Classification of the equilibria for the semi-discrete
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Abstract

We give a complete classification of the stability properties of the equilibria for the
semi-discrete one-dimensional Perona-Malik equation, with Dirichlet boundary condi-
tions. We also give the I'-expansion of the corresponding discretized functionals up to
the order two, as the discretization parameter goes to zero.
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1 Introduction

In this paper we are interested in the analysis of the nonconvex functional

Pu) = /1 b(uz) dx, (1.1)

where the smooth function ¢ is defined as

1
¢(p) = 5 IOg(]. +p2)a pe Ra

and I := (0,£) C R is an interval. Note that ¢ has sublinear growth at infinity, it is strictly convex
for |p| < 1 and strictly concave for |p| > 1. The formal gradient flow of F' was considered by Perona
and Malik in [19] for the study of certain problems in image segmentation [1], [20], [18] and turns out
to give the interesting forward-backward parabolic equation
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We refer to [8], [16], [15], [11], [22], [3], [23], [14], [12], [13] for a discussion on the subject; here we
just mention that the mathematical analysis of the Cauchy problem for (1.2) presents a lot of aspects
still to be understood.

From a certain point of view, the functional F' could be considered to have a rather poor structure:
indeed (provided u, stands for the absolutely continuous part of the derivative) it vanishes on piecewise
constant functions, which constitute a dense subset of L%(I). However, the situation radically changes
if we consider the finite element approximation F} of F. Namely, consider the restriction

U; — Uj—1

N
Fr(u)=hY o —— ), u € PLp(I) (1.3)

of F to PLy(I), where PLy(I) is the space of all piecewise linear functions on the mesh of I consisting
of N subintervals of equal length h := £/N. The analysis of F}, may be relevant for applications and
numerical analysis, and it turns out that the structure of discrete minimizers and critical points is
rather rich. The aim of this paper is to explore such a structure.

Our main result is a complete classification of the equilibrium solutions of the system of ODEs

R yh byt
u?:%{qﬁ'(%)—a(%)}, ie{l,..., N—1}, (1.4)

expressing the space discretization of (1.2), which we couple with the Dirichlet boundary conditions
uh =1,  ul =1, (1.5)

(see Section 2 for the details on the notation). In Sections 2.2-2.4 and 3 (see in particular our main
result, Theorem 3.2) we determine precisely the shape of each equilibrium of (1.4) (1.5) and, by a
careful linear stability analysis, we count the number of its unstable directions. In particular, assume
for simplicity that H := u,. — u; > 0, and that the equilibrium u has slope not identically equal to +1
or to —1. Then we show that u is a Dirichlet discrete local minimizer of F}, (i.e., u is stable) if and
only if one of the following two conditions hold:

- w is linear with slope less than one,

- u has exactly two slopes a € (0,1) and a* = 1/a > 1; the “unstable” region of u where its slope
is a* consists in a single subinterval of the mesh (this, roughly speaking, would correspond to
only one “jump” in the limit A — O, arbitrarily located in I), and

o = — ¢"(a") 1

5a) <v_71 (1.6)

Some consequences of the above result, in particular of (1.6), are discussed at the end of Section 3.
The last section of the paper is devoted to identify the asymptotic I'-expansion of F}, for small A up to
the order 2. In the proof of the I'-expansion result (Theorem 4.4) we make use on some informations
on stable critical points obtained in the previous sections. The expression of the I-limit (4.2) should
be compared with the one found in [2], where a fourth order regularization of (1.2) was considered,
together with a rescaling of times.

The presence of many discrete critical points with different stability properties, coupled with a (non-
trivial) passage to the limit (possibly along subsequences) as h — 0% in (1.4), hopely allows to proceed
further in the direction of defining a meaningful notion of solution to the original equation (1.2). This
will be the object of future work. See also [9], [4], [10], [5] for related results.

We conclude this introduction observing that our model is similar to the finite-differences model
studied by Schaeffer, Shearer and Witelski in [21], for the one-dimensional version of an ill-posed
nonlinear parabolic problem. Their analysis has also implications to other ill-posed nonlinear PDEs
such as (1.2) and some models for clustering instabilities in granular materials.



2 Notation and preliminary results

We set I := (0,£) for some £ > 0. Given a positive integer N we divide I in N closed subintervals
of equal length h := ¢/N (spatial mesh-size) with nodes x; = ih, so that the i-th subinterval is
[(i — 1)h,ih]. We let o = 0 and zy = £. The ij-th entry of a matrix A will be denoted by a;;, or a; ;
if necessary.

