SINGULARITIES OF THE NETWORK FLOW WITH SYMMETRIC
INITIAL DATA

MATTEO NOVAGA AND LUCIANO SCIARAFFIA

ABsTRACT. We study the formation of singularities for the curvature flow of
networks when the initial data is symmetric with respect to a pair of perpendicular
axes and has two triple junctions. We show that, in this case, the set of singular
times is finite.
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1. INTRODUCTION

The Mean Curvature Flow is one of the best studied geometric evolution equations,
in particular its one-dimensional version, often called the Curve Shortening Flow.
This last flow is completely understood thanks to the works of Gage—Hamilton and
Grayson |GH86, Gra87|: a closed, embedded curve in the plane becomes convex in
finite time and then shrinks to a round point. A natural and interesting generalisation
of this flow is the Network Flow, also known as Multiphase Mean Curvature Flow
in higher dimensions, where instead of considering a single curve the underlying
geometric object is a regular network, that is, a finite union of embedded curves
which can meet only at their endpoints, and at each multiple junction only three
curves meet forming equal angles of 27 /3 (more precise definitions will be provided
in Section 2). This last condition, called after Herring, arises naturally because of the
variational structure of the flow, since these triple junctions minimise length locally.

The network flow has been thoroughly studied, although a complete understand-
ing as in the case of a single curve is far from being achieved. One of the first
results in this line comes from Bronsard-Reitich [BR93|, where they showed short
time existence for the flow of triods, i.e. networks consisting of three curves and one
triple junction, and with Neumann boundary conditions. Subsequently, the works
of Mantegazza—Novaga—Tortorelli [MNTO04| and later Magni-Mantegazza—Novaga
[MMN16] studied the singularity formation under the flow, with Dirichlet bound-
ary conditions, stating in which cases the flow exists for all times and reaches in the
limit the Steiner tree spanned by the three endpoints.

More recently, in [GMP23, MNPS18| a general proof of existence of a solution to
the network flow with regular initial data was given. It was also shown that the flow
can be extended to a maximal existence time at which, if finite, a singularity forms:
either the L?-norm of the curvature blows-up, or the length of one of the curves
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goes to zero. Moreover, as in the case of the curve shortening flow, there holds a
geometric uniqueness: every other solution starting at the same initial network is
just a reparametrisation of the flow. Thus, to give a complete description of the flow,
it becomes crucial to understand and classify the singularities that can arise.

In contrast to what happens in the case of a single curve, it could be possible
during the network flow that the length of one or more curves goes to zero while
the curvature of the network remains bounded. This kind of phenomenon is often
called a type-0 singularity, and allows the flow to approach an irregular network
with junctions of multiplicity greater than three. Because of this, it becomes a
compelling question to understand if it is possible to start a regular flow when the
initial network fails to satisfy the Herring condition. It turns out that, thanks to
the results of [INS19, LMPS21], such an irregular network can serve as initial data
for a regular flow, enabling is continuation beyond some singularities, albeit not in
a unique way. Such flows are constructed by locally replacing an irregular junction
by one of the self-similar, tree-like expanding solitons obtained in [MS11] according
to the number of curves concurring at said junction. In this way, new edges might
“emerge” flowing out of the junction, and the nonuniqueness of the continuation
is directly tied to the nonuniqueness of the expanders. In any case, the number of
possible geometric solutions is classified by the number of expanders at each irregular
junction [LMPS21, Cor. 8.7|. Thanks to these findings, it becomes possible to
continue the flow past a type-0 singularity. We remark that it could also be possible
to restart the flow in other potential scenarios where the curvature does blow-up,
but these are not within the scope of this discussion. The interested reader might
see the discussion present in [MNPS18, Sec. 10.4].

Much of the analysis of singularities can be done conditional to the so-called
multiplicity-one conjecture, which states that every limit of parabolic rescalings of
the flow around a fixed point is a flow of embedded networks with multiplicity one.
Indeed, Mantegazza—Novaga—Pluda [MNP22| showed, conditionally to this state-
ment, that if there are no loops in the initial network, or in other words, the initial
datum is a tree, then only type-0 singularities can occur. Hence, in the case of trees
the flow could in principle be continued indefinitely.

