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Abstract

We prove that that the 1-Riesz capacity satisfies a Brunn-Minkowski inequality, and
that the capacitary function of the 1/2-Laplacian is level set convex.
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1 Introduction

In this paper we consider the following problem
(=A)’u=0 on RV\ K
lim ;4o u(z) =0

where N > 2, s € (0,N/2), and (—A)® stands for the s-fractional Laplacian, defined
as the unique pseudo-differential operator (—A)* : S — L2(RY), being S the Schwartz
space of functions with fast decay to 0 at infinity, such that

F(=A)*f = [E*F(f)(©),
where F denotes the Fourier transform. We refer to the guide [12, Section 3] for more
details on the subject. A quantity strictly related to Problem (1) is the so-called Riesz
potential energy of a set E/, defined as

dp(z) dp(y)

I,(F) = inf
( ) y‘N—a
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It is possible to prove (see [18]) that if E' is a compact set, then the infimum in the
definition of Z,(E) is achieved by a Radon measure p supported on the boundary of E
if @ > 2, and with support equal to F if a € (0,2). If p is the optimal measure for the
set E, we define the Riesz potential of E as

o) = [ ©

N o=y
so that
I,(E) = / v(z)dp(x).
RN
It is not difficult to check (see [18, 15]) that the potential v satisfies

(—A)30 = c(a, N) i,

where c¢(a, N) is a positive constant, and that v = I,(E) on E. In particular, if s = /2,
then v = v/I55(K) is the unique solution of Problem (1).
Following [18], we define the a-Riesz capacity of a set E as

Cap,(F) := . 4
We point out that this is not the only concept of capacity present in literature. Indeed,

another one is given by the 2-capacity of a set E, defined by

02<E>:min{ [ Vel 0 e CURY, 0.1, gosz} (5)

where x4 is the characteristic function of the set A. It is possible to prove that, if E is
a compact set, then the minimum in (5) is achieved by a function u satisfying

Au=0 on RN\ B
u= on E (6)

It is worth stressing that the 2-capacity and the a-Riesz capacity share several properties,
and coincide if &« = 2. We refer the reader to [19, Chapter 8] for a discussion of this
topic.

In a series of works (see for instance [5, 10, 17] and the monography [16]) it has
been proved that the solutions of (6) are level set convex provided E is a convex body,
that is, a compact convex set with non-empty interior. Moreover, in [1] (and later in
[9] in a more general setting and in [8] for the logarithmic capacity in 2 dimensions) it



has been proved that the 2-capacity satisfies a suitable version of the Brunn-Minkowski
inequality: given two convex bodies Ky and K7 in RY, for any A € [0, 1] it holds

Co (MK + (1= N Eo) V2 > ACo(K1) N2 + (1 — \) Gy (Kp) 7.

We refer to [20, 14] for a comprehensive survey on the Brunn-Minkowski inequality.

The main purpose of this paper is to show the analogous of these results in the
fractional setting o = 1, that is, s = 1/2 in Problem (1). More precisely, we shall prove
the following result.

Theorem 1.1. Let K C RN be a conver body and let u be the solution of Problem (1)
with s =1/2. Then

(i) w is level set convex, that is, for every ¢ € R the set {u > ¢} is convex;

(ii) the 1-Riesz capacity Cap,(K) satisfies the following Brunn-Minkowski inequality:
for any couple of convex bodies Ky and K1 and for any A € [0,1] we have

1

Capy (K + (1= A)Ko) ™1 > ACapy (K1) ¥ + (1 — \)Cap, (Ko)¥1.  (7)

The proof of the Theorem 1.1 will be given in Section 2, and relies on the results in
[11, 9], and on the following theorem due to L. Caffarelli and L. Silvestre.

Theorem 1.2 ([7]). Let f : RY — R be a measurable function and let U : RN x [0, +00)
be the solution of

AgyU(z,t) =0, on RY x (0, +00) U(z,0) = f(x).
Then, for any x € RN there holds
lim 0,U(x,t) = (—A)°f(z).

t—0t
Eventually, in Section 3 we provide an application of Theorem 1.1 and we state some
open problems.

2 Proof of the main result

This section is devoted to the proof of Theorem 1.1.