PLy(I) (resp. PCr(I)) is the (N + 1)-dimensional vector subspace of Lip(I) (resp. N-dimensional
vector subspace of L?(I)) of all piecewise linear (resp. left-continuous piecewise constant) functions
on the mesh.

Given u € PLy(I) we denote with uy,...,un_1 the coordinates of u at the interior nodes with respect
to the basis of the hat functions, and uy = %, and uy = @, where u;,w, € R are given (Dirichlet
data).

PLP(I) is the corresponding (N — 1)-dimensional affine subspace defined as

PLP(I) := {u € PLy(I) : u(0) = T, u(l) = a,}.

Any function is identified with the vector of its nodal values. Given w € PCp(I) we denote with
wy, - .., wy the coordinates of w with respect to the basis of the flat functions.
We define the linear map D, : PLy(I) = PCy(I) and its adjoint D} : PCy,(I) — PLy(I) as

(D’:u)zz (ui_uifl)a i € {17"'7N}7 (21)

S =

1
(D;fw)lz E(U)H_l —wi), 1€ {1,...,N—1},
where in (2.1) the Dirichlet values are taken into account.
We will use indifferently the notation ¢'((D}, u);) or ¢'((Dj, w));.
The equation (1.2) is discretized in space in the standard way, obtaining
Ou

% Dif ¢/ (D}, u)

namely the well posed system of ODEs for the unknown u = u”

- B b
u?:%{qy(%)_qy(%)}, ief{l,...,N—1}, (2.2)

with the boundary conditions

ul | =% wheni=1, uly =%, wheni=N-1. (2.3)
Note that the restriction to PLy(I) (see (1.3)) of the functional F' is a Liapunov functional for (2.2);
in particular, u” is an equilibrium solution of (2.2) if and only if it is a critical point of F},. We say
that v is a Dirichlet discrete local (resp. global) minimizer of F}, if u is a local (resp. global) minimizer
of F}, in PLy(I) C L*(I) under the conditions (2.3).

Finally, in what follows we use the notation

Pi=4¢".



2.1 Spectrum of tridiagonal, real symmetric matrices

Theorem 2.1. (Gershgorin). Let A = (a;;) be an (N x N) complex matriz and define

rii= Z laij|, Ci={2€C:|z—ay| <r}, C:= UC,-.
i#i i
Then
(i) the spectrum of A is contained in C,

(i) if K is a connected component of C, and K is the union of k of the circles C;, then K contains
exactly k eigenvalues (the circles are counted with their multiplicity and the eigenvalues are
counted with their algebraic multiplicity);

(i1i) if K is the closure of a connected component of the interior of C, and K is the union of k of
the circles C;, then K contains at least k eigenvalues.

Proof. If X is an eigenvalue of A and z a corresponding eigenvector we have ||z||c = |zk| for some &,
and

Y ami = A —am)ze = A —arelllzlloe <D lars||zs] < rillelloo,

ik ik
hence A € C). See also [17]. Consider now A, := sA + (1 — s)D, where D := diag(ai1,...,ann)
and s € [0,1]. Let A\;(s), i € {1,...,N}, be the eigenvalues of As ordered in such a way that A;(s)
is a continuous function with respect to s. Then Ay = D, X\;(0) = a;; and A; = A, A(1) = A;. The
Gerschgorin’s circles of A; have the same centers of the circles C;, and radius sr;, hence they are
contained in the interior of C; for s € [0,1). From the continuity with respect to s it follows that the
k eigenvalues that belong to K for s = 0 cannot leave the connected component K. O

2.1.1 Triple recursion relations for the determinants

Let W be a tridiagonal matrix with elements w; in the diagonal, b; in the subdiagonal, i € {1,..., N —
1}, ¢; in the superdiagonal, i € {2,..., N}. The index ¢ always refers to the number of the column of
W. Let us denote by W the minor with order £ made up of the first £ rows and &k columns and with
qr. the characteristic polynomial of Wj.

The g, are related by a triple recursion relation which is obtained calculating the determinant Wy, — AI}
with respect to the last row and the last column:

@r+1(A) = det(We1 — Alpt1) = (Wi1 — A)ge(A) — becrt1gr—1(A). (2.4)

Assuming by convention go(A) = 1 and recalling that ¢;(\) = (wy — X), the relation (2.4) remains
valid even for the computation of ga(A) = (wa — A)(w1 — A) — bica.