It turns out that the multiplicity-one conjecture is true for networks with at most
two triple junctions, as it was shown in [MNP17]. As a result, a complete description
of the possible singularities was obtained in this case. In particular, if no loop
disappears at a singular time, there is only one sensible way to continue the flow,
which the authors call the standard transition (cf. [LMPS21, Cor. 8.8]). This
situation arises when the two triple junctions coalesce into a single point, forming
a quadruple junction with equal opposing angles of 7/3 and 27/3. However, the
previous results only give a short time existence with no uniform control over the
lifespan of the flow, which makes it difficult to rule out the possible accumulation of
singular times. This is the only question remaining to be answered to give a complete
description and a global time existence theorem in this case.

In this note we address this problem in the case of networks with two triple
junctions which are symmetric to a pair of perpendicular axes. We will refer to
this class of networks simply as symmetric. With this condition, there are only
four possible cases: the tree, the lens, the O-network, and the eyeglasses, which are
illustrated in Figure 1.

Before stating our main result, we mention that the case of the lens has already
been studied and settled in a slightly more general case in [BN11,SAGT11]. In
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FIGURE 1. The four types of symmetric networks with two triple
junctions: the tree, the lens, the 0-network, and the eyeglasses.

complete analogy with [GH86, Gra87], it is proved that a (non-compact) lens shaped
network which is symmetric with respect to one axis eventually becomes convex
and approaches a straight line in finite time, as the enclosed region desappears and
the curvature blows-up. The following theorem gives a complete description in the
remaining cases.

Theorem 1.1. Let I'y be a symmetric reqular network with two triple junctions.
Then there is a maximal time T > 0 and a unique network flow {I'(t)}o<t<T with
initial data T, such that the set of its singular times is a finite subset of (0,T], in
particular there is no accumulation of singularities. Moreover:

e if Ty is a tree, then T = oo (global existence) and lim;_,o, I'(t) is either a
(standard) cross or a Steiner tree;

e otherwise T < oo, I'(t) becomes eyeglasses-shaped after the last type-0 singu-
larity, and the curvature blows up as the enclosed regions vanish with t T T .

Remark 1.2. In the case of a tree, we cannot rule out a singularity at infinity, as
the example in [PP23, Thm. 6.1] shows. There the authors construct a globally
defined flow which stays regular for every time and converges to a cross in infinite
time.

Let us briefly describe what are the dynamics in this situation. Since the initial
datum is symmetric, it is easy to see that the evolution also stays symmetric until
the first singularity forms. If we encounter a type-0 singularity, i.e. the length of one
of the curves goes to zero and the curvature of the network remains bounded, then
again by symmetry the vanishing curve must be the straight edge passing through the
origin. In this way, the two triple junctions collide, and we can the apply the results
in [INS19, Thm. 1.1] and [LMPS21, Thm. 1.1] to restart the flow (cf. [MNP17, Thm.
6.1]). Since there is a unique self-similar expanding soliton flowing out a standard
cross, and it has the same symmetries as the cross [MS11, Prp. 2.2|, we may conclude
that the evolution remains symmetric as before. A tree transitions to a tree, and
a f-network transitions to eyeglasses and vice-versa. This process can continue as
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long as the curvature remains bounded, and as stated, this can only happen a finite
number of times, so any oscillatory behaviour is excluded.

The proof of Theorem 1.1 relies on a result by Angenent [Ang91c, Thm 1.3], which
we present as Proposition 2.7, adapted to this singular case. Its proof is grounded in
the Sturmian theorem, as stated by Angenent [Ang91b, Thm. 2.1] (cf. [Ang88, Thms.
C and DJ). In essence, this theorem asserts that if u € C*°(Qr) is a solution to a
linear parabolic equation in Q7 :=[0,1] x [0, 7], and if u(z,t) #0 for all 0 <¢ < T
and z = 0,1, then at any time ¢ € (0,7], the number of zeroes of u(-,t) will be
finite. Furthermore, this number decreases as a function of ¢ and strictly decreases
whenever u(-, t) has a multiple zero. For additional applications, we refer to [Ang91],
and for a detailed proof, the reader may consult [Ang88].

