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Abstract.

We prove short-time existence of ϕ-regular solutions to the planar anisotropic curvature flow,
including the crystalline case, with an additional forcing term possibly unbounded and discon-
tinuous in time, such as for instance a white noise. We also prove uniqueness of such solutions
when the anisotropy is smooth and elliptic. The main tools are the use of an implicit variational
scheme in order to define the evolution, and the approximation with flows corresponding to regular
anisotropies.
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§1. Introduction

In this paper we consider the anisotropic curvature flow of planar curves, corresponding to
the evolution law

(1) V = κϕ +
∂G

∂t

in the Cahn-Hoffmann direction nϕ. We shall assume that the forcing term G has the form
G = G1 +G2 with G1, G2 satisfying:

i) G1 ∈ C0([0,∞)) does not depend on x;
ii) ∂tG2 ∈ Lip([0,∞)× R2).

Observe that (1) is only formal, as ∂G1/∂t does not necessarily exist, however the motion can
still be defined in an appropriate way (see Definition 2). Notice also that we include the case of G
being a typical path of a Brownian motion, which is necessary to take into account a stochastic
forcing term as in [18, 31].

In the smooth anisotropic case, the first existence and uniqueness results of a classical evolution
in can be found in [5], where S. Angenent showed existence, uniqueness and comparison for a class
of equations which include (1) in the case G = G2 and ϕ regular. The existence and uniqueness of
a weak solution for the forced flow, with a Lipschitz continuous forcing term, follows from standard
viscosity theory [16, 17].

The crystalline curvature flow was mathematically formalized by J. Taylor in a series of papers
(see for instance [35, 36]). In two-dimensions, when the driving force G is constant the existence

Received Month Day, Year.
Revised Month Day, Year.
2000 Mathematics Subject Classification. Primary 53C44, 74N05, 74E10; Secondary: 35K55.
Key words and phrases. Anisotropy, Implicit variational scheme, Geometric evolutions, Crystal growth.



2 Chambolle-Novaga

of the flow reduces to the analysis of a system of ODEs. It was first shown by F.J. Almgren and
J. Taylor in [1], together with a proof of consistency of a variational scheme similar to the one
introduced in Section 3. The uniqueness and comparison principle in this case were established
shortly after by Y. Giga and M.E. Gurtin in [29]. We also refer to [23] for a well-posedness result
based on the theory of maximal monotone operators. The forced crystalline flow was studied in [8],
however with strong hypotheses on the forcing to ensure the preservation of the facets. A theory
for weak solution, in 2D, has been developed by Giga and Giga in the past recent years [25]. In
this framework, existence and uniqueness for quite general weak motions have been established,
however in general with constant forcing terms.

It is only in relatively recent work that the flow has been studied with a quite general forcing
term; in particular, in [27, 28, 26] (see also [33, 34]) a Lipschitz forcing is considered. The papers
[27, 26] consider the evolution of graphs, with a quite general mobility, while [28] considers only
rectangular anisotropies, and assumes that the initial datum is close to the Wulff shape. The
paper [15] deals with quite general forcing terms (slightly less regular than in this paper), but
requires the anisotropy to be smooth. It shows the consistency of the variational scheme and a
comparison for regular evolutions. In [7], the authors show the existence of convex crystalline
evolutions (extending their results of [6]) with time-dependent (bounded) forcing terms and apply
it to show the existence of volume preserving flows.

We show here a general existence result for the two-dimensional crystalline curvature flow, only
with “natural” mobility, but which holds in the two following cases: for a general forcing G = G1

depending only on time, and for a regular forcing G = G2 with ∂G2/∂t Lipschitz continuous in
space and time. Our proof relies on estimates for the variational scheme introduced in [2, 32],
which show that, if the initial curve has a strong regularity (expressed in terms of an internal and
external Wulff shape condition), then this regularity is preserved for some time which depends
only on the initial set. This allows us to approximate a general anisotropic flow with evolutions
corresponding to smooth anisotropies, in such a way that the anisotropic curvature stays bounded
for a uniform time interval. Extending these proofs to higher dimension would require quite strong
regularity results for nonlinear elliptic PDEs, which do not seem available at a first glance.

Stability results for anisotropic evolutions have been proved in [24, 25] in the context of
viscosity solutions. We also mention the paper [30], where a similar approximation argument is
applied to the diffuse interface case.

The paper is organized as follows: in the Section 2 we define the “anisotropy” and introduce
our notion of a “regular” curvature flow for smooth and nonsmooth anisotropies. In Section 3 we
study the time-discrete implicit scheme of [2], and extend some regularity results of [6] to the flow
with forcing. We then show in Section 4 the main existence result for smooth anisotropies. The
fundamental point is that the time of existence only depends on the (intrinsic) C1,1-regularity of
the initial curve. In the smooth case, we also show uniqueness of regular evolutions. Eventually,
in Section 5 we extend the existence result to the crystalline case. This follows from an elementary
approximation result (see Lemma 1) and the fact that the time of existence is uniformly controlled
in this approximation.
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§2. RWϕ-condition and ϕ-regular flows

We call anisotropy a function ϕ which is convex, one-homogeneous and coercive on R2. We
will also assume that ϕ is even, i.e. ϕ is a norm, although we expect that the results of this paper
still hold in the general case (but some proofs become more tedious to write).

We will always assume that there exists c0 > 0 such that

(2) c0|x| ≤ ϕ(x) ≤ c−10 |x| ∀x ∈ R2.
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We denote by ϕ◦ the polar of ϕ, defined as

ϕ◦(ν) := sup
x:ϕ(x)≤1

ν · x ν ∈ R2,

it is obviously also a convex, one-homogeneous and even function on R2. Notice that from (2) it
easily follows

c0|ν| ≤ ϕ◦(ν) ≤ c−10 |ν| ∀ν ∈ R2.

We denote by Wϕ := {ϕ ≤ 1} the unit ball of ϕ, which is usually called the Wulff shape.
We say that ϕ is smooth if ϕ ∈ C2(R2 \ {0}) and ϕ is elliptic if ϕ2 is strictly convex, that is

∇2(ϕ2) ≥ c Id in the distributional sense, for some c > 0. It is easy to check that ϕ is smooth and
elliptic iff ϕ◦ is smooth and elliptic.

Given a set E ⊂ R2 we let dEϕ be the signed ϕ-distance function to ∂E defined as

dEϕ (x) := min
y∈E

ϕ(x− y)−min
y 6∈E

ϕ(y − x) ,

We let νEϕ := ∇dEϕ be the exterior ϕ-normal to ∂E, nϕ ∈ ∂ϕ◦(νϕ) be the so-called Cahn-Hoffmann
vector field (where ∂ denotes the subdifferential), and κϕ := divnϕ be the ϕ-curvature of ∂E,
whenever they are defined. We also set Ec := R2 \ E.