If biciy1 > 0 for every i € {1,...,N — 1}, it is known that the sequence qq, ...,y becomes a Sturm
sequence [17, Chapter 3, Section 4.2], i.e. (besides the fact that gy does not change sign) it verifies
the properties

Q-1 (N arr1(N) <0 if A is such that ¢ (A\) =0, k=1,...,N—1,

v Nav—1(N) <0 if X is such that gy (\) = 0.

Theorem 2.2. (Givens). Let the tridiagonal, real symmetric matriz W be defined as above with
bi=ciy1 #0,1 € {1,...,N—1}. Then
(i) the zeros of each qi, k =2,...,N, are distinct and are separated by the zeros of qr—1;
(i) if \ is such that qn()\) # 0, the number of eigenvalues of W that are strictly larger than X is
equal to the number of sign variations in the sequence

17 -0 ()‘)7 AR (_1)N_1qN—1()‘)7 (_1)NqN()‘)



Proof. See for instance [17, Chapter 4, Section 3]. O

2.2 The system for the slopes: the matrix 7T

If we set, for u € PLP(I),
vt == (D, u); ie{l,...,N}, u=u",
the discrete Dirichlet problem (2.2) can be equivalently written (recalling also that 4o = 4y = 0) as

(120 = ¢ (Vi) — 29 (vi) + ¢’ (vie1), P €{2,...,N—1}

h?01 = ¢'(v2) — @' (v1),

y rPon = —¢'(vn) + ¢ (un—1) (2.5)
N
]’LZ’U,' =U, —u; =: H
\ =1

The global constraint expressed by the last equation in (2.5) replaces the boundary conditions in (2.3),
and turns out to be automatically satisfied after the initial time, as can be proved by summing up the
first three relations in (2.5).

Remark 2.3. Note that u is a critical point of F}, with Dirichlet boundary conditions if and only if
v:= D; u is an equilibrium solution of (2.2).

If ¢'(v) is the vector defined as ¢'(v); := ¢'(v;), the system in (2.5) becomes

h2o = —T¢'(v), (2.6)

where T is the real (N x N) tridiagonal symmetric positive semidefinite matrix defined as

The properties of T" used in the sequel are the following.
Lemma 2.4. The matriz T has the following properties:

(i) The spectrum of T' is contained in the interval [0,4]; the eigenvalues A1, ..., Ay of T are simple,
A,y ..oy AN_1 are strictly positive and Ay = 0;

(ii) there exists a lower triangular matriz P = (pi;) such that
T = PP! (2.8)

(Cholesky factorization) which is singular with pyn = 0.



Proof. The symmetric matrix T is singular, with eigenvector vy = [1,...,1]* corresponding to the
eigenvalue Ay = 0. Gerschgorin’s Theorem implies that the spectrum of T is contained in the
interval [0,4], and vy can be completed with an orthonormal basis {v; : i € {1,...,N}} with
v, € {z € RV : Zfil z; = 0} for any 1 < ¢ < N — 1. From Givens’ Theorem we have that all
the eigenvalues of T' are simple and so Aj,...,Ay_1 are strictly positive. In addition all principal
minors T}, of T formed by the first k£ rows and k columns are positive definite with the only exception
of T = Ty . This allows to use the Gauss elimination method without the need of pivotal strategies
having non-null pivotal elements [17] . In the N-th step with Gaussian elimination we obtain the
upper triangular matrix

From the Gauss elimination method we obtain the factorization T = LU with L = (l;;) lower trian-
gular, l;; = 1, U = (u;;) an upper triangular matrix, u; > 0 for i € {1,...,N — 1} and uyny = 0.
Setting G := diag(y/u11,-.-,1/unN), we obtain the Cholesky factorization (2.8) with P = LG and
P = (p;;) lower triangular, tridiagonal and singular, with pyx = 0 (in this case its expression is equal
to the transposed of (2.9)). O

2.3 First results on the nature of the equilibria
Definition 2.5. Given a € [—1,1] we set ¢ 1(¢(a)) = {a,a*}.
Note that 1~ ((0)) = {0} and if $y(a) € $(R) \ {0} = [=1,0) U (0, 1] then

ot =1/a. (2.10)
Proposition 2.6. A vector v = (v1,...,un) € RN is an equilibrium solution of system (2.6) if and
only if
N
hY vi=H (2.11)
i=1
and there exists o = a(v) € [—1,1] such that
v; € {a,a*} Vie{l,...,N}. (2.12)
Proof. The vector v = (vy,...,vn) € RY is an equilibrium solution of

(2.5) if and only if v satisfies
(2.11) and ¢'(v) € Ker(T) = span{[1,...,1]*}, i.e., if there exists L € ¢'(R) = [-1/2,1/2] independent
of 7 such that
L = ¢'(v) Vie{l,...,N}.

