / [_VS(’asTS‘pizasTg)] ’ Tt3 + (/j NS)NS ’ Tt3d5
I3

3
—->" [ 1aripas <o.
i=1 71



The system (2.1))— (2.5]) can be converted into a system for the scalar maps 6% : I; x (0,,) — R
satisfying

(2.10) T'(s,t) = (cos0'(s,t),sin 0 (s,t)), i=1,2,3.
Indeed, since we have

V(|0sTHP720,T%) = 05(|0s T P~ 0T + |0, T P2 (92T — (92T - TY)T?)
= (|04P~2)0LN" + |04 P~ 20L N”,

we obtain the system

(2.11) 0; = (|0XP201), + (AY(t) — b (t)) sin O — (N2(t) — p2(t)) cos 0" in I x (0,t,)
(2.12) 02 = (102P720%), — AL (t) sin 62 + \2(t) cos 6? in Iy x (0,t)
(2.13) 03 = (637~ 293) +u ( t)sin 0 — 1% (t) cos 63 in I x (0,t,)
(2.14) 6(0,t) = 0% (L;,t) = € (0,ty), 1 =1,2,3,
(2.15) 0°(-,0) = 65(-) i=1,2,3.
Regarding the Lagrange multipliers, recall that the matrix A? is given by
i aige fI sin? 'ds — f[ sin 0% cos #tds i
(2.16) AT =AY = < —J1 sin 0% cos 0'ds 1, cos? 0ids = A0,
so that by (2.7), (2.8), we can write
(2.17) 10,017 (cos 01, sin 01 )ds — (X — 1) - AL(0Y) = [ |956%[P(cos 62, sin 0%)ds + X - A%(6?)
11 12
(2.18) 10,0 |P(cos 0, sin 01 )ds — (X — i) - AY(0Y) = [ |8:6°|P(cos 63, sin 6%)ds — i - A3(6%).
Il 13
Letting, for i = 1,2, 3,
(2.19) G' =G0 = / |050"|P(cos 0", sin 6")ds,
I;

the above system reads as
— @) -A' =G24 X A
_ﬁ)Al:Gd_ﬂA37

(2.20) G —(

X
(2.21) Gt —(X
that is, recalling that G + X-A? =GB — ji - A3,

(2.22) XA+ g A= -G
(2.23) X (A2 AY gAY =G -G

Assuming that A, A? are invertible, we then get

X
i

(GP =G> — i A%)- (42
(G* = G+ X(A% + AY)) - (AN,



which yields
fi(I+ A3((A%)7H+ (AN ) = (G? = GY(AN) ' + (G2 = G*)((AY) T+ (A 7).

Observe that if det(A?) > 0 for i = 1,2, 3, then we can solve for ji and X and the Lagrange
multipliers are well defined (simply write (I 4+ A3((A2)~1 4 (A)~1)) = A3(322_ (4)~!) and use
that A', i = 1,2,3 are symmetric real (hence diagonalisable) and positive definite matrices (by
Sylvester criterion), and that the sum of positive definite matrices is again positive definite and
hence invertible). Note also that, by Cauchy-Schwarz inequality we have det A* > 04 = 1,2, 3.
A strict bound from below on the determinant is shown in [I9, Lemma 1] (see Lemmabelow),
provided the considered curve is not a straight line (i.e. we need some oscillation of €). In other
words provided none of the curves is a straight line, then the system is well-posed.

The system for the Lagrange multipliers can be solved in a slightly more general situation.
Indeed, if the matrices A’ are such that det(A?) > 0 for i = 1,2, while det(A3) = 0, that is,
63 = 9* for some constant 6%, we deduce that:

(i) (AH)~1 4= 1,2 exist, are positive definite and symmetric;

(ii) the matrix M = (my;)ij=12 = (A?)7! + (A')~! is symmetric and positive definite, and
by writing it down explicitly we infer that mj; and mso are nonnegative. Moreover, since
det M > 0, we have that

VMi11y/Mo2 > \mm\ = \m12\;

sin2 6* — sin 0* cos 6*

(iii) the symmetric matrix A% = (a;;); j=1.2 is given by A% = L (  sin 6" cos 0" o5 0"

01 sinf*  cos8*
that a1 and agg are nonnegative and \/ai1./az2 > |ag1| = |ai2| holds;

L3P< 00 >P—1 where P — < cos"  —sin > and P~! = P!. In particular, note

(iv) det(A3M) = det A3 det M = 0. Moreover (ii) and (4ii) yield

tr(A°M) = ajyma1 + a1amar + azmiz + agamas
> ajymiy + agamaz — 2|aia||mis|
= (Variy/mi1 — agzy/maz)? + 2v/a11/miiy/azy/maz — 2|aiz||miz| > 0.

This implies that the matrix A3M has eigenvalues w; = 0 and wy = tr(A3M) > 0, and
can be diagonalized. Hence there exists an invertible matrix @) such that

0 0 1 1
ASMYQ™! = h <wy < C (L3 Lo L :
Q( )Q < 0 Ws ) ; where 0 S W2 s C < 3, L2, L1, det(Al)’ det(A2)>

By writing
1+ﬁ«ﬁr%umr5:1+ﬁM=Q*U+Qm%®QﬂQ=Q4<é1EM>Q

we infer that such matrix is invertible and we can solve the system for i and X. Moreover, the
above analysis yields that

3
| 1 1
. < S ‘P i = ; ’ Y Ik AL Aat A2 ]
(224)  +pl<c (;l /I 1050 d8> with € =C (Ll Lo Lsy Qe AT et A2>

8



This is a bound that is important for the analysis that follows.