Following [11] we give the following definition:

Definition 1 (RWϕ-condition). We say that a set E satisfies the inner RWϕ-condition for
some R > 0 if

(3) E =
⋃

x: dEϕ (x)≤−R

(x+RWϕ)

and for any r < R and x ∈ R2, (x+ rWϕ) ∩ Ec is connected.
We say that E satisfies the outer RWϕ-condition if its complementary Ec satisfies the inner

RWϕ-condition.
We say that E satisfies the RWϕ-condition if it satisfies both the inner and outer RWϕ-

conditions.

Remark 1. Notice that, if E satisfies the RWϕ-condition for some R > 0, then ∂E is locally
a Lipschitz graph. Moreover, when ϕ is smooth, the RWϕ-condition implies that ∂E is of class
C1,1 and |κϕ| ≤ 1/R a.e. on ∂E. In this case the connectedness condition in Definition 1 is
automatically satisfied whenever (3) holds. However, in the nonsmooth case one can have some
pathological examples if one removes the connectedness condition, as the one depicted in Fig. 1
when the Wulff shape is a square.

Remark 2. It is not difficult to show that E satisfies the inner RWϕ-condition iff (3) holds
and the following property holds: for all x such that dEϕ (x) = −R′ > −R, the set ∂E∩(x+R′∂Wϕ)
is connected.

By (3) it follows that ∂E ∩ (x + R∂Wϕ) is either a segment (possibly a point), or the union
of two segments. In particular, if ϕ is elliptic, this is equivalent to say that there exists a unique
point in ∂E minimizing the ϕ-distance from x.

Definition 2 (ϕ-regular flows). We say that a map [0, T ] 3 t→ P(R2) defines a ϕ-regular
flow for (1) if

(1) E(t) satisfies the RWϕ-condition for all t ∈ [0, T ] and for some R > 0;
(2) there exist an open set U ⊂ R2 and a vector field z ∈ L∞([0, T ]× U ;R2) such that

(a) ∂E(t) ⊂ U for all t ∈ [0, T ],

(b) dEϕ (t, x) := d
E(t)
ϕ (x) ∈ C0([0, T ]; Lip(U)),

(c) z ∈ ∂ϕ◦(∇dEϕ ) a.e. in [0, T ]× U ,
(d) divz ∈ L∞([0, T ]× U);
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Fig. 1. The pathological set described in Remark 1.

(3) there exists λ > 0 such that, for any t, s with 0 ≤ t < s ≤ T and a.e. x ∈ U , there holds

(4)

∣∣∣∣dEϕ (s, x)− dEϕ (t, x)−
∫ s

t

div z(τ, x) dτ −G(s, x) +G(t, x)

∣∣∣∣ ≤ λ(s− t) max
t≤τ≤s

|dEϕ (x, τ)| .

Observe that (4) implies that (d−G) is Lipschitz continuous, so that (4) can be rewritten as

(5)

∣∣∣∣∣∂(dEϕ −G)

∂t
(t, x)− div z(t, x)

∣∣∣∣∣ ≤ λ|dEϕ (t, x)| .

for a.e. (t, x) ∈ [0, T ] × U . In case G is C1 in time, equation (5) expresses the fact that ∂E(t)
evolves with speed given by (1).

2.1. An approximation result.

We now show that, given any set E satisfying the RWϕ-condition for a general anisotropy ϕ,
there exist smooth and elliptic anisotropies ϕε → ϕ and sets Eε → E, as ε → 0, such that Eε
satisfies the RWϕε

-condition.

Lemma 1. Let ϕ be a general anisotropy and let ϕε be smooth and elliptic anisotropies
converging to ϕ, with ϕε ≥ ϕ. Let E ⊆ R2 satisfy the RWϕ-condition for some R > 0. Then there
exist sets Eε, with ∂Eε → ∂E as ε → 0 in the Hausdorff sense, such that each Eε satisfies the
RWϕε-condition.

Proof. Let

Ẽε :=
⋃{

(x+RWϕε
) : (x+RWϕε

) ⊂ E
}

Eε := R2 \
⋃{

(x+RWϕε
) : (x+RWϕε

) ⊂ Ẽcε
}
.

Notice that, by definition, Ẽε satsifies the innner RWϕε
-condition and Eε satisfies the outer RWϕε

-
condition, so that we have to prove that Eε also satisfies the inner RWϕε-condition.

Step 1. Let us show that ∂Eε → ∂E as ε→ 0, in the Hausdorff sense. In fact, this is obvious from
the construction: since Wϕε

⊂Wϕ and for any x ∈ E, there exists z ∈ E with x ∈ z +RWϕ ⊂ E,

we see that the distance from x to Ẽε (and then Eε) is bounded by the Hausdorff distance
between RWϕ and RWϕε

. An estimate for the complement can be derived in the same way, so
that dH(∂Eε, ∂E) ≤ RdH(Wϕ,Wϕε).

Step 2. We now prove that Ẽε satisfies the outer RWϕ-condition. We first show that, for all

x ∈ ∂Ẽε, there exists y such that

(6) (y +RWϕ) ⊂ Ẽcε and x ∈ ∂(y +RWϕ) .
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Indeed, if x ∈ ∂Ẽε∩∂E, (6) readily follows from the fact that E satisfies the outer RWϕ-condition.

If x ∈ ∂Ẽε \ ∂E, then by definition of Ẽε there exists x1 ∈ R2 such that

(x1 +RWϕε
) ⊂ Ẽε and x ∈ ∂(x1 +RWϕε

) .

Let `x be the maximal arc of ∂(x1 + RWϕε) containing x and contained in the interior of E,
and let y1, y2 ∈ ∂E be the endpoints of `x. Notice that ϕε(y1 − y2) < 2R. Let y3 := (y1 + y2)/2,
R′ := ϕ(y1 − y2)/2 ≤ ϕε(y1 − y2)/2 < R. As E satisfies the inner RWϕ-condition, the set

(y3 +R′Wϕ) has connected intersection with Ec, so that the set (∂E \∂Ẽε)∩ (y3 +R′Wϕ) contains

a connected arc ˜̀
x joining y1 and y2 (see Figure 2).

Let Sx be the subset of E such that ∂Sx = `x ∪ ˜̀
x and set E′ := Ẽε ∩ (y3 +R′Wϕ). Note that

Sx ⊂ E′c. As E′ is a convex set, there exists y such that x ∈ ∂(y +RWϕ) and E′ ⊂ (y +RWϕ)c.
Moreover, since E satisfies the outer RWϕ-condition, the set E∩ int(y+RWϕ) ⊇ Sx∩ int(y+RWϕ)

is connected. This implies that (y + RWϕ) ⊂ Ẽcε and proves (6). Notice that from (6) it follows
that

Ẽcε =
⋃

y: dẼε
ϕ (y)≥R

(y +RWϕ) .

In order to prove that Ẽε satisfies the outer RWϕ-condition, by Remark 2 it remains to show

that, given x̄ with dẼε
ϕ = R′ < R, the set ∂Ẽε ∩ (x̄+R′∂Wϕ) is connected.