Lemma 2.1. Let K be a compact convex set with positive 2-capacity and let (K;)es>0
be a family of compact convex sets with positive 2-capacity such that K. — K in the
Hausdorff distance, as ¢ — 0. Letting u. and u be the capacitary functions of K.
and K respectively, we have that u. converges uniformly on RN to u ase — 0. As a
consequence, we have that the sequence Co(K.) converges to Co(K), and that the sets
{us > s} converge to {u > s} for any s > 0, with respect to the Hausdorff distance.



Proof. We only prove that u. — u uniformly as € — 0 since this immediately implies
the other claims. Let Q. = K U K,. Since u. —u is a harmonic function on RV \ Q., we
have that

sup |ue — ul < sup |ue — u| < max {1 —minwu, 1 — minus} . (8)
RN\ Q. 00, 00 o0

€

Moreover, by Hausdorff convergence, we know that there exists a sequence (7). in-
finitesimal as € — 0 such that K. C K + B,_, where B(r) indicates the ball of radius r
centred at the origin. Thus

min < min u, min u. ¢ > min min  w, min  uc p. (9)
o9 Q K+B(2re) ~ Ke+B(2re)

€ €

Since the right-hand side of (9) converges to 1 as ¢ — 0, from (8) we obtain

lim sup |ue —u| =0,
e=0RN\Q,

which gives the thesis. O

Remark 2.2. Notice that a compact convex set has positive 2-capacity if and only if
its HN~1-measure is non-zero (see [13]).

Proof of Theorem 1.1. We start by proving claim (7). Let us consider the problem

—A(Lt)U(x,t) =0 in RN X (0, OO)
U(z,0)=1 re K (10)
Up(z,0) =0 inzeRY\ K

hm\(:c,t)|—>oo U(J,‘, t) =0.

By Theorem 1.2 we have that U(xz,0) = u(z) for every 2 € R™. Notice also that, for
any ¢ € R, we have

{u>c}={(z,t) : U(z,t) > c} N{t =0}

which entails that is u is level set convex, provided that U is level set convex. In order
to prove this we introduce the problem

ApV(z,t)=0 in RV*1\ K
V=1 reK (11)
hm|($,t)|_)oo V(x, t) =0

whose solution is given by the capacitary function of the set K in RNT! that is, the
function which achieves the minimum in Problem (5).



Since K is symmetric with respect to the hyperplane {¢ = 0} (where it is contained),
it follows, for instance by applying a suitable version of the Pélya-Szego inequality for the
Steiner symmetrization (see for instance [2, 4]), that V' is symmetric as well with respect
to the same hyperplane. In particular we have that 9,V (z,0) = 0 for all = € RN \ K.
This implies that V(x,t) = U(z,t) for every ¢ > 0. To conclude the proof, we are left to
check that V is level set convex. To prove this we recall that the capacitary function of
a convex body is level set convex, as proved in [9]. Moreover, by Lemma 2.1 applied to
the sequence of convex bodies K. = K + B(e) we get that V' is level set convex as well.
This concludes the proof of (i).

To prove (ii) we start by noticing that the 1-Riesz capacity is a (N —1)-homogeneous
functional, hence inequality (7) can be equivalently stated (see for instance [1]) by
requiring that, for any couple of convex sets Ky and K; and for any A € [0,1], the
inequality

Capy (K + (1 — A)Ko) > min{ Cap, (Ko), Capy (K1)} (12)

holds true.
We divide the proof of (12) into two steps.

Step 1.
We characterize the 1-Riesz capacity of a convex set K as the behaviour at infinity of
the solution of the following PDE

(—=A) v =0 in RN\ K
vg =1 in K
iy, oo 2|V 1ok (2) = Capy (K)

We recall that, if px is the optimal measure for the minimum problem in (2), then the

function A (v)
- i (y
vie) = /RN |z —y[N-1

is harmonic on RY \ K and is constantly equal to I1(K) on K (see for instance [15]).
Moreover the optimal measure pf is supported on K, so that |z|Vtv(z) — pr(K) =1
as |x| — oco. The claim follows by letting vk = v/I1(K).