Summing up and recalling , we have that the Lagrange multipliers are well defined in
the case Ly < min{Lj, Lo}, which corresponds to a situation where the curve 73 might be a
straight line, whereas ~y; and 7 necessarily have regions with non vanishing curvature. In fact,
for the previous estimates on the Lagrange multipliers to hold, it is enough to assume that at
most one of the three curves is flat. This is the case we will mostly concentrate on, the remaining
cases are briefly discussed in the following remark.

Remark 2.1. Let us first consider the case where L3 = Lo < L1. As shown above the Lagrange
multipliers are well defined as long as none of the curve is a straight line. If the curve 3 becomes
straight, the same must happen for «5. More precisely, due to the theta-network configuration,
we have that 7o = 3, A3 = A? with A3 as in case (iii) discussed above, and G? = G3 = 0.
Summing up equations (2.20)) and (2.21)) yields
(X — i) - (24" + A%) = 26"
(X+[)-A>=0

Since (2A! + A3) is positive definite and invertible, we get

(X— i) = 2G' - (24" 4 4%)7!

T, = 00\ /¢ - 0 —sing*
o=am-p( g V) =Gem- (g ml)

= (0, =\ + ) sin@* + (A2 + p?) cos 6*).
In this case, a solution of the system (2.20)), (2.21)) is given by
X=—ji=G' (24" + A%~

However, the solution is not unique. Moreover, even if we can pick up a solution for which ([2.24))
holds, we have no means to control the constant C in (2.24) when two curves simultaneously
become flat.

In the case L1 = Lo = L3, the three curves can become straight necessarily at the same time.
When this happens, the energy is minimal and equal to zero, and the trivial solution of three
coinciding segments is attained. In this case G' = G2 =G3 =0, A' = A2 =A% and A= ji=0

is a solution of the system (2.20)), (2.21]).

Remark 2.2 (Relation between classical formulation and #-formulation). For simplicity we first
consider a smooth evolution of a single curve satisfying

0 = (|0sP7205)s + ' (t) sin @ — p>(t) cos 6.
For a stationary point this implies
(2.25) 0= (|0sP726,)s + p'sinf — 1% cos 6.
After mutiplying by 8 we obtain

-1
0= 4 <p98|p — u'cos @ ,uQSinH)
ds P



which gives

-1

L\Gs\p — (u' cos@ + p?sind) =: i € R.

p

On the other hand, by differentiating (2.25) we get
0= (|05]P205) s + 05(11* cos @ + p? sin 6)
B -1 _ _ -1 _
= (|95|p 295)33 + 0, <pp|98|p - ,LL> = (|95’p 295)33 + pT|es|p‘95 - Nes

-1
= (15 2R)ss +

|k|PKk — fik.

Now let us consider a network satisfying the system (2.11)), (2.12),(2.13)), (2.14). Reasoning
as in the case of a single curve, we get that a stationary network solves

-1 B
(”i1|p72"£1)ss + L’H1|p:‘€1 — f/ﬁll =0, in Iy
p
2p—2,.2 P—1 9,90 $.2_ ‘
(|x7 m)ss+—p |K2|PK? — A2 =0, in I
31p—2,.3 p—1 35,3 _ 3 _
(|K | K )ssJF 7]9 |/€ | K pK” =0, in I3,

k'=0 ondl, i=1,23,

where

-1
i L\G?\p — (' cos 0® + 1% sin 6°),
p

A

-1
pT\GE\p + (A cos 0% 4+ A\? sin 6?),

~ 1
13 b ; 101P — (A = pb) cos @' + (A2 — p?) sinf?).

Using the expressions above, the fact that at a triple junction x* = % = 0, and the equations
(2.17)), (2-12), (2.13)) evaluated at a junction when the velocities 6 = 0, one verifies that at a
triple junction there holds

3
(2.26) > (0:P200) N = €T + AT? + aT®.

i=1
If p = 2, noting that i N* = (9;k')N? = Vi’ we see that a stationary network satisfies the
natural boundary conditions at the triple junctions derived for the L?-gradient flow of elastic
networks in [8], (15, [14], so that it is a critical network for the elastic energy Ea(T").

We now collect some important estimates which will be useful in the sequel.

Lemma 2.3 ([19], Lemma 1). Let I = (0,L) and ¢ : I — R be a continuous function with
positive oscillation dy, i.e.
oscyp > do > 0.

Suppose w : [0,+00] — [0,+00] is a continuous monotonic function which is a modulus of
continuity of ¢, i.e., w(0) =0 and

lo(s) — (o) Sw(|s—o])  Vs,oel

10



Then we have the following estimates:
(i) There ezists a positive constant

C = sin®(8p/4) - min{w ™" (60/4), L/2},

where 6g = min{dy, 7}, such that

C< /sinQ(gp(s) + p)ds, C< /COS2(<,D(S) + ps)ds,
I I

for any arbitrary constant .
(ii) There holds

f[ sin2 0ds — f[ sin @ cos Ods L
> —(.
det( — J;sinf cos Ods I; cos? Ods - 20

Proof. The proof given in [19] Lemma 1] relies on the fact that the determinant can be written
as a double integral as follows

[ sin 6ds — [;sinfcosfds \ 1 9 ~
det( — J;sin @ cos Bds J; cos? bds 2/, Ism (0(s) — 0(0))ds do-

O]

If we consider a theta-network for which at most one curve can become a line, then the
angles of the remaining two curves have always positive oscillation.