Although we are dealing with a very special case of the network flow, it is reason-
able to believe that Theorem 1.1 holds true in general for tree-like networks, with
appropriate modifications.

Conjecture 1.3. The number of singular times during the evolution of a tree is
finite. If no boundary curve disappears during the evolution, then the flow exists for
all positive times and converges to a (possibly degenerate) minimal network.

The plan of the paper is the following: in Section 2 we introduce the notion of
network and network flow, and we recall some preliminary results on existence and
uniqueness of solutions. In Section 3 we prove our main result on the singularities
of the flow of symmetric networks with two triple junctions. Finally, in Section 4 we
extend the result to the flow of symmetric networks on the 2-sphere.

2. NOTATION AND PRELIMINARY RESULTS

Before proceeding to the proof of Theorem 1.1, we shall first establish our notation,
present the necessary definitions, and recapitulate the essential results.

Let 7 : [0,1] — R? be a regular C? curve, meaning that v'(x) # 0 for all z € [0, 1].
We denote its unit tangent as 7(x) := 7/(x)/|7/(x)| and its unit normal as v, such
that {7, v} is a positive basis of R?. The curvature of v with respect to v is denoted
as k. Occasionally, we may use superscript indices to label curves, and when we do,
we will also label their tangents, normals, and curvatures accordingly.

Definition 2.1 (Network). A network T' is a finite union of embedded, regular
curves {v/ ?:1 of class C?, called edges, that meet only at their endpoints and
nontangentially, and such that the union of their images [J;_, 77([0,1]) is a connected
set. A network I' is said to be regular when its edges intersect solely at triple
junctions, at which their interior tangents form equal angles of 27 /3. The endpoints
of curves that are not shared by other curves are referred to as endpoints of the
network.

Note that the regularity condition at triple junctions can be stated as follows: if
three curves /¢ (k = 1,2, 3) intersect at, say, z = 0, then
1(0) + 772(0) + 773(0) = 0.
Definition 2.2 (Network flow). Let T'(t) = {77(-,t) 71, with t € (a,b), be one-
parameter family of regular networks, with fixed endpoints p',...,p", and time-

dependent triple junctions o'(t),...,0%(t). Then {I'(t)}4<t<p is said to be a solution
to the network flow if at every time t € (a,b), with possible curve relabelling, the
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following system is satisfied:
(O (x,1), 7 (2, 1)) = K (x,t), z€[0,1], j=1,...,n,
(2.1) ’yk(l,t):pk, k=1,...,r,
o4l ol =g at the triple junction ol(t)7 l=1,...,s.

We now state a version of short time existence for the network flow that suits our
needs.

Proposition 2.3 (Cf. [GMP23, Thms. 1.1-2|). Let I'y be a regular network. Then
there exists a smooth solution {I'(t)}o<t<T, unique up to reparametrisations, to the
network flow (2.1) starting at Ty and fizing its endpoints. Moreover, the flow can be
extended to a maximal time T > 0, at which at least one of the following scenarios

unfolds:
o T = oo;
e the inferior limit as t T T of the length of one of the edges of T'(t) is zero;
e the superior limit as t T T of the L?>-norm of the curvature of I'(t) is infinite.

Proposition 2.3 allows us to initiate the flow from any regular data and extend
it to a maximal time while ensuring the flow remains smooth. Nevertheless, in the
specific case we address here, where the initial network possesses only two triple
junctions, we can provide additional insights.