If ∂Ẽε ∩ (x̄ + R′∂Wϕ) ⊂ ∂E this follows directly from the fact that E satisfies the outer

RWϕ-condition. Otherwise, there exists x ∈ (∂Ẽε \∂E)∩ (x̄+R′∂Wϕ). In this case we claim that

∂Ẽε∩(x̄+R′∂Wϕ) = {x}. Indeed, since `x is a strictly convex arc, we have `x∩(x̄+R′∂Wϕ) = {x}.
Hence, if ∂Ẽε ∩ (x̄+R′∂Wϕ) contains another point y 6= x, then y 6∈ Sx. As Sx ∩ (x̄+R′Wϕ) 6= ∅,
it follows that E ∩ (x̄ + (R′ + δ)Wϕ) contains at least two connected components for δ > 0
sufficiently small, contradicting the fact that E satisfies the outer RWϕ-condition. Hence the set

(∂E \ ∂Ẽε) ∩ (y3 +R′Wϕε
) is a connected arc ˜̀

x joining y1 and y2.

Step 3. We prove that Eε satisfies the inner RWϕε
-condition by reasoning as in Step 2, with E

replaced by (Ẽε)
c (and ϕ replaced by ϕε). The only difference is due to the fact that (Ẽε)

c now
satisfies inner RWϕ-condition and the outer RWϕε-condition. Therefore, letting R′ := ϕε(y1 −
y2)/2 < R, the set (y3 +R′Wϕ) ∩ Ẽε is connected, so that (∂Ẽε \ ∂Eε) ∩ (y3 +R′Wϕε

) contains a
connected arc joining y1 and y2. In the rest of the proof one can proceed as in Step 2.

Q.E.D.

Lemma 1 has the following direct consequence.

Corollary 1. Let E ⊆ R2 satisfy the RWϕ-condition for some R > 0. Then E is ϕ-regular
in the sense of [11], that is, there exists a vector field nϕ ∈ L∞({|dEϕ | < R},R2) such that nϕ ∈
∂ϕ◦(∇dEϕ ) a.e. in {|dEϕ | < R}, and divnϕ ∈ L∞loc({|dEϕ | < R}).

Proof. Take a sequence ϕε of smooth and elliptic anisotropies converging to ϕ, with ϕε ≥ ϕ.
By Lemma 1 we can approximate E in the Hausdorff distance with sets Eε satisfyng the RWϕε

-
condition. In particular, letting nϕε = ∇ϕ◦ε(∇dEε

ϕε
) ∈ L∞(R2) and recalling Remark 1, we have

that divnϕε ∈ L∞loc({|dEε
ϕε
| < R}). Therefore, any weak* limit nϕ of nϕε , as ε → 0, satisfies the

thesis. Q.E.D.

Remark 3. Notice that, given an arbitrary anisotropy ϕ, it is relatively easy to approximate
it with smooth and elliptic anisotropies ϕε. For instance, one may let Fε := {ηε∗ϕ◦ ≤ 1}⊕B(0, ε),
with ηr(x) := r−dη

(
x
r

)
, and ϕε(x) := supν∈Fε

ν · x. It is easy to check that the anisotropies ϕε
are smooth and elliptic, and converge locally uniformly to ϕ as ε → 0. A similar approximation
is defined and used in [24].
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y3

y1

y2

`x

Sx

x

˜̀
x

x1

Fig. 2. The configuration in Lemma 1.

§3. The time-discrete implicit scheme

The results of this section hold in any dimension d ≥ 2 and are stated in this general form.
Up to minor improvements, they are essentially stated in [15, 6]. Following [15] we recall the
definition and some properties of the implicit scheme introduced in [2, 32]. Given a set E ⊂ Rd
with compact boundary (we assume without loss of generality that it is bounded), we define for
s > t ≥ 0 a transformation Tt,s by letting Tt,s(E) = {x ∈ BR : w(x) < 0}, where BR = B(0, R),
R is large and w is the minimizer of

(7) min
w∈L2(BR)

∫
BR

ϕ◦(Dw) +
1

2(s− t)

∫
BR

(
w(x)− dEϕ (x)−G(s, x) +G(t, x)

)2
dx ,

whose existence and uniqueness is shown by standard methods. One checks easily [13, 15, 3] that
for R large, the level set Tt,s(E) of w does not depend on R, and it is a solution to the variational
problem

(8) minPϕ(F ) +
1

s− t

∫
F

(
dEϕ (x) +G(s, x)−G(t, x)

)
dx ,

where the minimum is taken among the subsets F of Rd with finite perimeter, and we set

Pϕ(F ) :=

∫
∂∗F

ϕ◦(νF (x))dH1(x).

It follows that the set Tt,s(E) has boundary of class C1,α, outside a compact singular set of zero
H1-dimension [2] (when d = 2, the set Tt,s(E) has boundary of class C1,1). The variational problem
above is the generalization of the approach proposed in [2, 32], for building mean curvature flows
without driving terms, through an implicit time discretization.

For s = t + h, the Euler-Lagrange equation for Tt,t+h(E) at a point x ∈ ∂Tt,t+h(E) formally
reads as

dEϕ (x) = −h
(
κϕ(x) +

G(t+ h, x)−G(t, x)

h

)
,

with κϕ being the ϕ-curvature at x of ∂Tt,t+h(E), so that it corresponds to an implicit time-
discretization of (1). Observe also that this approximation is trivially monotone: indeed if E ⊆ E′
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then dEϕ ≥ dE
′

ϕ , which yields w ≥ w′, w and w′ being the solutions of (7) for the distance functions

dEϕ and dE
′

ϕ respectively. We deduce that {w < 0} ⊆ {w′ < 0}, that is,

(9) E ⊆ E′ =⇒ Tt,t+h(E) ⊆ Tt,t+h(E′).

Consider now the Euler-Lagrange equation for (7), which is

(10) −(s− t)div z + w(x) = dEϕ (x) +G(s, x)−G(t, x)

for x ∈ BR, with ϕ(z(x)) ≤ 1 and z(x) · ∇w(x) = ϕ◦(∇w(x)) a.e. in BR (by elliptic regularity one
knows that w is Lipschitz).

We show that if E is regular enough, then we have an estimate on the quantity div z+(G(s, x)−
G(t, x))/(s− t) near the boundary of E. The technique is adapted from [6].

Lemma 2. Assume that E is a bounded set which satisfies the δWϕ-condition for some δ > 0.
Let a < b be such that Xa,b := {max{w, dEϕ} ≥ a} ∩ {min{w, dEϕ} ≤ b} ⊆ {|dEϕ | < δ}. Then
div z ∈ L∞(Xa,b) and

(11)

∥∥∥∥div z +
G(s, ·)−G(t, ·)

s− t

∥∥∥∥
L∞(Xa,b)

≤
∥∥∥∥div nEϕ +

G(s, ·)−G(t, ·)
s− t

∥∥∥∥
L∞(Xa,b)

.

Proof. Let f : R → [0,+∞) be a smooth increasing function with f(t) = 0 if t ≤ 0. Since
(w, z) solves (10), we find∫

Xa,b

(w − dEϕ )f(w − dEϕ ) dx =

∫
Xa,b

((s− t)div z +G(s, x)−G(t, x)) f(w − dEϕ ) dx

= (s− t)
∫
Xa,b

(div z − div nEϕ )f(w − dEϕ ) dx

+

∫
Xa,b

(
(s− t)div nEϕ +G(s, x)−G(t, x)

)
f(w − dEϕ ) dx =: I + II.