Corollary 2.4. Suppose Lz < min{Ly, Lo}. There there exists a constant C > 0 such that
det(A?) > C, det(A') > C,

where the matrices A', i = 1,2, are defined as in ([2.16)). The constant C depends on Ly, Ly and
the oscillation of the angle functions 6% and 0.

Lemma 2.5. Suppose L3 < min{Ly, La}. Then for the Lagrange multipliers X, i (unique

solution of the system ([2.20)), (2.21])) we have the bound
3 .
N+l < (Z / raselwpds)
=171

where C' depends on Ly, Ly, L3 and the oscillation of the angle functions 6> and 6*.

Proof. This follows directly from (2.24) and the Corollary O

3 Existence of solutions

From now on we shall assume that condition (|1.3)) holds.
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3.1 The discretization procedure

The discrete scheme

Let 0 € Hand T > 0, n € N, 7, = % We define a family of maps {0;,}", € H,

0;,= (02-1’71, sz,m Hin), inductively by making use of a minimization problem. Set 8, = 6y. For

each i € {1,...,n} consider the following variation problem:
where

(3.1) Ein(0) =)

J

3.1 . 1 o
/ |8593|7’ds+/ 07 — 07, |%ds ] .
i—1 p I; 27—71 Ij ’

J

Existence of a minimizers 8 € H follows by standard methods in the calculus of variations
taking into account that (H, || - ||g) with [|0] g := Z?:l ||9‘j||W1,p(Ij) is a Banach space (see [31],
Thm 3.1] for similar arguments).

Discrete Lagrange multipliers
Let 6 (= 6;,) € H denote a solution for (M;|). Moreover let

P = (1,92, 4% € WIP(0, L) x WHP(0, La) x WHP(0, Ly) = WP
and define
C1(0) :/ cos@lds—/ COSQQdS,
Il 12
Co(0) :/ sinelds—/ sin #%ds,
I I

C5(0) :/ COSQSdS—/ cos 1ds,
I I

C4(0) :/ sin93ds—/ sin §1ds.

13 Il
To show the existence of Lagrange multipliers Xi,n = (/\Zlm, /\%n), fin = (uin, u%n) € R? such
that
(3.2)

0E;n(0)% + AL, 6C1(0)h + A7, 6Co(0)4p + i, 6C3(0)p + pif,, 5C4(0)3p =0 Vap € WP
we consider the map

C1(6 + epp + Zgzl trpr
Co(0+ep + 3, trpy
R® 3 (€,t) = (e, t1,ta, t3,t4) — C(e, t) = =1
O =l o COD = ot apr T 1,
(

Ca(0+ e + 3, trpr

~— — O

for
or = (0,00, 00) € WHP r=1,2,34.

12



Note that C(0,0) = 0 since @ € H. If the maps ¢, can be chosen such that the matrix

0 0
) N NG N
5:€(0,0) = : : (0,0) = (6Ci(0)(¢))ij=1..4
0 0
L NG N}
—fI sin 61 Lpl +fI sin 62 Lpl —fI sin 61 4p2+f1 sin 62 gpz —fI sin 61 <p3+fl sin 62 <p3 —fI sin 61 9o4+f1 sin 62 994
o f] 0059 gol 7f1 c059 gal fI (:050 4,027 fI COSO <p2 fI cosG <p3 fI cosG <p3 [I c059 ga47f1 cosG Lp4
- 7113 sin 63 Ap1+]I sin 61 A/Jl 7[13 sin 63 Ap2+[ 151110 <p2 7[1 sin 63 (p3+[1 sin 61 <p3 7113 sin 6 A/J4+]I sin 91 (,a4
fIs cos 03 % — fI cos@ o1 fIS cos 033 — fI cos 01 fI cosG 03 - fI cos@ 3 fI cos 63 <p4—_}I cosG vl

has maximal rank, then by the implicit function theorem we have that there exist C'-maps o,
r =1,2,3,4, defined in a neighborhood of zero, such that ¢,.(0) = 0 for r = 1,2, 3,4, and

C(e,01(€),...,04(€)) =0 for € € (—ep, €0),

ie., O+ e + Zle or(€)e, € H for € € (—¢€p,€p). Differentiation in € of the above equation

gives
D) -1
: = <8tc(0 0)) :
4(0) 6C4(0)y

so that, from the minimality of 8 we infer

6C1(0)y

0= % _ Fin (9 + e + 24: Ur(ﬁ)sor) = 0E;n(0) + 24: 0,.(0)0E; ()
, B r=1
= 0Ein(0)9 — Z (Z( C(o O))ﬂ 5Ei,n<0>sor> 3Cy(0)%.
It follows that holds with

4 8 —1

My==>" <8tC(O’O)>T1 OF; 1 (0)r
rzl 8 B

Ny==> (atC(O,O)>T2 OF; 1 (0)r
rzl ; 71

Fin —; (mC(0,0)>r3 5Ein(0)r
s _ (2 o

Hip = — (8:‘,0(0’0)),4 6E;in(0)pr

%
I
-

or equivalently

0
b Rt 120) ( 5:C(0.0)) = ~GEin()1,0Ein (0102, (O)ipn i O
By letting

@1 = (0,sin 2, —sin 63, @3 = (sinf', —sin 62, 0)