Proposition 2.4 (Cf. [MNP17, Thm. 1.1]). Let Ty be a reqular network with exactly
two triple junctions, and let {I'(t)}o<t<T be the mazimal smooth flow starting at I'y.
Suppose also that T is finite and the length of no boundary edge goes to zero. Then,
as t T T, one of the following occurs:

e the length of a curve joining the triple junctions goes to zero while the cur-
vature remains bounded;

e the limit of the lengths of the curves composing a loop goes to zero and the
L?-norm of the curvature goes to infinity.

If the network Iy is a tree, then only the first situation happens.

As explained in the Introduction, when the first scenario in Proposition 2.4 occurs,
the flow approaches an irregular network with a single quadruple junction, resulting
in the development of a type-0 singularity. Nonetheless, a transition to a regular
flow is made possible by the following proposition.

Proposition 2.5 (Cf. |[LMPS21, Thm. 1.1, Prp. 8.5|). Let Ty be an irregular
network. Then there exists a solution {I'(t)}o<t<r to the network flow (2.1) such
that T'(t) converges in the Hausdorff distance to T'g as t | 0. Furthermore, all the
solutions, accounting for possible reparametrizations, can be classified by the self-
similar, tree-like expanding solitons described in [MS11| at each irregular junction.
In particular, if T consists of a single quadruple junction with angles w/3 and 2w /3,
and no other junctions are present, then the flow admits a unique solution.

While the convergence to the initial datum I’y can be understood in a much
stronger sense, as discussed in [LMPS21], for our purposes, local uniform convergence
suffices. In any case, it is worth noting that convergence remains smooth away from
the irregular junctions, provided that I'g itself is smooth.

Proposition 2.5 can be regarded as a restarting theorem after the formation of
an irregular network, as previously explained. Furthermore, since the flow remains
regular for positive times, we can employ Proposition 2.3 to extend it until the next
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singularity, if there is one. This leads us to the following definition, which is the
primary focus of our discussion here.

Definition 2.6 (Extended Network Flow). An extended network flow with initial
condition I'y is a one-parameter family of networks {I'(t)}o<i<7 that satisfies the
following conditions:

e there exists a finite number of times 0 =t < t; < --- < t;,, = T, such that

the restriction {I'(t)}+, <t<t),,, K =0,...,m — 1, is a regular network flow in
the sense of Definition 2.2;
e at each ty, k = 1,...,m — 1, a type-0 singularity forms, and we call these

singular times;
e I'(t) converges to I'(t;) in the Hausdorff distance as ¢ | tx.

Thus, another way then to rephrase Theorem 1.1 is that every solution to the
network flow in the sense of Definition 2.6 can be continued to a maximal extended
flow such that either T" = oo, or else T' < oo and the curvature increases without
bound as ¢t T 7.

We now present the main tool used for the proof of Theorem 1.1.

Proposition 2.7 (Cf. [Ang91c, Thm. 1.3]). Let v',~%:[0,1] x [0,T) — R? be two
solutions to the curve shortening flow, and suppose that for each (x,t) € [0,1] % [0,T)

Y0, 8), 71 (1,8) # (2, t)  and ¥*(0,),7*(1,t) # 7' (x, ).

Then the number of intersections of v'(-,t) and v2(-,1),

Z(t) = #{((131,332) S [07 1] X [07 1] :’Vl(xbt) = 72($27t)}7

is finite for every t € (0,T). Moreover, i(-) is a nonincreasing function of t, and
decreases exactly when v' and ¥? become tangent at some point.

We briefly remark that the presence of triple junctions is what makes it difficult
to apply Proposition 2.7 to a general, non-symmetric network.