We have, observing that Xa,b has Lipschitz boundary (for a.e. choice of a, b),

I = − (s− t)
∫
Xa,b

(z − nEϕ ) · ∇(w − dEϕ )f ′(w − dEϕ ) dx

+ (s− t)
∫
∂Xa,b

f(w − dEϕ )(z − nEϕ ) · νXa,b dH1 =: I1 + I2.

First of all, I1 ≤ 0 since z · ∇w = ϕ◦(∇w) and z · ∇dEϕ ≤ ϕ◦(∇dEϕ ). We claim that also I2 ≤
0. Indeed, on one hand, when f(w − dEϕ ) > 0, we have w > dEϕ , hence νXa,b = ν{d

E
ϕ≤b} =

∇dEϕ/|∇dEϕ | H1-almost everywhere on {min{w, dEϕ} = b}, while νXa,b = ν{w≥a} = −∇w/|∇w|
H1-almost everywhere on {max{w, dEϕ} = a}. It follows that f(w − dEϕ )(z − nEϕ ) · νXa,b ≤ 0 on

both {min{w, dEϕ} = b} and {max{w, dEϕ} = a}, so that I2 ≤ 0. We conclude that I ≤ 0, hence

(12)

∫
Xa,b

(w − dEϕ )f(w − dEϕ ) dx ≤
∫
Xa,b

(
(s− t)div nEϕ +G(s, x)−G(t, x)

)
f(w − dEϕ ) dx.

Let q > 2, let r+ := r ∨ 0, and let {fn} be a sequence of smooth increasing nonnegative functions

such that fn(r)→ r+
(q−1)

uniformly as n→∞. From (12) we obtain∫
Xa,b

((w − dEϕ )+)q dx ≤
∫
Xa,b

(
(s− t)div nEϕ +G(s, x)−G(t, x)

)
((w − dEϕ )+)q−1 dx

≤
∫
Xa,b

(
(s− t)div nEϕ +G(s, x)−G(t, x)

)+
((w − dEϕ )+)q−1 dx.
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Applying Young’s inequality we obtain

‖(w − dEϕ )+‖Lq(Xa,b) ≤
∥∥∥ ((s− t)div nEϕ +G(s, ·)−G(t, ·)

)+ ∥∥∥
Lq(Xa,b∩{w>dEϕ})

.

A similar proof, reverting the signs, shows that

‖(w − dEϕ )−‖Lq(Xa,b) ≤
∥∥∥ ((s− t)div nEϕ +G(s, ·)−G(t, ·)

)− ∥∥∥
Lq(Xa,b∩{w<dEϕ})

It follows that

‖(s− t)div z +G(s, ·)−G(t, ·)‖Lq(Xa,b) ≤ ‖(s− t)div nEϕ +G(s, ·)−G(t, ·)‖Lq(Xa,b) ,

and letting q →∞ we obtain (11). Observe that the estimate we may obtain is a bit more precise,
in fact we have shown:

(13) ess inf
Xa,b∩{w<dEϕ}

div nEϕ +
G(s, ·)−G(t, ·)

s− t

≤ div z(x) +
G(s, x)−G(t, x)

s− t
≤ ess sup

Xa,b∩{w>dEϕ}
div nEϕ +

G(s, ·)−G(t, ·)
s− t

for a.e. x ∈ Xa,b. Q.E.D.

We also recall Lemma 3.2 from [15]:

Lemma 3. Let x0 ∈ BR and ρ > 0, and let t ≥ 0. Let w̃ solve

(14) min
w̃∈L2(BR)

∫
BR

ϕ◦(Dw̃) +
1

2h

∫
BR

(w̃(x)− (ϕ(x− x0)− ρ)−G(x, t+ h) +G(x, t))2 dx .

Then

(15) w̃(x) ≤

ϕ(x− x0) + h
1

ϕ(x− x0)
+ ∆h(t)− ρ if ϕ(x− x0) ≥

√
2h

2
√

2h+ ∆h(t)− ρ otherwise,

where ∆h(t) := ‖G(·, t+ h)−G(·, t)‖L∞(BR).

We deduce an estimate on w − dEϕ , if E has an inner ρWϕ-condition: indeed, in this case, if
h = s− t,

dEϕ (x) ≤ inf
{
ϕ(x− x0)− ρ : dEϕ (x0) = −ρ

}
with, in fact, equality in {−ρ ≤ dEϕ ≤ ρ′}, where ρ′ ≥ 0 is the radius of an outer ρ′Wϕ-condition.
It follows from (15) that

(16) w(x) ≤ inf

{
ϕ(x− x0)− ρ+ h

1

ϕ(x− x0)
+ ∆h(t) : dEϕ (x0) = −ρ

}
for x with dEϕ (x) ≥ −ρ+

√
2h, and more precisely if ρ′ ≥ dEϕ (x) ≥ −ρ/2,

(17) w(x) ≤ dEϕ (x) +
2h

ρ
+ ∆h(t),

as soon as h ≤ ρ2/16.
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§4. Smooth anisotropies

4.1. Existence of ϕ-regular flows.

We will prove, in dimension d = 2, an existence result for the forced curvature flow, first in
case the anisotropy is smooth and elliptic. For technical reason, we need the forcing term G to be
either time-dependent only (case G2 = 0), or smooth (globally Lipschitz in space and time, case
G1 = 0).

Theorem 1. Assume G1 = 0 or G2 = 0, and let (ϕ,ϕ◦) be a smooth and elliptic anisotropy
and E0 ⊂ R2 an initial set with compact boundary, satisfying both an RWϕ-internal and external
condition. Then, there exist T > 0, and a ϕ-regular flow E(t) defined on [0, T ] and starting from
E(0) = E0.

More precisely, there exist R′ > 0 and a neighborhood U of
⋃

0≤t≤T ∂E(t) in R2 such that the

sets E(t) satisfy the R′Wϕ-condition for all t ∈ [0, T ], the ϕ-signed distance function dEϕ (t, x) from

∂E(t) belongs to C0([0, T ]; Lip(U)) ∩ L∞([0, T ];C1,1(U)), (dEϕ −G) ∈ Lip([0, T ]× U) and

(18)

∣∣∣∣∣∂(dEϕ −G)

∂t
(t, x)− div∇ϕ◦(∇dEϕ )(t, x)

∣∣∣∣∣ ≤ λ|dEϕ (t, x)| .

for a.e. (t, x) ∈ [0, T ]× U , where λ is a positive constant. Finally, the time T , the radius R′, the
set U , and the constant λ depend only on R and G.

Theorem 1 will be proved by time-discretization. Before, we need a technical lemma.
Given E ⊂ R2 and δ > 0 we let

Eδ := {dEϕ < −δ} Eδ := {dEϕ ≤ δ}.