13



@2 := (0, — cos 62, cos %), @4 := (—cosf', cos 6%, 0)

(o00) = (=)

with A € R?*2 as in (2.16). Moreover, we compute

we obtain that

(5Ei,n(9)9017 5Ez‘,n(9)902) G2 -G3

1 1

+— [ (6* =67 ,,)(sin6? —cos0®)ds — — [ (6> =6} ,,)(sin6?,— cos6®)ds,
Tn J Iy Tn JI3 ’
(5Ei,n(9)§037 5Ez,n(0)904) = Gl - G2
1 1
—— | (6> =07 ,)(sin6? —cos6)ds+ — [ (0" —0;_,,)(sinf', — cos6")ds
Iz T™n J1

where G' is as in (2.19). Therefore the Lagrange multipliers solve

(3:3) Nips Aln) - A2+ (g s 17) - A* = G° = G + R,
()‘Zln7 )‘2271) (A1 + AQ) + (:uzl,nhu‘zn) : Al = G2 Gl + RZQ}’M

where we set

1 1
—RP = — [ (6> =67 ,)(sin6? — cos6)ds — / (0° — 6071 ,)(sin6°, — cos 6%)ds,
7 I Tn JI3
1 1
—RE}Z =—— [ (0*-02, n)(sin 0%, —cosf?)ds + — [ (01 -6}, ) (sin 61, — cos %) ds.

Iz Tn J1

Recalling the system ([2.22)), (2.23)) and the subsequent discussion concerning its solvability, we
can conclude that (under assumption (|1.3))) the above system is solvable, that is, the matrix
(%C (0, 0)) has maximal rank. Moreover, similarly to Lemma we infer that

Z/aeﬂp +Z/|eﬂ—931n

where C has the same dependencies given in Lemma and 0 = (0,60%,6%) = 6, ,, is solution

to (Min).

Regularity
Let 6;,, € H be a solution to (M ,)). Since (3.2)) and (3.5) hold for 8 = ; ,, it follows that the
map |067|P~20507 € Lﬁ%l(Lj) admits weak derivative in L'(L;) with

(3.5)

A A 07 — ¢
(3.6) (1067 P20,67) | < C | ——="
-

n

+ Al AL ] 4 Tl

Moreover, the natural boundary conditions

(37) 0,6(s) =0 for s € {0,L;}

14



hold for j =1,2,3.

Definition of approximating functions

First of all let us introduce some notation. We denote by V;, = (V;’ln, an, Vz?’n) the discrete
velocity

0;n,—0;_1,
‘/z'n:: : :

)

Tn

We will need maps that interpolate the three components of our maps {6; ,}i—o.... » linearly in
time:

Definition 3.1. Let 0, : I} x Iy x I3 x [0,T] — R3 be defined by
0,(s,t) =0;n_1(8)+ (t — (i = 1)7) Vi n(s)
if (s,t) = (s1,82,83,t) € Iy X Iy x I3 X [(i — V)1, 7] fori=1,...,n.
We will need also piecewise constant interpolations, that is,
Definition 3.2. Let 0,,,0,,,V, : I x Iz x I3 x [0,T] — R3 be defined by

0,.(s,t) == 0;i1,(s),

0,.(s,t) := 0;,(3),

Vo(s,t) ==V, ,(s)
if (s,t) = (s1,82,83,t) € It x Iy x I3 X [(i — 1)1y, 7] fori=1,... ,n.

Similarly for the discrete Lagrange multipliers (recall (3.2)) we define
Definition 3.3. Let X, fin : [0,T] — R? be defined by
Xn(t) = (A\L(£), A2 (1)) == Xin,

t)vui(t)) = _‘i,n
ifte[(i— 1), fori=1,...,n.

To keep the notation as simple as possible we adopt from now on following conventions. For
0 = (0',602,0%) in an appropriate function space and ¢ € [1,00) we write

3 3
/|0qu ::Z/ 167|9ds, /|850|qu ::Z/ 18,67 |%ds,
I j=1"1s I j=171

T 3T .
/ /|0\qczsdt ::Z/ / 167 |9dsdt.
0 JI =170 I

Uniform bounds for the approximating functions
We now derive some uniform bounds for solutions of (M; ).
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Theorem 3.4. Assume (1.3)). Let g € H and T' > 0 be given. Let 6;, € H be the solution
of (M) and let Xi,n, fiin € R? be the Lagrange multipliers fulfilling (3.2). Upon recalling the
definitions and convention given above, write

)= 1 / 10,0507 ds.
pJr

D(Oi,n) < D(Qi_lﬂ) < D(eo) fOT‘ all1 = 1, ey,

1 (T )
- IV, |2ds dt < D(80),
2 )0 J1
T T
/ Xal2(0)dt + / G (H)dt < C(TD(60) + 1) D(8),
0 0

/lei,nPds < C/\90\2d3+CTD(00),
1 I

Then we have that

where C' has the same dependencies of the constant appearing in Lemma [2.5]

. . Y] 2
P;n(8) : (m/ 07— 071, ds>

so that E;,(0) = D(0) + P, ,(0). The proof of the first statement follows by an induction
argument. Fix i € {1,...,n} and assume that D(0;,) < D(08) for all j =1,...,7i— 1. Then it
follows from the minimality of 8; , that

Proof. We let

D(0;n) <D(6;y)+ Pin(0in) =Ein(0in) < Ein(@i—1n) =D(Oi—1n).
This gives the first statement. Next observe that from

(3.8) Pin(0i5) < D(0i-1n) — D(0)

