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Abstract
We prove that that the 1-Riesz capacity satisfies a Brunn-Minkowski inequality, and
that the capacitary function of the 1/2-Laplacian is level set convex.
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1 Introduction

In this paper we consider the following problem
(−∆)su = 0 on RN \K
u = 1 on K
lim|x|→+∞ u(x) = 0

(1)

where N ≥ 2, s ∈ (0, N/2), and (−∆)s stands for the s-fractional Laplacian, defined
as the unique pseudo-differential operator (−∆)s : S 7→ L2(RN ), being S the Schwartz
space of functions with fast decay to 0 at infinity, such that

F(−∆)sf = |ξ|2sF(f)(ξ),

where F denotes the Fourier transform. We refer to the guide [12, Section 3] for more
details on the subject. A quantity strictly related to Problem (1) is the so-called Riesz
potential energy of a set E, defined as

Iα(E) = inf
µ(E)=1

∫
RN×RN

dµ(x) dµ(y)
|x− y|N−α

α ∈ (0, N). (2)
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It is possible to prove (see [18]) that if E is a compact set, then the infimum in the
definition of Iα(E) is achieved by a Radon measure µ supported on the boundary of E
if α ≥ 2, and with support equal to E if α ∈ (0, 2). If µ is the optimal measure for the
set E, we define the Riesz potential of E as

v(x) =
∫

RN

dµ(y)
|x− y|N−α

, (3)

so that
Iα(E) =

∫
RN

v(x)dµ(x).

It is not difficult to check (see [18, 15]) that the potential v satisfies

(−∆)
α
2 v = c(α,N)µ,

where c(α,N) is a positive constant, and that v = Iα(E) on E. In particular, if s = α/2,
then vK = v/I2s(K) is the unique solution of Problem (1).

Following [18], we define the α-Riesz capacity of a set E as

Capα(E) :=
1

Iα(E)
. (4)

We point out that this is not the only concept of capacity present in literature. Indeed,
another one is given by the 2-capacity of a set E, defined by

C2(E) = min
{∫

RN
|∇ϕ|2 : ϕ ∈ C1(RN , [0, 1]), ϕ ≥ χE

}
(5)

where χA is the characteristic function of the set A. It is possible to prove that, if E is
a compact set, then the minimum in (5) is achieved by a function u satisfying

∆u = 0 on RN \ E
u = 1 on E
lim|x|→+∞ u(x) = 0.

(6)

It is worth stressing that the 2-capacity and the α-Riesz capacity share several properties,
and coincide if α = 2. We refer the reader to [19, Chapter 8] for a discussion of this
topic.

In a series of works (see for instance [5, 10, 17] and the monography [16]) it has
been proved that the solutions of (6) are level set convex provided E is a convex body,
that is, a compact convex set with non-empty interior. Moreover, in [1] (and later in
[9] in a more general setting and in [8] for the logarithmic capacity in 2 dimensions) it
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has been proved that the 2-capacity satisfies a suitable version of the Brunn-Minkowski
inequality: given two convex bodies K0 and K1 in RN , for any λ ∈ [0, 1] it holds

C2(λK1 + (1− λ)K0)
1

N−2 ≥ λ C2(K1)
1

N−2 + (1− λ) C2(K0)
1

N−2 .

We refer to [20, 14] for a comprehensive survey on the Brunn-Minkowski inequality.
The main purpose of this paper is to show the analogous of these results in the

fractional setting α = 1, that is, s = 1/2 in Problem (1). More precisely, we shall prove
the following result.

Theorem 1.1. Let K ⊂ RN be a convex body and let u be the solution of Problem (1)
with s = 1/2. Then

(i) u is level set convex, that is, for every c ∈ R the set {u > c} is convex;

(ii) the 1-Riesz capacity Cap1(K) satisfies the following Brunn-Minkowski inequality:
for any couple of convex bodies K0 and K1 and for any λ ∈ [0, 1] we have

Cap1(λK1 + (1− λ)K0)
1

N−1 ≥ λCap1(K1)
1

N−1 + (1− λ)Cap1(K0)
1

N−1 . (7)

The proof of the Theorem 1.1 will be given in Section 2, and relies on the results in
[11, 9], and on the following theorem due to L. Caffarelli and L. Silvestre.