O

Definition 2.7. Let v = (v{%,...,v}}) be an equilibrium solution of (2.5). We define the unstable
and the stable region of v°4 as the following subsets of I: unstab(v®?) is the union of the subintervals
[(i — 1)h,ih] of the mesh where |v;?| > 1, and stab(v®?) := I \ unstab(v®).

We also define

k(v®%) the number of the subintervals of the mesh composing unstab(v°?). (2.13)



u, —u; > 0 and k € NU {0} are given, we

Remark 2.8. Once the Dirichlet value H = u(£) — u(0) =
0,1) such that

have a constraint for the choice of the slope a = ay € (
h(/ea* + (N — fc)a) =H. (2.14)

Namely, using (2.10),
h(N — k)a? — Ha + hk = 0, (2.15)

which is a parabola with concavity upwards, positive for & = 0 and with a value AN — H =/£ —H in
a=1. If H > £ (i.e. mean slope greater than £) and since £ € [0,1] implies 1 > 4% (1 — £) we have
H2 > 4h%k(N — k), hence there exists a solution

_ H— /H>—4h?k(N — k)
A = 2h(N — )

(2.16)

. .. . H++/H?2—4h2 k(N —k)
of (2.15) with 0 < a,; < 1. Moreover, it is not difficult to prove that Sh(N—r) > 1, and we
conclude that if H > £ there exists a unique solution a, € (0,1) of (2.15).
The following result eliminates most candidates in the search for stable equilibria.

Proposition 2.9. Let u® be a critical point of Fy, with Dirichlet boundary conditions (2.3) and let
v°9 be the equilibrium solution of (2.5) associated with u*. If k = k(v°9) > 2 then 4" is not a local
minimum of Fy,.

Proof. Let k > 2 and let o, be given by (2.14). To show that u is not a local minimum we differentiate
Fy along an appropriate curve o € (—4,8) — u(o) € RY*! through u* = u(0). We construct this

one-parameter family of near-equilibrium states by perturbing two of the x values where the slope is
()i ()i

v; = = a, corresponding to the indices ¢ = 41 and ¢ = 72, as follows:
(a2t +0 i=1
a: -0 1 =1y
o = vi(0) = 4
o, i=1; for je{3,4,...,k} (when k>3)
[ ax otherwise,
where o := (a,)* and we note that for & = 0 we recover the equilibrium »°*, while the constraint

(2.11) is satisfied for all o. Write f(o) := hF} (u(0)) and observe that
flo) = (k= 2)p(ay) + (N = K)p(aw) + By, + o) + ¢(ay — o).
The conclusion then follows from
fo)y=0,  "(0)=2¢"(ay) <O0.
O

A sort of converse of Proposition 2.9 will be given in Corollary 3.10, as a consequence of Theorem 3.2.



2.4 The linearized systems: the matrices A and A,
In this section we begin the analysis of the linear stability of the equilibria of (2.5).

Definition 2.10. Let v = v°? be an equilibrium solution of (2.5), and let a be the corresponding
number given by Proposition 2.6. If a € [0,1), we define

r =7 = ¢"(a) >0, r* =r*(v*?) := ¢"(a*) < 0.
gj eoxy . 1—a”2 _ a"3(a?-1) _ 2 11 h (% 1 d
ince ¢ (a*) = (a7 = a=TaZfi)z = ~¢ @ (o), we have ¢"(a*) > —¢"(a), an
u =a’ <.
T
To study the behaviour near an equilibrium solution v®4 = (v{%, ..., vy!) we linearize (2.5) around v°4

and obtain the linearized system
h*i = — Aw (2.17)

for the vector w = (wy, ..., wy). Here A = A(v°®?) is the (N x N) tridiagonal matrix defined as

" "
¥1 —¥2
1"

-7 205  —pfh

A= i 207 =9l
—PNoe 20N —¢ly
—¢N_1 P
with
o= ¢" (v e {r,r*}  foranyie {1,...,N}, (2.18)

where the inclusion follows from Proposition 2.6.