Lemma 4. Let ϕ,ϕ◦ be smooth and elliptic, and a set E satisfy a RWϕ-condition for some
R > 0. We also assume that E is simply connected (∂E is a C1,1 Jordan curve). Let δ ∈ (0, R) and
consider a set F (also simply connected), such that Eδ ⊂ F ⊂ Eδ. Assume that ‖κFϕ‖L∞(∂F ) ≤ K
for a constant K < 1/(2δ). Then F has a R′Wϕ-condition, with R′ = min{R− δ, (1− 2δK)/K}.

Proof. We assume that ∂F is at least C2. If the result holds in this case, then given a more
general C1,1 set we can smooth it slightly, use the result for the approximations, and then pass to
the limit.
Step 1. We have Eδ \ Eδ =

⋃
x∈∂E(x+ δWϕ), and for any x ∈ ∂E, the set x+ δWϕ is tangent to

∂Eδ (respectively, ∂Eδ) at exactly one point x−δnϕ(x) (resp., x+δnϕ). We can define Γ+
x and Γ−x

as the two arcs on ∂(x+δWϕ) delimited by the points x±δnϕ(x), the exponent + and − indicating
that Γ±x meets ∂E right “after” or “before” x, relative to an arbitrarily chosen orientation of the
curve.

A first observation is that ](∂F ∩ Γ±x ) = 1 for all x. Indeed, we check that this value is a
continuous function of x. If not, there will exist for instance a point where ](∂F ∩ Γ+

x ) has a
“jump”, that is, where ∂F is tangent to Γ+

x and contains a small piece of arc which is inside
x + δWϕ and tangent to its boundary: in this case, we deduce that κFϕ (x) is larger than 1/δ or
less than −1/δ, a contradiction.

Since this value is continuous, it can only be odd (since Eδ ⊂ F ⊂ Eδ), moreover if it were
larger than 1, there would be a connected component of F (as well as one of its complement) in
Eδ \ Eδ, a contradiction.
Step 2. Let ρ < min{R − δ, (1 − 2δK)/K}. Assume that there exists y ∈ F such that W :=
y + ρWϕ ⊂ F and y + ρWϕ meets ∂F in at least two points z−, z+ (with z+ “after” z− with
respect to the orientation along ∂E). These points must be isolated (otherwise there would be a
point on ∂F with curvature equal to 1/ρ > K). Observe also that W ∩(Eδ\Eδ) is connected (since
Eδ has an inner (R− δ)Wϕ-condition). To z+, we can associate a unique x+ such that z+ ∈ Γ+

x+ ,

and to z− a unique x− such that z− ∈ Γ−x− . Then, the piece of curve Γ of ∂F between z− and

z+ lies in the region of Eδ \Eδ bounded by Γ−x− and Γ+
x+ , which contains points at “distance” at
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most 2δ from W : more precisely, Γ ⊂ y+ (ρ+ 2δ)Wϕ. Hence, there exists s ∈ (ρ, ρ+ 2δ] such that
Γ is contained in y + sWϕ and tangent to its boundary, and thus a point of curvature larger than
1/s ≥ 1/(ρ + 2δ) > K on ∂Wϕ, which is a contradiction. Therefore, the Wulff shapes y + ρWϕ

which lie inside F can touch its boundary at most in one point, and an inner condition of radius
min{R− δ, (1− 2δK)/K} easily follows.

The proof of the outer condition is identical. Q.E.D.

Remark 4. We can refine the lemma to consider a situation where E has an inner RiWϕ-
condition and a outer RoWϕ-condition, for two given radii Ri, Ro > δ. We assume that −Ko ≤
κFϕ ≤ Ki for two nonnegative constants Ki,Ko, (still less than 1/(2δ)). It is then deduced that F
has a inner R′iWϕ-condition and a outer R′oWϕ-condition, with R′i = min{Ri− δ, (1− 2δKi)/Ki},
R′o = min{Ro − δ, (1− 2δKo)/Ko}.

Proof of Theorem 1. From (11) and (13), we will obtain some regularity of the boundary of
Tt+h,t(E), which will allow to iterate the variational scheme. To simplify (and without loss of
generality) we assume that the initial curve is a Jordan curve (E0 is simply connected). If not,
one may evolve separately each connected component of the boundary.
Step 1.a.: The case G1 = 0. In the case G1 = 0, there exists C such that ∆h(t) ≤ Ch. It follows
from (17) that if E satisfies the ρWϕ-condition, then, by solving (7) with s = t+ h,

(19) |w(x)− dEϕ (x)| ≤ h

(
C +

2

ρ

)
in {|dEϕ | < ρ/2}. By standard comparison (using for instance Lemma 3 again) one also can check

that w < 0 if dEϕ ≤ −ρ/2, and w > 0 if dEϕ ≥ ρ/2, so that the boundary of Tt,t+h(E) is at (ϕ-

)distance of order h from ∂E, if h ≤ ρ2/36 (Lemma 3). We also observe that the Hausdorff distance

between the sets E and Tt,t+h(E) is of the same order, or equivalently, ‖dEϕ − d
Tt,t+h(E)
ϕ ‖L∞(Rd) ≤

(C + 2/ρ)h.
A further observation is that if E is simply connected, also Tt,t+h(E) is. Indeed, if not,

there would be a connected component of either Tt,t+h(E) or its complement in the set {|dEϕ | ≤
h(C + 2/ρ)}. Assume F is a connected component of Tt,t+h(E) wich lies in {|dEϕ | ≤ h(C + 2/ρ)},
so that |F | ≤ 2hPϕ(E)(C + 2/ρ). One has that (using the isoperimetric inequality)

Pϕ(F ) +
1

h

∫
F

dEϕ (x) +G(t+ h, x)−G(t, x) dx

≥ 2
√
|Wϕ||F | − 2|F |

(
C +

1

ρ

)
≥ 2

√
|F |
(√
|Wϕ| −

√
|F |
(
C +

1

ρ

))
which is positive if h is small enough (depending on C, ρ, Pϕ(E)), showing that Tt,t+h(E) \ F has
an energy strictly lower than Tt,t+h(E) in (8), a contradiction.

Sending both a and b to 0, one deduces from (11) that Tt,t+h(E) has C1,1 boundary, and
moreover∥∥∥∥div n

Tt,t+h(E)
ϕ +

1

h
(G(t+ h, ·)−G(t, ·))

∥∥∥∥
L∞(∂Tt,t+h(E))

≤
∥∥∥∥div nEϕ +

1

h
(G(t+ h, ·)−G(t, ·))

∥∥∥∥
L∞(E4Tt,t+h(E))

.