)

we obtain
T n n
/ /|Vn|2dsdt = ZTn/|w,n\2ds =2 Pin(Bin
o JI ; =1
< 22 0;_ ln - (oz,n)) < 2D(90)
and the second statement follows. From (3.5 we infer that

o 1/2
(3.9) Niml + |fin] < CD(8in) + c/ |Vinlds < CD(8) + C (/ |Vm|2ds> ,
I I

which gives the third statement after squaring and integrating in time. Finally, observe that for
7 =1,2,3 we can write

. . : A —0
167 12201y < N6 allzzcryy + D N08n = 01 allz2yy = 168l 22cry) + § VTn \ﬁ
r=1

L2(15)
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. . . 1/2
j (= Y
<Ny + Vi (2 / S g,
r=1"4J n

i 1/2
< ||96,’n||L2(Ij) + V2T (Z Pr,n(ar,n)> < ||96,n||L2(Ij) TV QTD(GO)»
r=1

where we have used again (3.8]). The last statement follows. O

3.2 Convergence of the scheme

Having achieved some uniform bounds for the approximating maps, it is possible to pass to
the limit as n — oo. The following three Lemmas are similar to the ones obtained in [31]
Lemma 3.11, Lemma 3.12, Lemma 3.13]. For the reader’s convenience, we include the proofs in
the Appendix. We point out that condition is not needed to prove these results, since the
Lagrange multipliers are not involved.

n)yvnrvn

linear interpolation of {0;,} given in Definition . Then, for j =1,2,3, there exists a map

Lemma 3.5. Let Og € H and T > 0 be as in Theorem . Let 0, = (0},02,03) be the piecewise

07 € L0, T; WHP(1;)) N HY(0,T; L*(1;))

such that
e :
(3.10) L / / 10,07 (s, )2 dsdt < D(8),
2 Jo Ji
(3.11) sip 10567 || Lo (1) < C = C(D(60), p),
(3.12) sup HeijlvP(Ij) <C=C(p,L;,T,D(6o), H%HL%Q)%

(0,7)

and, for a subsequence which we still denote by 0%,

as n — oQ.

(313) { 0~ 0 weaklyx in L0, T: W' (1))

0, — 07 weakly in H(0,T; L*(1)),
Moreover, for & = min{%, %} we have that
(3.14) 03 — 07 in  C**([0,T] x I).
In particular, 67(-,t) — 06(-) inCY ast|O0.

A direct consequence of equation of Lemma, and Lemma is the following
Corollary 3.6. Under the assumptions of Lemma forall j =1,2,3 and n € N there holds

oscy, 07, oscy, ¢ € C*([0,T7).
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In particular, using Definition we can assert that the oscillations of the maps an are

close to the oscillation of 96,71 if T is chosen sufficiently small. This fact will be used in the proof
of Theorem [L.3]

Lemma 3.7. Let g € H andT > 0 be as in Theorem . Let 0, = (0*,0%,0%), 0, = (Ql,QQ,Q?’)
be the piecewise constant interpolations of {6;,} as given in Definition . Then we have

(3.15) 09 — 67 and 05 — 67 in C[0,T) x I;), j=1,2,3,
where 87, j = 1,2,3, denote the maps obtained in Lemma . Moreover, it holds that
(3.16) 0509 — 05607  and 0409 — 0507 weakly in LP(0,T;LP(I;)) as n — oo,

Lemma 3.8. Let 0, = (0),02,03) be the piecewise constant interpolation of {6;,} given in

n)»'nyvn

Definition [32] and let the assumptions of Lemma hold. Then, for j = 1,2,3, it holds that
T —_ —_ T . .
/0 /I 1(62)5|P72(67)s - ps dsdt — /0 /1 091P=267 . p dsdt as n — oo
j j

for any p € L*>(0,T; WhP(1;)).
We can now prove our main existence result.

Proof of Theorem [I1]. (i) Equation (3.2) yields that for any ¢ = (!, 92, p3) with 7 € L>(0,T; WP (1;)),
j=1,2,3, and (for almost every) t € ((¢ — 1)7,,,i7,), i = 1,...,n we have

3 3
= I(s (s, t)ds 09 |P~2(07), (7, ds
o_;/ljvn( (s, )d *;/fj'””)' 01). (), d

— (L) — (1) / sin(@1) o'ds + (2(t) — 42 (1)) / cos(B1) s

I I

+ )\}l(t)/ sin(0?) p2ds — /\%(t)/ cos(62) p3ds
IQ [2

~h(e) [ sin(@) s i (0) [ cos(B) ds
13 13

so that integration in time yields

3T 3 L7
0= [ [ it Y [ [ @p@). o).
j=170 71 =70 U

T T
— Ly — b sin(0}) plds 2(4) — 1?2 cos(0}) plds
/0 (L) — ud (1)) /] sin(f) st + /0 (A2(8) — u2(8)) / (8) ' dsdt

I
T ~ T ~
+ / AL () / sin(02) p*dsdt — / M2 (1) / cos(02) p?dsdt
0 I 0 I
T ~ T ~
—/ M}L(t)/ sin(62) g03dsdt+/ u%(t)/ cos(02) p3dsdt
0 I3 0 I3
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for any ¢ € L>®(0,T; WhH2). We now let n — oo. The first two integrals are dealt with in
Lemma [3.5| and Lemma [3.8] By the uniform bound given Theorem [3.4) we have that there exist
AL A2t p? € L2(0,T) such that

(3.17) M — M weakly in L2(0,T),  pd — p? weakly in L%(0,T)

for j = 1,2. Since v,(t) := [} sin(0)p"(s,t)ds — [, sin(6")p'(s,t)ds =: v(t) by Lemma
and |v,| < C(p!), then also v, — v in L?(0,7T) and we infer that

T T
!/&@/m@m%ﬁﬁ/xw/me%ﬁ
0 I 0

Iy

for n — oco. The other integrals with the Lagrange multipliers are treated in a similar way and
the first statement follows.