Theorem 1.2 ([7]). Let f : RN → R be a measurable function and let U : RN × [0,+∞)
be the solution of

∆(x,t)U(x, t) = 0, on RN × (0,+∞) U(x, 0) = f(x).

Then, for any x ∈ RN there holds

lim
t→0+

∂tU(x, t) = (−∆)sf(x).

Eventually, in Section 3 we provide an application of Theorem 1.1 and we state some
open problems.

2 Proof of the main result

This section is devoted to the proof of Theorem 1.1.

Lemma 2.1. Let K be a compact convex set with positive 2-capacity and let (Kε)ε>0

be a family of compact convex sets with positive 2-capacity such that Kε → K in the
Hausdorff distance, as ε → 0. Letting uε and u be the capacitary functions of Kε

and K respectively, we have that uε converges uniformly on RN to u as ε → 0. As a
consequence, we have that the sequence C2(Kε) converges to C2(K), and that the sets
{uε > s} converge to {u > s} for any s > 0, with respect to the Hausdorff distance.
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Proof. We only prove that uε → u uniformly as ε → 0 since this immediately implies
the other claims. Let Ωε = K ∪Kε. Since uε− u is a harmonic function on RN \Ωε, we
have that

sup
RN\Ωε

|uε − u| ≤ sup
∂Ωε

|uε − u| ≤ max
{

1−min
∂Ωε

u, 1−min
∂Ωε

uε

}
. (8)

Moreover, by Hausdorff convergence, we know that there exists a sequence (rε)ε in-
finitesimal as ε→ 0 such that Kε ⊂ K +Brε , where B(r) indicates the ball of radius r
centred at the origin. Thus

min
{

min
∂Ωε

u,min
∂Ωε

uε

}
≥ min

{
min

K+B(2rε)
u, min

Kε+B(2rε)
uε

}
. (9)

Since the right-hand side of (9) converges to 1 as ε→ 0, from (8) we obtain

lim
ε→0

sup
RN\Ωε

|uε − u| = 0,

which gives the thesis.

Remark 2.2. Notice that a compact convex set has positive 2-capacity if and only if
its HN−1-measure is non-zero (see [13]).

Proof of Theorem 1.1. We start by proving claim (i). Let us consider the problem
−∆(x,t)U(x, t) = 0 in RN × (0,∞)
U(x, 0) = 1 x ∈ K
Ut(x, 0) = 0 in x ∈ RN \K
lim|(x,t)|→∞ U(x, t) = 0.

(10)

By Theorem 1.2 we have that U(x, 0) = u(x) for every x ∈ RN . Notice also that, for
any c ∈ R, we have

{u ≥ c} = {(x, t) : U(x, t) ≥ c} ∩ {t = 0}

which entails that is u is level set convex, provided that U is level set convex. In order
to prove this we introduce the problem

∆(x,t)V (x, t) = 0 in RN+1 \K
V = 1 x ∈ K
lim|(x,t)|→∞ V (x, t) = 0

(11)

whose solution is given by the capacitary function of the set K in RN+1, that is, the
function which achieves the minimum in Problem (5).
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Since K is symmetric with respect to the hyperplane {t = 0} (where it is contained),
it follows, for instance by applying a suitable version of the Pólya-Szegö inequality for the
Steiner symmetrization (see for instance [2, 4]), that V is symmetric as well with respect
to the same hyperplane. In particular we have that ∂tV (x, 0) = 0 for all x ∈ RN \K.
This implies that V (x, t) = U(x, t) for every t ≥ 0. To conclude the proof, we are left to
check that V is level set convex. To prove this we recall that the capacitary function of
a convex body is level set convex, as proved in [9]. Moreover, by Lemma 2.1 applied to
the sequence of convex bodies Kε = K +B(ε) we get that V is level set convex as well.
This concludes the proof of (i).

To prove (ii) we start by noticing that the 1-Riesz capacity is a (N−1)-homogeneous
functional, hence inequality (7) can be equivalently stated (see for instance [1]) by
requiring that, for any couple of convex sets K0 and K1 and for any λ ∈ [0, 1], the
inequality

Cap1(λK1 + (1− λ)K0) ≥ min{Cap1(K0),Cap1(K1)} (12)

holds true.
We divide the proof of (12) into two steps.