On one hand, |div nEϕ | is bounded by 2/ρ in {|dEϕ | ≤ ρ/2}, and it follows (see for instance [6])

that in that set, |div nEϕ (x) − div nEϕ (y)| ≤ 4dEϕ (x)/ρ2 if y ∈ ∂E is the point which realizes
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ϕ(x− y) = ±dEϕ (x). On the other hand, (G(t+ h, x)−G(t, x))/h is L-Lipschitz in (t, x) for some
L > 0. We deduce that (possibly increasing C)

(20)

∥∥∥∥div n
Tt,t+h(E)
ϕ +

1

h
(G(t+ h, ·)−G(t, ·))

∥∥∥∥
L∞(∂Tt,t+h(E))

≤
∥∥∥∥div nEϕ +

1

h
(G(t, ·)−G(t− h, ·))

∥∥∥∥
L∞(∂E)

+ h

(
L+

4

ρ2

)(
C +

2

ρ

)
,

provided h is small enough (depending on ρ, L,C). Eventually, it follows that the curvature of
∂Tt,t+h(E) (since d = 2, the total and mean curvature coincide) has a global estimate 1/ρ+ 2C +
O(h), and one will deduce from Lemma 4 that for h small enough, this new set also satisfies the
ρ′Wϕ-condition, with ρ′ = ρ/(1 + (2C +O(h))ρ) > 0, provided the assumptions of the lemma are
fulfilled.

We now consider E0, R as in Theorem 1, and let for h > 0 and any n ≥ 1, Ehn = T(n−1)h,nh(E0).

We also define Eh(t) = Eh[t/h] for t ≥ 0. A first observation is that if x ∈ (E0)R, x+RWϕ ⊂ E0 so

that if r(t) solves ṙ = −(1/r+C) with r(0) = R, for any η > 0 (small), x+ (r(t)− η)Wϕ ⊂ Eh(t)

for h small enough, as long as r(t) ≥ η. The function r(t) solves r(t)−R− ln
(

1+Cr(t)
1+CR

)
/C = −Ct,

and given δ ∈ (0, R) (which will be precised later on), there exists T1(R,C, δ) such that if t ≤ T1
and h > 0 is small enough,

(21) (E0)δ ⊂ Eh(t) ⊂ (E0)δ .

We let U = {|dEϕ | ≤ δ}.
Letting Eh1 = T0,h(E0), we deduce from (20) that if h < R2/36 is small enough,

Ah1 :=

∥∥∥∥div n
Eh

1
ϕ +

1

h
(G(h, ·)−G(0, ·))

∥∥∥∥
L∞(∂Eh

1 )

≤ 1

R
+ C +

1

4

(
C +

2

R

)
=: M1.

For n ≥ 1, we then define iteratively the sets Ehn+1 = Tnh,(n+1)h(Ehn) and let

Ahn+1 :=

∥∥∥∥div n
Eh

n+1
ϕ +

1

h
(G((n+ 1)h, ·)−G(nh, ·))

∥∥∥∥
L∞(∂Eh

n+1)

.

Let now R1 = (2M1 + C))−1. As long as An ≤ 2M1, one can deduce from Lemma 4, using (21)
and provided we had chosen δ < R1/2, that Ehn+1 satisfies the R1Wϕ-condition, so that (20) holds

(with E = Ehn, ρ = R1) and

Ahn+1 ≤ Ahn + h

(
L+

4

R2
1

)(
C +

2

R1

)
.

By induction, we deduce that (letting B = (L + 4/R2
1)(C + 2/R1)) Ahn+1 ≤ M1 + (n + 1)hB as

long as nh ≤ min{T1,M1/B} := T > 0.
We observe that since δ < R1/2, as long as nh ≤ T , not only ∂Ehn ⊂ U , but all the signed

distance functions to the boundaries of Ehn are in C1,1(U). Notice that T and the width δ of the
strip U depend only on R,C,L.
Step 1.b.: The case G2 = 0. We now show that we can obtain a similar control in case of
a space independent forcing term, which can be the derivative of a continuous function G (a
relevant example is a Brownian forcing). In that case, we can consider the algorithm from a
different point of view: given the set E, we first consider the set E′ with signed distance function
dE
′

ϕ := dEϕ (x) + G(s) − G(t), then, we apply to this set E′ the algorithm with G ≡ 0, that is, we
solve (7) for E = E′ and G = 0:

min
w∈L2(BR)

∫
BR

ϕ◦(Dw) +
1

2(s− t)

∫
BR

(
w(x)− dE

′

ϕ (x)
)2
dx ,
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and then let E′′ = {w < 0}. It is clear that this is equivalent to the original algorithm, so that
E′′ = Tt,s(E).

Assume in addition that E has an inner riWϕ-condition and a outer roWϕ condition, for
some radii ri, ro > 0. If (s − t) is small enough, then E′ has the inner r′iWϕ-condition and
outer r′oWϕ condition with r′i = ri − G(s) + G(t) and r′o = ro + G(s) − G(t). In particular,

dE
′

ϕ = dEϕ (x) +G(s)−G(t) is locally C1,1 in the strip {−r′i < dE
′

ϕ < r′o} and the surface ∂E′ has
a curvature which satisfies a.e.

(22) − 1

r′o
≤ div nE

′

ϕ ≤ 1

r′i
.

As before, from (17) we have that, if h = s− t is small enough, then

(23) |w(x)− dE
′

ϕ (x)| ≤ 2h

min{r′i, r′o}
,

showing that the boundary of Tt,t+h(E) remains close to the boundary of E′ (provided r′i, r
′
o are

controlled from below).
From (13) (with G = 0, E = E′) and (22), (23), we obtain that if h is small enough,

− 1

r′o
− 2h

(r′o)
2 min{r′i, r′o}

≤ div n
Tt,t+h(E)
ϕ ≤ 1

r′i
+

2h

(r′i)
2 min{r′i, r′o}

,

and in particular we can deduce from Lemma 4 and Remark 4 that Th(E) satisfies the inner r′′iWϕ

and outer r′′oWϕ-conditions with

r′′i ≥ r′i −
ch

r′i
, r′′o ≥ r′o −

ch

r′o
,

for some constant c > 0.
As in the previous step, we now consider E0, R as in Theorem 1, we let Eh0 = E0 and define

for each n ≥ 0, Ehn+1 := Tnh,(n+1)h(Ehn). Let r0o = r0i = R. The previous analysis shows that Eh1
has the inner r1iWϕ and the outer r1oWϕ-conditions with

r1i ≥ r0i −G(h) +G(0)− ch

R
, r1o ≥ r0o +G(h)−G(0)− ch

R
,

provided |G(h)−G(0)| ≤ R/2 (for some constant c > 0). Now, assuming that n is such that

rni ≥ r0i −G(nh) +G(0)− cnh

R
, rno ≥ r0o +G(nh)−G(0)− cnh

R
,

we deduce that

rn+1
i ≥ r0i −G((n+ 1)h) +G(0)− c(n+ 1)h

R
, rn+1

o ≥ r0o +G((n+ 1)h)−G(0)− c(n+ 1)h

R
,

as long as |G((n+1)h)−G(0)|+c(n+1)h/R ≤ R/2. Define T such that max0≤t≤T |G(t)−G(0)|+
ct/R ≤ R/4, and let U = {|dE0

ϕ | < R/4}: then, on one hand, ∂Ehn ⊂ U for all n ≥ 0 with nh ≤ T ,

on the other hand, Ehn satisfies the (R/2)Wϕ-condition, so that d
Eh

n
ϕ ∈ C1,1(U). Again, U and T

depend only on G and R.