3. PROOF OF THEOREM 1.1

We are now ready for the proof of our main result. Let I'g be a symmetric regular
network with two triple junctions, and let {I'(t)}o<t<7 be the evolution given by
Proposition 2.3. By our symmetry assumptions, from the system (2.1) it follows
that at each time ¢t € (0,7) the network I'(¢) is also symmetric with the same axes of
symmetry as I'g. Therefore, modulo a rotation and translation, the flow is completely
described by one single curve in the first quadrant of R?, where the coordinate axes
coincide with the symmetry axes of I'(t). Let v : [0,1] x [0,T) — R? be the evolution
of this defining curve, and call (z1,22) the rectangular coordinates of R%. After a
reparametrisation, we may further suppose that (0,¢) is the triple junction, which

lies in the z1-axis, and 7(0,t) = (3, @) is the unit tangent, which is constant. Thus,
we have the following boundary conditions for the curve evolution of v, according to

each case, if T'y:

e is a tree, then (1,¢) = p is a fixed point;

e is a f-network, then v(1,t) is a free point in the zg-axis such that 7(1,¢) =
(_17 0)7

e is eyeglasses, then v(1,t) is a free point in the xj-axis such that 7(1,¢) =
(07 _1)
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As a consequence of Proposition 2.4, the flow develops a type-0 singularity at T if
and only if limy7 v(0,¢) = (0,0).

Proof of Theorem 1.1. To fix ideas, let us suppose that the initial network I'g is a tree
with fixed endpoints. Suppose also that at a finite time 7" the flow develops a type-0
singularity. We can then apply Proposition 2.5 and extend the flow a little further
to a time 7 > 7. By symmetry, this can be viewed as extending the evolution of the
defining curve to a map - : [0,1] x [0, f) — R?, where the triple junction ~(0,t) is
in the wy-axis for times t € (T, T).

Now, consider a straight line ¢ through the origin, such that the endpoint p ¢ ¢
and the angle between the z1-axis and £ is in the range (g, 5). Note also that £ is a
static solution to the curve shortening flow. Define the function

i(t) = #{x €[0,1] : y(z,t) € £}, te(0,T).

We will show that i is finite and nonincreasing in time, and decreases strictly across
t="T.

Indeed, as long as the vertices of the network do not collide, i.e. as v(0,t) stays
away from the origin, we can invoke Proposition 2.7 to see that i(t) is not increasing
in time. On the other hand, ~(+,¢) converges smoothly to a curve v(-,T) as t 1 T,

such that v(0,7) = 0, and 7(0,T) = (3, ?) Therefore, there exist some small
g,6 > 0 such that (-, t) crosses £ in the rectangle [0, ] x [0, 2¢] at a single point, for
every t € (T'— 6,T]. Note that (-, T) intersects ¢ exactly at the origin, and besides
this point it lies completely above ¢. We will now show that, after we restart the
flow, (-, t) remains at a positive distance above ¢ in [0, €] x [0, 2¢] for a short time.

Because of the invariance under reparametrisations, we can locally represent the
evolution of v as a graph u(x,t) over the zy-axis, for (z,t) € [0,¢] x [T, T + 9), with
0 possibly smaller. The function w : [0,e] x [T, T + §) — R then satisfies the partial
differential equation

Ugy .
Ut:m mn [076] X (T,T+5)

with Cauchy-Neumann boundary conditions
u(@, T) = ur(z), us(0,) =1/V3, (2.t) €[0,e] x (T, T +9),

where ur : [0,e] — R is a function parametrising v(-, 7). If we consider the function
w(z,t) := u(z,t) — mx, with m € (%, V/3) being the tangent of the angle ¢ forms
with the zi-axis, then w solves

. Wry

1+ (we +m)?

which is strictly parabolic. Thanks to the estimate on the shortest curve of the flow
with singular initial data [INS19, Thm. 1.1], there is a positive constant ¢ such that

w(0,t) > eVt —T.

Furthermore, Proposition 2.5 implies that as ¢ approaches T from above, u(-,t)
uniformly converges to up. Therefore, for sufficiently small §, we have w(e, t) > 0 for
all t € [T, T+6). This, combined with the fact that w(z,T") > 0 for all z € [0, €] and
the application of the maximum principle, shows that w remains greater than zero
in [0,¢] x [T, T+ ), which means (-, t) remains above the line ¢ during this interval.
Hence, in a neighbourhood of the origin, the number of intersections between ~(-, t)
and { decreases by precisely one as t crosses T. Outside this neighbourhood, we

Wt
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FIGURE 2. The number of intersections with the diagonal (dashed
line) decreases by at least one through a standard transition.

can once again employ Proposition 2.7 for ¢ in the range (7,7 + §). This analysis
demonstrates that i(t) decreases by at least one over the interval (0,7 + §). For
illustration purposes, see Figure 2.