(ii) Equations , , , and the natural boundary conditions follow directly
from by choosing test functions of the form (s, t) = ¢(t)y’(s) with ¢/ € WHP(I;) and
@ € C5°(0,T). Also we exploit the fact that given any map f € LY(I) with fs € L?(I) and
I C R bounded interval, it follows from embedding theory that f € H'(I).

(iii) By construction we have that 6;, € H, so that

/(cosG,lL,sintQ}L)d.s:/(cos@i,sin&i)ds:/ (cos B3, sin 02)ds
11 I2 13

forallt € ((i —1)7y,i7n], i = 1,...,n. Passing to the limit as n — oo and using (3.15)) we obtain
T9). 0

We now show that the Lagrange multipliers in Theorem [1.1] are uniformly bounded in time.

Proposition 3.9. Let 0y € H, T >0, 8 = (0*,0%,0%), X and i be as in Theorem . Then we
have that the system (2.22)), (2.23)) holds for almost every time and

(3.18) HXHLOO(O,T) + [l oo 0,7y < C(D(6o),p)-

The constant C has the same dependencies as in Lemma [2.5]

Proof. Testing the weak formulation (T.4)) with ¢(s,t) = (—@sin#',0,0) and ¢(s,t) = (P cosf*,0,0),
where ¢ € C§°(0,T'), yields that for almost every time there holds

d -

— [ (cos®',sin@')ds = | 9,0 (—sinb', cosf')ds = Gt — (X — i) - A

dt I I
where we use the notation employed in (2.19)), (2.16]). Similarly testing with ¢(s,t) = (0, —psin 62, 0)
and ¢(s,t) = (0, $cos6?,0), respectively ¢(s,t) = (0,0, —psin ) and ¢(s,t) = (0,0, cos 63)
where ¢ € C§°(0,T") yields that for almost every time

d -

— [ (cos6?,sinh*)ds = | 0,0*(—sin6?, cosb?)ds = G* + X - A%,

dt I I

4 (cos03,sin0)ds = | 0,0%(—sinb>, cos0)ds = G> — ji- A3,

dt I3 I3
Using (|1.9) we infer that for almost every time the system ([2.22), (2.23]) holds for . Inequality
(3.18) now follows from (2.24) and (3.11)). O
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Remark 3.10. Notice that Theorem does not yield uniqueness of solutions. To that end
a deeper analysis would be needed (see for instance [31, Lemma 3.20] for a similar issue in the
case of a single evolving curve).

Remark 3.11. The method of proof of Theorem slightly differs from the one presented in
[31] since in this paper we treat the Lagrange multipliers implicitly. This has the advantage
that no restriction on the time 7' is necessary to show existence, and that the decrease of the
energy follows directly. In particular, there is no need to analyze higher regularity properties
of solutions as in [31]. With the techniques presented here [31, Thm 1.1] can be generalized in
the following sense: under the hypothesis of [31, Thm 1.1] then a weak solution to (P) can be
defined for any time 7" € (0, 400).

So far we assumed . However, as noticed above, the estimates on the Lagrange multi-
pliers given in Theorem hold as long as we assume that two of the three curves have positive
total curvature, that is, if the corresponding angle functions have positive oscillation. By this
observation and by Corollary we provide a partial extension of Theorem [I.1

Proof of Theorem [L.3] Recalling Corollary it follows from that there exists T > 0
such that B B c
min (osclfj1 071(t), oscr, 672 (t)) > 2
for all t € [0,7] and n € N. As a consequence the estimates on the Lagrange multipliers given

in Theorem still hold, and we can proceed exactly as in the proof of Theorem

To show the final assertion, it is enough to observe that, if Tj,q: < 400 and the oscillation
of 71 and of 672 are uniformly bounded below by § > 0 on [0, Thnaz], then we can extend the
solution on a time interval [0, 7] with 77 = T"(8) > Trnax- O

Remark 3.12. Note that the result in Theorem [L.3] can be extended to the case of a network
of three curves with a single triple junction and three fixed endpoints. We notice that for such
network the second order evolution, expressed in terms of the functions 67, is again given by
the equations f. Moreover, the natural boundary conditions are still given by ,
whereas the condition becomes

/ (cos#',sin@)ds — P, = / (cos 0%, sin 62)ds — Py = / (cos 83,sin63)ds — Py,
Il 12 I3
where Py, P>, P3 are the fixed endpoints.

3.3 Long-time behavior

We now show that the weak solutions given by Theorem [I.1] converge, on a suitable sequence of
times, to a critical point of the energy.

Proof of Theorem [1.2] From (3.10) we know that, for j = 1,2,3 we have
1 [ .
(3.19) 2/ / 10,67 |2dsdt < D(8).
o Ji

Together with (3.18]) this yields the existence of a sequence of times (¢, ),en, and vectors X, i € R?
such that t,, — oo and

—

(3.20) Ntn) = X, fltn) = £ 1087 ()]l 2201y — 0,
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for j =1,2,3, as n — oo. From (3.11) we infer that for j = 1,2,3 we have
10567 (t) Lo (1,) < C(D(80). ).