Step 2: Conclusion. For t ∈ [0, T ] and h small, we let Eh(t) = Eh[t/h], dh(t, x) = d
E(t)
ϕ (x), and

we now send h → 0. Since dh − G is uniformly Lipschitz in [0, T ] × U (in time, in fact, we have
|dh(t, x) − G(t, x) − dh(s, x) + G(s, x)| ≤ c|t − s| if |t − s| ≥ h, for some constant c), up to a
subsequence (hk) it converges uniformly to some d with d−G ∈ Lip([0, T ]×U), moreover, at each

t > 0, Ehk
(t) converges (Hausdorff) to a set E(t) with d(t, x) = d

E(t)
ϕ (x). Let us establish (18).

For n ≤ T/h− 1 and x ∈ ∂Ehn+1, by definition of the scheme we have

−dE
h
n

ϕ (x)− hdiv n
Eh

n+1
ϕ (x)−G(t+ h, x) +G(t, x) = 0.



Crystalline curvature flow 13

As (G(t+ h, ·)−G(t, ·))/h is L-Lipschitz in U , there holds∣∣∣(G(t+ h, x)−G(t, x))−
(
G(t+ h,Π∂Eh

n+1
(x))−G(t,Π∂Eh

n+1
(x))

)∣∣∣ ≤ Ch|dEh
n+1

ϕ (x)|

where C depends only on L and ϕ, where we set

Π∂Eh
n+1

(x) = x− dE
h
n+1

ϕ (x)n
Eh

n+1
ϕ (x).

Choose now x ∈ U such that d
Eh

n+1
ϕ (x) ≥ 0. In this case, it follows that

d
Eh

n
ϕ (x)− dE

h
n

ϕ (Π∂Eh
n+1

(x)) ≤ ϕ(x−Π∂Eh
n+1

(x)) = d
Eh

n+1
ϕ (x).

Hence,

d
Eh

n+1
ϕ (x)− dE

h
n

ϕ (x)− hdiv n
Eh

n+1
ϕ (x)

≥ −dE
h
n

ϕ (Π∂Eh
n+1

(x))− hdiv n
Eh

n+1
ϕ (Π∂Eh

n+1
(x)) +O

(
h|dE

h
n+1

ϕ (x)|
)

= G(t+ h,Π∂Eh
n+1

(x))−G(t,Π∂Eh
n+1

(x)) +O

(
h|dE

h
n+1

ϕ (x)|
)

= G(t+ h, x)−G(t, x) +O

(
h|dE

h
n+1

ϕ (x)|
)
.

Dividing by h and letting h→ 0+, we then get

∂(dEϕ −G)

∂t
(t, x)− div∇ϕ◦(∇dEϕ )(t, x) ≥ O

(
|dEϕ (t, x)|

)
(t, x) ∈ U × [0, T ] ∩ {dEϕ (t, x) > 0},

which implies

∂(dEϕ −G)

∂t
(t, x)− div∇ϕ◦(∇dEϕ )(t, x) ≥ O

(
|dEϕ (t, x)|

)
(t, x) ∈ U × [0, T ].

By taking x ∈ U such that d
Eh

n+1
ϕ (x) ≤ 0, reasoning as above we get

∂dEϕ
∂t

(t, x)− div∇ϕ◦(∇dEϕ )(t, x)− g(t, x) ≤ O
(
|dEϕ (t, x)|

)
(t, x) ∈ U × [0, T ],

thus obtaining (18). Q.E.D.

Remark 5. When ϕ(x) = |x| and G2 = 0, existence and uniqueness of ϕ-regular flows has
been proved in [18] in any dimension.

4.2. Uniqueness of ϕ-regular flows.

We now show uniqueness of the regular evolutions given by Theorem 1.

Theorem 2. Given an initial set E0, the flow of Theorem 1 is unique. More precisely,
if two flows E, E′ are given, starting from initial sets E0 ⊆ E′0, then E(t) ⊆ E′(t) for all
t ∈ [0,min{T, T ′}] (where T, T ′ are respectively the time of existence of regular flows starting from
E0 and E′0).

The thesis essentially follows from the results in [15]. Indeed, in [15] it is proved a comparison
result for strict C2 sub- and superflows, based again on a consistency result for the scheme defined
in Section 3. A strict C2 subflow is defined a in Theorem 1, except that dEϕ (t, x) is required to be

in C0([0, T ];C2(U)), and (18) is replaced with (for 0 ≤ t < s ≤ T , x ∈ U)

(24) dEϕ (s, x)− dEϕ (t, x)−
∫ s

t

div∇ϕ◦(∇dEϕ )(τ, x) dτ −G(s, x) +G(t, x) ≤ −δ(s− t)
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for some δ > 0. A superflow will satisfy the reverse inequality, with −δ(s − t) replaced with
δ(s− t). For technical reasons (in order to make sure, in fact, that the duration time of these flows
is independent on δ), we will ask that these flows are defined, in fact, in a tubular neighborhood
W of

⋃
0≤t≤T ∂E(t), not necessarily of the form [0, T ]× U .

The thesis then follows from the consistency result in [15, Thm. 3.3], once we show the following
approximation result.

Lemma 5. Let E(t) be an evolution as in Theorem 1, starting from a compact set E0 satisfying
the RWϕ-conditions for some R > 0. Then, there exists T ′ > 0 such that for any ε > 0, there
exist a set E′0 and a strict C2 subflow E′(t) starting from E′0 such that for all t ∈ [0, T ′], E(t) ⊂⊂
E′(t) ⊂ {dEϕ (t, ·) ≤ ε}.

Proof. We sketch the proof and refer to [3] for more details.
The idea is to let first dα = dEϕ − αt− α/(4λ), for some small α > 0, with α(T + 1/(4λ)) < ε.

One can then deduce from (18) that, for all s > t,

dα(s, x)− dα(t, x)−
∫ s

t

div∇ϕ◦(∇dα)(τ, x) dτ −G(s, x) +G(t, x)

≤ (s− t)(λ max
t≤τ≤s

|dEϕ (τ, x)| − α) ≤ λ(s− t)
(

max
t≤τ≤s

|dα(τ, x)|+ α(s− 3
4λ
−1)

)
.

Let T ′ := min{T, 1/(2λ)}, and let β = α/(8λ): then if we let W = {(t, x) : 0 ≤ t ≤ T , |dα(t, x)| <
β}, we deduce that for x, t, s with [t, s]× {x} ⊂W ,

dα(s, x)− dα(t, x)−
∫ s

t

div∇ϕ◦(∇dα)(τ, x) dτ −G(s, x) +G(t, x) ≤ −βλ(s− t) .