Remark 2.11. If there exists ¢ € {1,..., N} such that ¢/ = 0, then v;® = @ = a* = 1, and therefore
@'t =0forany j € {1,..., N}, and A is the null matrix. In the following we will always suppose that

<0<, (2.19)

since the case @ = a* = 1 corresponds to A = 0, and therefore the study of the linearized system
(2.17) does not give information on the original problem.

The sum of the elements in each column of A is equal to 0, hence A is degenerate. If ¢/ # 0 for any ¢,
the minor of order (IV — 1) obtained by eliminating the first row and the last column is nondegenerate,
and so the rank of 4 is N — 1.

Definition 2.12. Let v°9 be an equilibrium solution of (2.5). We define
M = M (v*?) := diag(mi1,...,mnN), (2.20)
r*/r if [(i — 1)h,ih] C unstab(ve?),
my; = my; (v°9) == ie{l,...,N}.
1 if ((¢ —1)h,ih) C stab(v®?),

Recalling the expression of T in (2.7), we also define

A= A(v®) :=TM. (2.21)



Note that N
A=rA.

Remark 2.13. Linearizing system (2.2), (2.3) around the corresponding solution u°* yields the system
—h%0; = —¢" (v;Nwi1 + [¢" (v571) + ¢ (V5 |w; — ¢ (V5T )wi1, 0<i<N,
in the unknown w = (ws,...,wn_1). In this case we have that
2 = —Ayer w (2.22)
where Ayer is the (N — 1) x (N — 1) symmetric tridiagonal matrix defined as
PrEes  —¢h

—ph5  Ph e

— " " " "
Ayer = —Pi P TP —Pi

o' 9 YN oo -11-90']’\,71 ”_SO,JIVAH
—¢'N1 PN+ N
(2.23)

The possible presence of negative eigenvalues of A obviously indicates instability of v* with respect
to small perturbations of the initial datum. The following is a first result on the nature of equilibria
of (2.2). Recall that k(v°?) is defined in (2.13).

Proposition 2.14. Let v° be an equilibrium solution of (2.6) not identically 1 or —1 (see Remark
2.11). At least k(v°?) eigenvalues of A are nonpositive and at least N — k(v®?) are nonnegative.

Proof. The rows of the transposed matrix At are multiplied by 1 (resp. by r*/r). For any i €
{2,..., N — 1} the Gerschgorin circle of At is centered at 2 (resp. 2r*/r) and has radius 2 (resp.
2|r*/r|); for i = 1 or 4 = N the circle is centered at 1 (resp. r*/r) and has radius 1 (resp. |r*/r]|).
The positive and the negative circles are tangent at the origin. The thesis then follows from Theorem
2.1 (iii). O

3 Main result

In the following, given an equilibrium solution v°® of (2.6), we write K = k(v°?), r = r(v°?), r* =
r*(v°?), and A = A(v°?). We also set

= eq = —
v =) "

Moreover, 4" will always indicate the critical point of F}, associated with v°9.
Definition 3.1. Let v°? be an equilibrium solution of (2.6). We define

- p~ = p (K,7,N) the number of negative eigenvalues of ;1\,

- no = no(k,7, N) the algebraic multiplicity of the eigenvalue 0 of ﬁ,

- fjo = Tlo(k,7, N) the algebraic multiplicity of the eigenvalue 0 of Ayer.



From (2.21) and (2.19) it follows that the number of negative eigenvalues of A is equal to = (x,v, N)
and the algebraic multiplicity of the eigenvalue 0 of A is ng(x,v, N).
The main result of the paper is the following.

Theorem 3.2. Let v®* be an equilibrium solution of (2.6) not identically 1 or —1 and let u* be
the corresponding critical point of Fy,. The null eigenvalue of A\(veq) (resp. of Auer) has algebraic
multiplicity either 1 or 2 (resp. either 0 or 1), while all remaining eigenvalues are real and simple.
Moreover

¥ > Yeit(k) = p =k—1 and ny =1 (resp. fjo = 0)

V< Yarit(kK) = pT =k and ng =1 (resp. 7jp = 0) (3.1)

Y =9ait(k) =>p~=k—1 and mny =2 (resp. 7o = 1),

n

— if ne{0,1,...,N—1},

Yerit (1) = N-n { }
—00 if n=N.

where

As a consequence, we obtain the follow stability criterion.