Moreover, from
. . -1 .
109 (5. t) — 09(0, )] < (L) 7 067 (t) | oz < C

for any s € [0, L], we obtain that the sequence (-, t,) := 9(-,t,) — 27z,, with 2, € Z chosen
in such a way that |67(0,t,) — 272,| < 27, satisfies in addition the uniform bound

167 () w1y < C(D(80),, Ly).

Therefore, by Arzela-Ascoli Theorem, possibly extracting a further subsequence we have that
67 (t,) — 62 uniformly as n — oo. Notice also that 67(t,,) — 6% weakly in W1P(I;), and that
from the uniform bounds

10567 (t) [P~ 20567 (¢ bl 52y, SC and (10567 (t)[P~20567 (t0)sl 1201y < C

(which follows from , . . . ) we infer a uniform bound in the H'-norm giving
that |0y 9] (tn)|p 20,67 (tn) — |050%|P~2050% weakly in H'(I;) and uniformly on I;. Since, if 6
solves , -, -, then so does @ — (22!, 2722, 2723) with 2* € Z and with no change in
the Lagrange multipliers, we can pass to the limit as n — oo and obtain that 0, := (0,,62,,62.)

satisfies the constraint ((1.9)). Moreover, passing to the limit in ((1.4]) we infer that 6, also fulfills
the system (|1.10)), together with the boundary conditions (1.11)). O

A Appendix

Proof of Lemma [3.5] We adapt to the present setting the arguments presented in [31, Lemma 3.11].
Let j € {1,2,3}, and let q := p/(p — 1). First of all notice that by Theorem we have that
6%,(-,t) € WHP(1I;) for any t € [0,T], and

(A1) sup [163( 1)l r2qr,) < C(T, D(8o), 03] r2(r,)), sup 9565, )17, < » D(80).
t€[0,T] te[0,T] J

Therefore there exists a map 67 € L>(0,T; W'P(1;)) such that, up to a subsequence,
09 — 67 weakly* in L>(0,T; W'P(I;)) as n — oo.

Next note that, since 0%(5, -) is absolutely continuous in [0,7'], we infer from Holder’s in-
equality that

N|=

2 96},
Ot

<\ L)%

21

163, 2) — 03 1)l 21,y = / Dn 5,7y dr| ds
I;

893

(s,7)| dsdr | (ta— tl)%




for any t1, to € [0,T] with t; < t2. Using Theorem we find that

(A2) /t f /

Hence we obtain

(A3) 169, t2) — 62, t1) | 21, < V/2D(B0)(t2 — t1)2.

We now turn to the proof of (3.14)). First of all observe that by (A1) and embedding theory
we have that

80]

ST

t2
dsdr g/ / |V, (s,7)|> dsdT < 2D(8y).

(A4) P 163.C )l e (1) < C with C = C(Ly, T, D(6o). |6}l 12(1)- )-
telo,

Moreover, again by (Al]), for any ¢ € [0,7] we have

. ) 52 A
(A5) 103 (59,) — 00 (s1,4)] < / 10,69 (5,1)| ds < Clsy — 1]/,

S1

with C = C(D(6y),p). Fix 0 < t; <t9 < T arbitrarily and set
D() = 0(t2) = 0,(-, t1) € WHP(I).

1/2
Wl,p7
and using (A1) we get |||~ < C’HFHLq . In particular, for p > 2 we have ||I'||p~ < C(L j)||FH1/2

L2 )
so that by 1) we infer

By an mterpolatlon inequality (see for instance [I, Thm. 5.9]) we find ||T'|| g~ < CHFHl/zHFH

(A6) I < Clta — t1]"/4,

with ¢ = C(T, L;, D(y), ||9j||L2(I p). For p € (1,2), that is ¢ > 2, another interpolation
inequality gives ||T'||za < HF|| ) ||1“HLoo , with 6 = 2/q. Recalling that I' € L*°, we then obtain

1 0 1-0 0 1 bt
(A7) ITllzee < CITYIZq < ClTIZMT] % < ClTNE: = ClIT72 < Ct2 — t1) 2.
From ({A6) and (A7) it follows that
(A8) 167, (t2) = 05.(t1) | cor,y < Cltz — ta]®.

From the above inequality and (A5]) we then get
(A9) 169, (s2, t2) — 03, (s1, t1)| < C(|ta — ta|* + [s2 — 51]") < C([t2 — t1|* + |52 — 1|*)

for any (t;,s;) € [0,T] x [0, L;], i = 1,2. Application of the Arzela-Ascoli Theorem yields (3.14]).
In particular 67(-,t) € WHP(I;) for all times ¢ € [0,7]. Moreover, setting t; = 0 in (AS)), we
have that

167 (t) — 0J||Co y—0 as t]0.
From we also infer that there exists V7 € L%(0,T; L*(I;)) such that

(A10) VIi=06) ~ VI in L*0,T;L*(I;)).
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Moreover, for any v € C§°((0,T) x I;), we have

/ / 07 vy dsdt = —/ / VIvdsdt — —/ / VIvdsdt
o Ji o Ji o Ji

as n — 0o, and using the fact that 03, — 9 uniformly, we obtain

/ / 07 vy dsdt — / / 67 vy dsdt,
o Ji o Ji

from which we infer that 6/ admits weak derivative 0] =V, 6 € HY0,T; L*(I;)) and ( -
holds. Finally, it follows from (A2)) that (3.10) also holds.