Hence {dα ≤ 0} is almost a C2 subflow, except for the fact that it is not C2. However, this is not
really an issue, as we will now check. Consider indeed a spatial mollifier

(25) ηr(x) =
1

rd
η
(x
r

)
where as usual η ∈ C∞c (B(0, 1);R+),

∫
Rd η(x) dx = 1. Let dαr = ηr ∗ dα (for r small). Observing,

as before, that G(s, x)−G(t, x) is (s− t)L-Lipschitz, one has |ηr ∗ (G(s, ·)−G(t, ·))(x)− (G(s, x)−
G(t, x))| ≤ (s− t)Lr. Hence, the level set 0 of dαr will be a strict C2 subflow, for r small enough,
if we can check that the difference

(26) ηr ∗ (div∇ϕ◦(∇dα)(τ, ·))(x) − div∇ϕ◦(ηr ∗ ∇dα)(τ, x)

can be made arbitrarily small for r small enough and any (τ, x) ∈ W (possibly reducing slightly
the width of W ). Now, for (τ, x) ∈W ,

ηr ∗ (div∇ϕ◦(∇dα)(τ, ·))(x) =

∫
B(0,r)

ηr(z)D
2ϕ◦(∇dα(τ, x− z)) : D2dα(τ, x− z) dz

while

div∇ϕ◦(ηr ∗ ∇dα)(τ, x)) =

∫
B(0,r)

ηr(z)D
2ϕ◦((ηr ∗ ∇dα(τ, ·))(x)) : D2dα(τ, x− z) dz .

The difference in (26) is therefore∫
B(0,r)

ηr(z)(D
2ϕ◦(∇dα(τ, x− z))−D2ϕ◦((ηr ∗ ∇dα(τ, ·))(x))) : D2dα(τ, x− z) .

Now, since D2ϕ◦ is at least continuous (uniformly in {ϕ◦(ξ) ≥ 1/2}), ϕ◦(∇dα) = 1 a.e. in W , while
D2dα is globally bounded (and ∇dα uniformly Lipschitz), this difference can be made arbitrarily
small as r → 0, and we actually deduce that, in such a case, E′(t) = {dαr ≤ 0} is a strict
C2-superflow starting from E′0 = {dEϕ ≤ β}, which satisfies the thesis of the Lemma. Q.E.D.
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Remark 6. The uniqueness result holds in any dimension d ≥ 2, with exactly the same proof.
We point out that it is not necessary to assume that G1 or G2 vanishes.

§5. General anisotropies

An important feature of Theorem 1 is that the existence time, as well as the neighborhood
where dEϕ is C1,1, are both independent on the anisotropy, and only depend on the radius R for
which E0 satisfies the RWϕ-condition. This allows us to extend the existence result to general
anisotropies, by the approximation argument given in Lemma 1.

Theorem 3. Assume G1 = 0 or G2 = 0, and let (ϕ,ϕ◦) be an arbitrary anisotropy. Let
E0 ⊂ R2 an initial set with compact boundary, satisfying the RWϕ-condition for some R > 0.
Then, there exist T > 0, and a ϕ-regular flow E(t) defined on [0, T ] and starting from E0.

More precisely, there exist R′ > 0 and a neighborhood U of
⋃

0≤t≤T ∂E(t) in R2 such that the

sets E(t) satisfy the R′Wϕ-condition for all t ∈ [0, T ], the ϕ-signed distance function dEϕ (t, x) from

∂E(t) belongs to C0([0, T ]; Lip(U)), (dEϕ −G) ∈ Lip([0, T ]× U) and

(27)

∣∣∣∣∣∂(dEϕ −G)

∂t
(t, x)− div z(t, x)

∣∣∣∣∣ ≤ λ|dEϕ (t, x)|

for a.e. (t, x) ∈ [0, T ]× U , where λ is a positive constant and z ∈ L∞([0, T ]× U ;R2) is such that
z ∈ ∂ϕ◦(∇dEϕ ) a.e. in [0, T ]× U . The time T , the radius R′, and the constant λ, only depend on
R and G.

Remark 7. Comparison and uniqueness for such flows has been shown in [11, 30, 14, 7],
although the most general result in these references only covers the case of a time-dependent,

Lipschitz continuous forcing term G(t) = G(0) +
∫ t
0
c(s) ds, with c ∈ L∞(0,+∞).

Proof. Let ε > 0 and consider smooth and elliptic anisotropies (ϕε, ϕ
◦
ε), with ϕε ≥ ϕ, con-

verging to (ϕ,ϕ◦) locally uniformly as ε→ 0. By the approximation result in Lemma 1, we can find
a sequence of sets Eε which satisfy the RWϕε

-condition, and such that ∂Eε → ∂E in the Hausdorff
sense. For each ε we consider the evolution Eε(t) given by Theorem 1, with 0 ≤ t ≤ T ε. Since
the times T ε and the width of the neighborhoods Uε depend only on R and G, up to extracting a
subsequence we can assume that limε T

ε = T for some T > 0, and there exists a neighborhood U
of ∂E0 such that Rd \Uε converges to Rd \U in the Hausdorff sense, as ε→ 0. Possibly reducing
T and the width of U we can then assume that T ε = T and Uε = U for all ε > 0.

Letting W := [0, T ]× U , and zε(t, x) = ∇ϕ◦ε(∇dEε
ϕε

(t, x)), from (18) we get

(28)

∣∣∣∣∣∂(dEε
ϕε
−G)

∂t
(t, x)− div zε(t, x)

∣∣∣∣∣ ≤ λ|dEε
ϕε

(t, x)|

for a.e. (t, x) ∈W , where the constant λ depends only on R and G.
As dEε

ϕε
− G are uniformly Lipschitz in (t, x), up to a subsequence we can assume that the

functions dEε
ϕε

converge uniformly in any compact subset of W to a function dEϕ , such that for all

t ∈ [0, T ] dEϕ (t, ·) is the signed ϕ-distance function to the boundary of E(t) := {x : dEϕ (t, x) ≤ 0}.
Moreover, E(0) = E0, E(t) is the Hausdorff limit of Eε(t) for each t ∈ [0, T ], and satisfies the
R′Wϕ-condition, with R′ = limεR

′
ε.

Up to a subsequence we can also assume that there exists z ∈ L∞(W ) with zε(t, x)
∗
⇀ z(t, x),

div zε
∗
⇀ div z and ∂t(d

ϕε

Eε
−G)

∗
⇀ ∂t(d

E
ϕ −G) in L∞(W ), so that (27) holds a.e. in W .

It remains to check that z(t, x) ∈ ∂ϕ◦(∇dEϕ (t, x)). Since by construction z(t, x) ∈Wϕ for a.e.
(t, x) ∈W , it is enough to show that

(29) z · ∇dEϕ = ϕ◦(∇dEϕ ) = 1
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a.e. in W . Recalling that zε · ∇dEε
ϕε

= ϕ◦ε(∇dEε
ϕε

) = 1 a.e. in W and letting ψ ∈ C∞c (W ), we have∫
W

ψ dxdt =

∫
W

ψ
(
zε · ∇dEε

ϕε

)
dxdt = −

∫
W

dEε
ϕε

(zε · ∇ψ + ψdiv zε) dxdt.

Passing to the limit in the righ-hand side we then get∫
W

ψ dxdt = −
∫
W

dEϕ (z · ∇ψ + ψdiv z) dxdt =

∫
W

ψ
(
z · ∇dEϕ

)
dxdt

which gives (29). Q.E.D.
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Dipartimento di Matematica, Università di Pisa, Largo Pontecorvo 5, 56127 Pisa, Italy,
novaga@dm.unipi.it