Corollary 3.3. Let v*% be an equilibrium solution of (2.6) not identically 1 or —1. Then v®% is a
stable equilibrium if and only if one of the following two cases holds:

(i) k=0;

(it) k=1 and v > — 5.
Proof. Tf v*d is a stable equilibrium, then A(v°9) has no negative eigenvalues, i.e. =~ = 0. Therefore
k > 2 is not allowed by Theorem 3.2. Conversely, assume that kK = 0. Then 7:(0) = 0, and

therefore v < 0. Hence from Theorem 3.2 it follows that p~ = 0. Similarly, assume that k = 1 and
¥ > Yerit (1) = — 5. Again, from Theorem 3.2 it follows p~ = 0. O

3.1 Proof of Theorem 3.2

To compute the eigenvalues of A = A(v°%) and Ayer defined in (2.21), (2.23) respectively, we will use
similarity transformations.

Lemma 3.4. The following properties hold:
(i) the eigenvalues of A are real;

(ii) there exists an invertible matriz P such that
B = B(v*9) := P 'AP

is tridiagonal with the last row null. Moreover the (N — 1) x (N — 1) principal minor By_1 =
Bn_1(v®?) of B satisfies
’I"BNfl = Aucr; (32)

(i#3) B has at least a null eigenvalue. All other eigenvalues of B, which correspond to those of By_1,
are real and simple.

Proof. For € > 0 we define the matrix P, substituting the null element with € on the diagonal of P,
defined in the proof of Lemma 2.4, in position pyy. It turns out that T. = P.P! (compare (2.8))
differs from T only for the element in position (N, N) which becomes 1 + €2 instead of 1. T, is a
symmetric positive definite matrix (and all its eigenvalues are distinct).

10



Set A, :=T.M (compare (2.21)); then lim,_,q A, = A. Moreover, the matrix
B.:= P AP
is symmetric, since
B! =P'MT.(P,')' = P'MP, = P, '"P.P'MP. = P.'T.MP. = P. 'A.P. = B..
So B. has real eigenvalues, which coincide with those of XE and passing to the limit as e — 0 also the
eigenvalues of A are real. R
Since the matrix P is singular, it can not be directly used for a similarity transformation of A. We

then use P := P, (= P. for e = 1). It immediately follows that P is lower triangular and tridiagonal,
with 1 on the diagonal and with —1 on the subdiagonal. The inverse matrix of P can be written as

- 1 ifj<i
1y, — s

=g 45! (33)

The matrix .

B:= P 'AP

is tridiagonal, and one can check that
bis = Y > (P (P = mj; D trj = mjp) (1) D br,(i41) (3.4)
k1 k<i k<i

where the second term is missing if j = N and we have set T' = (¢;;) and A= (i) T1<j<N-1
we have

0 if [i —j] > 1

by =14 ifi=j—1 (3.5)
Mjj + Mj41),(j+1) if i =j
—M(j41),(j+1) ifi=j+1

which proves to be valid also for j =1 and for j = N —1if i < N. A direct test eventually leads to:

b(N_1),N = MNN, by,(n-1) = by = 0.

Therefore the (N — 1) x (N — 1) principal minor By _; is symmetric and tridiagonal and, from (2.23)
and (2.20), we obtain the equality (3.2).

It remains to prove (iii). The null eigenvalue proves to be evident from the last row, while all other
eigenvalues of B correspond to those of the principal minor By_; which, from Givens’ Theorem 2.2,
are real and simple. O

Corollary 3.5. The eigenvalues of;l\ coincide with those of B. Moreover, the null eigenvalue szzl\
has algebraic multiplicity either 1 or 2.

Proof. Tt is a consequence of Lemma, 3.4. O

Remark 3.6. From Lemma 3.4 it follows that the number of negative eigenvalues of both By_1 and
Ay is equal to p (k,y, N) and the algebraic multiplicity of the null eigenvalue of By _1 is 7o (%, v, N).

We want to understand in what circumstances the minor By _1 has some negative eigenvalue.
Proposition 3.7 (Sign of the eigenvalues of By_1). The following properties hold:
- if Kk =0 then By_1 has no negative eigenvalues;
- if Kk =1 then By_1 is positive definite if v > —ﬁ and has a negative eigenvalue if v < —ﬁ.
If v = —ﬁ then Bx_1 has one zero eigenvalue and all remaining eigenvalues are positive;

- if kK > 2 then By_1 has at least one negative eigenvalue.