Proof of Lemma [3.7] This is a straight-forward adaptation of [31, Lemma 3.12]. Let j €
{1 2 ,3}. We show the proof only for 6, since analogous arguments holds for 6’ Recalling
, we see that 0, € L>®(0,T; WHP(I;)). In particular, equations , hold with 6%,
replaced by 67

Fix now ¢t € (0,7 | arbitrarily. Then there exists a family of intervals {( (i, — 1)7n, inTn | }nen
such that ¢ € ((iy, — 1)7p, 07 |. From we infer that

165.(t) = 63Dl coqryy = 1167, . = G2l ooy = 163 (inTn) = G2l coqs,)
< Clinmy —t|*<Cry —0 as n — oo.

Since ), — 67 in C°([0,T] x I ;) by Lemma and ¢t was arbitrarily chosen, we infer that
g, — 67 in C°([0,T] x I;).

We turn to the proof of (3-16). Recalling again (Al]), we also see that 950 € LP(0,T; LP(1;))
and |0s0%]| Ly (0,110 (1 ;) < C, for all n € N. Since LP(0,T; LP(I;)) is a reflexive Banach space
there exists v/ € LP(0,T; LP(I;)) such that 9,0, — v7. This implies that

/ / 050, - pdsdt — / / v) - pdsdt
o Ji o Ji

for any ¢ € L4(0,T; L4(1;)), with ¢ = p/(p — 1). On the other hand, if ¢ € L>(0,T;C§°(1;))
we infer that

T B T 0 T .
/ / 050, - pdsdt = —/ / 0} - Osp dsdt — —/ / 07 - Osp dsdt,
o Ji 0o JI 0o JI

where we have used that 6, — 67. Hence we obtain that v/ = 0407, and the claim follows. [

Proof of Lemma [3.8] This is a straight-forward adaptation of [31, Lemma 3.13]. Notice first
that, from (3.6)), (3.5), and Theorem it follows that

(A11) 110567, [P~20:67 | a1 1, <01+ZN ez,

for j =1,2,3 and for all i = 1,...,n, where C = C(L;,p, D(6p)). Recalling Theorem for
all j =1,2,3 we get

T T
(A12) AH@%P%MM%@ﬁscA<H+m@mymsa
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Thus, recalling also (3.7), we find w’ € L*(0,T; Hg(I;)) such that
(A13) 0509|P~205609 — w! in L*(0,T; H'(I;)) as n — oo,

and [lw? || 20 71101 ) < C. In particular, this implies that

T T
(A14) / / 0567 [P20,07 - o dsdt — / / w’ - pdsdt,
o J o Ji

for all ¢ € L%(0,T; L*(1;)). On the other hand, letting q := p/(p— 1), from (AT1]) it follows that

17 )5 P20 sl pacryy < CUIOL)s P20 )sll iy < € 1+ZH VinllL2;))s
so that, by Theorem [3.4] we also get
’ 2 g 2
| 080 de < C [0+ Vil it < .

The space L*(0, T’; LI(I;)) is reflexive with dual space given by (L*(0, T; LI(I;)))* = L*(0,T; LP(I;)).
Hence there exists &/ € L?(0,T; L9(I;)) such that

T T
(A15) /0 /I|3s§$;|p_28s§%-gpdsdt—>/o /I£j~<,pdsdt Vo € L*(0,T; LP(I;)).
J J

Together with (A14]) and Lemma we infer that w/ = &7,
Next, we set

F6) = 16 o 01y
Using the convexity of the map y — %]y\p, we see that
(A16) F(¢) — F(#) / / 0569 [P=20407 - (¢ — 67)sdsdt  for any 1 € L=(0,T; WHP(I;)).
Recalling (3.16|) and letting n — oo in , we have
(a17 F) - F@) 2 [ [ W= oas
i

where we have used mtegratlon by parts (recall ( and w/ € L%(0,T; H}(1;))) and
Letting now ¢ = 67 + ey in for some ¢ € LOO(O T; WiP(1;)) and € > 0, we obtam

97 F(67)
(A18) PO +ev) / / w - g dsdt.
On the other hand, letting ¢ = w? — e in (A17)), we also have
F(97) — F(§7 — T .
(A19) (67) 5(9 £7) < / / w’ - g dsdt.
0o Ji;
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Letting ¢ | 0, from (A18)) and (A19) we then get

T T T
(A20) / / 10567 [P~267 - @, dsdt = / / w’ - g dsdt = / / & - gy dsdt,
0 JI, 0 JI, 0 JI,

for all ¢ € L>(0,T; WHP(I;)). Together with (A15)) this gives the thesis. O
Lemma A.1. Suppose § = 0(s,t) € C¥*([0,T]xI) for some o € (0,1]. Then osc 6 € C*([0,T)).

Proof. By definition we have osc 0(t) = max 7 0(s,t) — ming,76(s,t) =: 6(5,t) — 6(s,t). Using
this notation it follows

0sC 0(251) — 0sc 9(t2) = [0(51,t1) — 0(§1,t1)] — [0(52,t2) — 0(§2,t2)]
< 0(51,t1) — 0(51,t2) +0(s1,t2) — 0(s1,t1) < Clta — 2],
where we have used 0(Sa,t2) > 0(51,t2) and 0(sq,t2) < 0(s;,t2). The claim follows. O
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