Step 2.
Let Ky = AK1 + (1 — A\) Ky and vy = vg,. We want to prove that

vx(z) > min{vo(x),v1(z)}

for any € RV. To this aim we introduce the auxiliary function

Ox(z) = sup { min{vo(zo), v1(z1)} : z = Az + (1 — N)zo },



and we notice that Step 2 follows if we show that vy, > v). An equivalent formulation
of this statement is to require that for any s > 0 we have

{vx > s} C{vy > s}. (13)
A direct consequence of the definition of vy is that
{vx > s} = Mo > s} + (1 — A){vo > s}.
For all A € [0, 1], we let V) be the harmonic extension of vy on RY x [0, 00), which solves

—A(xvt)V)\(:E,t) =0 in RV x (0, 00)
Va(z,0) = vy () in RY x {0} (14)
lim) (3 )| —oo Va(®, 1) = 0.

Notice that V) is the capacitary function of Ky in RV*! restricted to RV x [0, +00).
Letting H = {(z,t) € RN x R: ¢t =0}, for any A € [0,1] and s € R we have

{Va> s} N H = {vy > s}.
Letting also

Va(w,t) = sup{min{Vo(z0, o), Vi(w1, 1)} : (z,1) = A(w1, t1) + (1 = M)(wo, t0)},  (15)
as above we have that
(Va > s} = MVi > s} + (1= \{Vp > s}

By applying again Lemma 2.1 to the sequences K§ = Ko + B(¢) and K5 = K; + B(e),
we get that the corresponding capacitary functions, denoted respectively as Vij and V7,
converge uniformly to Vy and Vi in RY, and that 17/\5, defined as in (15), converges
uniformly to Vy on RN x [0, +00).

Since Vf(x,t) < Vi(xz,t) for any (2,t) € RN x [0,400), as shown in [9, pages
474 — 476], we have that V) (z,t) < Vi(z,t). As a consequence, we get

(on>sy={V>s}NHD{Vy>s)NH= )\{V1>s}+(1—)\){Vo>s}]ﬂH
DAMWVi>snH+ (1 =M{Vo>stNH=XMuvy >s}+(1—N{v > s}

for any s > 0, which is the claim of Step 2.
We conclude by observing that inequality (12) follows immediately, by putting to-
gether Step 1 and Step 2. This concludes the proof of (i7), and of the theorem. ]

Remark 2.3. The equality case in the Brunn-Minkowski inequality (7) is not easy to
address by means of our techniques. The problem is not immediate even in the case of
the 2-capacity, for which it has been studied in [6, 9].



3 Applications and open problems

In this section we state a corollary of Theorem 1.1. To do this we introduce some
tools which arise in the study of convex bodies. The support function of a convex body
K c RY is defined on the unit sphere centred at the origin 9B(1) as
hK(V) = Sup <fL‘, V>‘
r€0K
The mean width of a convex body K is
2 / N-1
=——— hig(v)dH" " (v).
HN=Y(IB(1)) Jonn)

We refer to [20] for a complete reference on the subject. We observe that, if N = 2,
then M (K) coincides up to a constant with the perimeter P(K) of K (see [3]).
We denote by Ky the set of convex bodies of RY and we set

’CN,c = {K S ,CN, M(K) = C}.
The following result has been proved in [3].

M(K)

Theorem 3.1. Let F': Ky — [0,00) be a g-homogeneous functional which satisfies the
Brunn-Minkowski inequality, that is, such that F(K + L)Y/ > F(K)'9 + F(L)'/4 for
any K, L € Kx. Then the ball is the unique solution of the problem
- M(K)

min ———.

Keky F11(K)
An immediate consequence of Theorem 3.1, Theorem 1.1 and Definition 4 is the following
result.

(16)

Corollary 3.2. The minimum of Iy on the set Ky . is achieved by the ball of mean width
c. In particular, if N = 2, the ball of radius r solves the isoperimetric type problem
min L(K). (17)
KeKy,P(K)=27r
Motivated by Theorem 1.1 and Corollary 3.2 we conclude the paper with the follow-
ing conjecture:

Conjecture 3.3. For any N > 2 and « € (0, N), the a-Riesz capacity Cap, (K) satisfies
the following Brunn-Minkowski inequality:
for any couple of convex bodies Ky and K and for any A € [0,1] we have

Cap, (AK1 + (1 — \)Ko) ¥ > ACap, (K1) ™= + (1 — \)Cap,(Ko)¥=.  (18)

In particular, for any a € (0,2) the ball of radius r is the unique solution of the isoperi-
metric type problem

i I, (K). 19
P N LY (19)
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