Step 1.
We characterize the 1-Riesz capacity of a convex set K as the behaviour at infinity of
the solution of the following PDE

(−∆)1/2vK = 0 in RN \K
vK = 1 in K
lim|x|→∞ |x|N−1vK(x) = Cap1(K)

We recall that, if µK is the optimal measure for the minimum problem in (2), then the
function

v(x) =
∫

RN

dµK(y)
|x− y|N−1

is harmonic on RN \K and is constantly equal to I1(K) on K (see for instance [15]).
Moreover the optimal measure µK is supported on K, so that |x|N−1v(x)→ µK(K) = 1
as |x| → ∞. The claim follows by letting vK = v/I1(K).

Step 2.
Let Kλ = λK1 + (1− λ)K0 and vλ = vKλ . We want to prove that

vλ(x) ≥ min{v0(x), v1(x)}

for any x ∈ RN . To this aim we introduce the auxiliary function

ṽλ(x) = sup
{

min{v0(x0), v1(x1)} : x = λx1 + (1− λ)x0

}
,
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and we notice that Step 2 follows if we show that vλ ≥ ṽλ. An equivalent formulation
of this statement is to require that for any s > 0 we have

{ṽλ > s} ⊆ {vλ > s}. (13)

A direct consequence of the definition of ṽλ is that

{ṽλ > s} = λ{v1 > s}+ (1− λ){v0 > s}.

For all λ ∈ [0, 1], we let Vλ be the harmonic extension of vλ on RN × [0,∞), which solves
−∆(x,t)Vλ(x, t) = 0 in RN × (0,∞)
Vλ(x, 0) = vλ(x) in RN × {0}
lim|(x,t)|→∞ Vλ(x, t) = 0.

(14)

Notice that Vλ is the capacitary function of Kλ in RN+1, restricted to RN × [0,+∞).
Letting H = {(x, t) ∈ RN × R : t = 0}, for any λ ∈ [0, 1] and s ∈ R we have

{Vλ > s} ∩H = {vλ > s}.

Letting also

Ṽλ(x, t) = sup{min{V0(x0, t0), V1(x1, t1)} : (x, t) = λ(x1, t1) + (1− λ)(x0, t0)}, (15)

as above we have that

{Ṽλ > s} = λ{V1 > s}+ (1− λ){V0 > s}.

By applying again Lemma 2.1 to the sequences Kε
0 = K0 +B(ε) and Kε

1 = K1 +B(ε),
we get that the corresponding capacitary functions, denoted respectively as V ε

0 and V ε
1 ,

converge uniformly to V0 and V1 in RN , and that Ṽ ε
λ , defined as in (15), converges

uniformly to Ṽλ on RN × [0,+∞).
Since Ṽ ε

λ (x, t) ≤ V ε
λ (x, t) for any (x, t) ∈ RN × [0,+∞), as shown in [9, pages

474− 476], we have that Ṽλ(x, t) ≤ Vλ(x, t). As a consequence, we get

{vλ > s} = {Vλ > s} ∩H ⊇ {Ṽλ > s} ∩H =
[
λ{V1 > s}+ (1− λ){V0 > s}

]
∩H

⊇ λ{V1 > s} ∩H + (1− λ){V0 > s} ∩H = λ{v1 > s}+ (1− λ){v0 > s}

for any s > 0, which is the claim of Step 2.
We conclude by observing that inequality (12) follows immediately, by putting to-

gether Step 1 and Step 2. This concludes the proof of (ii), and of the theorem.

Remark 2.3. The equality case in the Brunn-Minkowski inequality (7) is not easy to
address by means of our techniques. The problem is not immediate even in the case of
the 2-capacity, for which it has been studied in [6, 9].

6



3 Applications and open problems

In this section we state a corollary of Theorem 1.1. To do this we introduce some
tools which arise in the study of convex bodies. The support function of a convex body
K ⊂ RN is defined on the unit sphere centred at the origin ∂B(1) as

hK(ν) = sup
x∈∂K

〈x, ν〉.

The mean width of a convex body K is

M(K) =
2

HN−1(∂B(1))

∫
∂B(1)

hK(ν) dHN−1(ν).

We refer to [20] for a complete reference on the subject. We observe that, if N = 2,
then M(K) coincides up to a constant with the perimeter P (K) of K (see [3]).

We denote by KN the set of convex bodies of RN and we set

KN,c = {K ∈ KN , M(K) = c}.

The following result has been proved in [3].