Due to our symmetry assumptions and our choice of the line ¢, after reflecting
with respect to the diagonal z1 = x5 we find ourselves back in the initial setup.
As a consequence, we can repeat the previous reasoning every time the two triple
junctions of I'(t) coalesce into the origin, and as i(t) cannot decrease indefinitely,
it must become constant for sufficiently large ¢ > 0, after which there are no more
type-0 singularities. We can thus obtain an extended network flow as in Definition
2.6.

The steps described above carry almost identically to the other types of networks,
with the only difference that we do not need to be concerned about avoiding any
particular point p because there are no external endpoints.

We conclude the proof by referencing once again Proposition 2.4, from which it
follows that the flow of a tree can be extended indefinitely. In contrast, for the 6-
network and the eyeglasses cases, there must exist a time at which the two bounded
regions collapse simultaneously, causing the L?-norm of the curvature to blow up.
This can only happen as an eyeglasses-shaped network, as there is no self-similar
shrinking #-network [BHM18].

Finally, in the case of a tree, there exists a sequence ¢, — oo such that I'(¢,)
converges in C1* N W?22 for every a € (0, %) to either a regular Steiner tree or a
standard cross. If it converges to a Steiner tree, we can apply [PP23, Thm. 1.2] to
establish the full smooth convergence of the flow as t — co. Otherwise, regardless of
the sequence of times, the limit is a standard cross. Thus, in this scenario as well,
we observe full and smooth convergence. U

4. EXTENSION TO THE 2-SPHERE

We conclude this note by extending Theorem 1.1 to the network flow on the sphere
S? instead of R?. Thanks to the theory developed in [Ang90, Ang91c]|, this extension
can be achieved almost effortlessly, albeit with a mild change in the flow’s behaviour
near the maximal time of existence. Since the outcome remains unchanged when
considering a tree-like initial configuration, we will focus on the case of the #-network
and eyeglasses. First, we state the analogous theorem, and then we explain how to
adapt the arguments presented in Section 3 to obtain the results.

Theorem 4.1. Let I'g be a symmetric, closed and reqular network with two triple
junctions on the sphere S?. Then there is a mazimal time T > 0 and a unique
network flow {I'(t) }o<i<r with initial data Tg, such that the set of its singular times
is a finite subset of (0,T), in particular there is no accumulation of singularities.
Moreover, either:
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o T =00 and limy_, I'(t) is a minimal 0-network;
e orT < co and the curvature blows up as one of the enclosed regions vanish
with t TT.

In this context, “symmetric” means symmetry with respect to a reflection across
two perpendicular great circles, which are the geodesics of S2.

It is worth noting that all the definitions presented in Section 2 straightforwardly
apply to this case, and all the propositions in that section remain valid.

Regarding the proof, the only change is that instead of counting intersections
with a straight line, we use a great circle passing through the centre of symmetry
of the network, making an angle greater than 7/6 but less than 7/3 with respect
to a chosen great circle of symmetry. The analogue of Proposition 2.7 asserts that
this number decreases during the evolution. Across a type-0 singularity, we again
represent the evolution locally as a graph over the chosen great circle using the
exponential map. The resulting equation for the evolution remains strictly parabolic,
and the application of the maximum principle yields the desired strict monotonicity.
We therefore conclude that the flow can be extended until the curvature becomes
unbounded as an enclosed region vanishes, or it can be extended indefinitely and
converges to a minimal network. In this case, the minimal network must be a 6-
network, as minimal eyeglasses or 8-figures do not exist on the 2-sphere. In particular,
infinity is excluded as a singular time.
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