Theorem 3.1. Let F : KN → [0,∞) be a q-homogeneous functional which satisfies the
Brunn-Minkowski inequality, that is, such that F (K + L)1/q ≥ F (K)1/q + F (L)1/q for
any K,L ∈ KN . Then the ball is the unique solution of the problem

min
K∈KN

M(K)
F 1/q(K)

. (16)

An immediate consequence of Theorem 3.1, Theorem 1.1 and Definition 4 is the following
result.

Corollary 3.2. The minimum of I1 on the set KN,c is achieved by the ball of mean width
c. In particular, if N = 2, the ball of radius r solves the isoperimetric type problem

min
K∈K2,P (K)=2πr

I1(K). (17)

Motivated by Theorem 1.1 and Corollary 3.2 we conclude the paper with the follow-
ing conjecture:

Conjecture 3.3. For any N ≥ 2 and α ∈ (0, N), the α-Riesz capacity Capα(K) satisfies
the following Brunn-Minkowski inequality:
for any couple of convex bodies K0 and K1 and for any λ ∈ [0, 1] we have

Capα(λK1 + (1− λ)K0)
1

N−α ≥ λCapα(K1)
1

N−α + (1− λ)Capα(K0)
1

N−α . (18)

In particular, for any α ∈ (0, 2) the ball of radius r is the unique solution of the isoperi-
metric type problem

min
K∈K2,P (K)=2πr

Iα(K). (19)
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[3] D. Bucur, I. Fragalà, J. Lamboley: Optimal convex shapes for concave func-
tionals, ESAIM Control Optim. Calc. Var., 18 (2012), 693–711.

[4] A. Burchard: Steiner symmetrization is continuous in W 1,p, Geom. Funct. Anal.,
7 (1997), 823–860.

[5] L.A. Caffarelli, J. Spruck: Convexity of Solutions to Some Classical Varia-
tional Problems, Comm. P.D.E., 7 (1982), 1337–1379.

[6] L.A. Caffarelli, D. Jerison, E.H. Lieb: On the Case of Equality in the Brunn–
Minkowski Inequality for Capacity, Adv. Math., 117 (1996), 193–207.

[7] L.A. Caffarelli, L. Silvestre: An extension problem related to the fractional
Laplacian, Comm. Partial Differential Equations, 32 (2007), 1245–1260.

[8] A. Colesanti, P. Cuoghi: The BrunnMinkowski Inequality for the n-dimensional
Logarithmic Capacity of Convex Bodies, Potential Anal., 22 (2005), 289–304.

[9] A. Colesanti, P. Salani: The Brunn-Minkowski inequality for p-capacity of
convex bodies, Math. Ann., 327 (2003), 459–479.

[10] A. Colesanti, P. Salani Quasi-concave Envelope of a Function and Convexity
of Level Sets of Solutions to Elliptic Equations, Math. Nach., 258 (2003), 3–15.

[11] P. Cuoghi, P. Salani: Convexity of level sets for solutions to nonlinear elliptic
problems in convex rings, Electr. J. Differential Equations, 124 (2006), 1–12.

[12] E. Di Nezza, G. Palatucci, E. Valdinoci Hitchhikers guide to the fractional
Sobolev spaces, Bull. Sci. Math., 136 (2012), 521–573.

8



[13] L.C. Evans, R.F. Gariepy: Measure theory and fine properties of functions,
Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1992.

[14] R. Gardner: The Brunn-Minkowski inequality, Bull. Amer. Math. Soc., 353
(2002), 355–405.

[15] M. Goldman, M. Novaga, B. Ruffini: Existence and stability for a non-
local isoperimetric model of charged liquid drops, Preprint (2013), available at
http://cvgmt.sns.it/paper/2267/

[16] B. Kawohl: Rearrangements and Convexity of Level Sets in P.D.E., Lecture Notes
in Mathematics, 1150, Springer, Berlin, 1985.

[17] N. Korevaar, Convexity of Level Sets for Solutions to Elliptic Ring Problems,
Comm. Partial Differential Equations, 15 (1990), 541–556.

[18] N.S. Landkof: Foundations of Modern Potential Theory, Springer-Verlag, Hei-
delberg 1972.

[19] E.H. Lieb, M. Loss: Analysis, Graduate Studies in Mathematics, AMS, 2000.

[20] R. Schneider: Convex bodies: the Brunn-Minkowski theory, Cambridge Univ.
Press, 1993.

9