11



Proof. Let d; be the determinant of the principal minor of B = (by.,) with order j € {1,..., N} and
assume dyp = 1 by convention. Recalling (2.4) we have for 2 < j < N:
dj = bjjdj—1 — (bj,j—1)"dj—2 = (mjj + m(s1) G+1)dj-1 = (m)°dj2, (3.6)

where we have used the symmetry of By_; and formula (3.5). Theorem 2.2 (applied with N replaced
by N—1, W = —By_1 and A = 0) implies that the number of negative eigenvalues of Bn_;
corresponds to the number of sign variations in the sequence dy,dy,...,dN_1.-

Assume k = 0. Then m;; = 1 for every i. Therefore (3.6) becomes
d; =2dj_1 — dj_», (3.7)
coupled with the initial conditions
do=1, dy =2. (3.8)

The general solution of (3.7) is d; = po(j) where po is a suitable first order polynomial. By im-
posing (3.8) we obtain po(j) = j + 1 > 0. Therefore there are no changes of sign in the sequence
do,d1,ds,...,dn_1, hence By_1 has no negative eigenvalues.

Assume k = 1. Write unstab(v®?) = [(ko — 1)h, koh] with kg > 1 (the case ko = 1 gives the same
result recalling that do = 1). Then m_1),(kg—1) = 1, Mo,k = v and using the previous case (hence
dro—2 = ko — 1, dgy—3 = ko — 2)

dig1 = (1+7)(ko — 1) — (ko — 2) = 1+ (ko — 1). (3.9)

If (3.9) is negative there would be a change in the sign and therefore a negative eigenvalue. Therefore
we can suppose 1+ (ko — 1)y > 0, i.e.

1
> — . 1
V2 (3.10)
A direct computation based on (3.6) and (3.9) shows that
dre = (1 +7) (L + (ko = 1)7) = v*(ko — 1) = 1 + ko (3.11)
and again we can assume (3.11) to be positive, i.e.
>_ 1 (3.12)
Y2 ko -

which is a condition more restrictive than (3.10).
From now on the identity d; = p1(j) is restored, where p; (§) is a first order polynomial that must be
chosen so as to obtain the expressions (3.9), (3.11) for the indices j = kg — 1 e j = kg, i.e.:

pi(ko —1) =1+ (ko — 1), p1(ko) = 1+ koy. (3.13)
Subtracting the two relations in (3.13) we obtain
pi(ko) —pi(ko —1) =
It follows that the value d; strictly decreases by the amount |y| as j increases, until it reaches the

value dy_ 1 = dg, + (N —1—ko)y =14+ Ny —~ when j = N — 1. The problem reaches a stable
condition (no negative eigenvalues) when

1
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Since the sequence {d;} is monotone decreasing for kg —1 < j < N — 1, only a single sign change can

occur, if dy_1 < 0. Since dy—_1(y) = 0 has a simple zero for v = — x5, the matrix By_; has a single

negative eigenvalue for v < —ﬁ.

Note that the null eigenvalue of B has multiplicity 2 in case of equality in (3.14).

Assume k = 2. Write unstab(v®?) = [(ko — 1)h, koh] U [(ky — 1)h, k1h] and suppose, without loss of
generality, that k; > ky. Proceeding as in the case k = 1 we obtaind; = 1+ jyforkg—1<j <k —1
where the inequality dj, —2 > 0 implies

'y>—k1_2.

From (3.6) we get

dimr = (147 (1+ = 27) = (14 (i = 3)7) = (ks = 27" + 27,

de, = (149) (72(k1 -2)+ 27) -7 (1 + (ks — 27)) = (k1 —1)7v*+27.
We can use these relations to obtain
di=0G-1)7v+2y, >k -1

This is an increasing sequence in j; we are interested in the value for j = k; — 1,
A 7(1 +1+ (ks — 2)7) = 7(1+ di, _2).

The latter necessarily becomes negative if di, o is nonnegative. It follows that there exists at least
one negative eigenvalue for By_;. There are two negative eigenvalues if and only if dy_; is positive
which would necessarily imply two changes of sign in the sequence {d,}.

Assume k > 2. Write unstab(v®?) = (J;cz[(ki=1 — 1)h, ki_1h] where T = {1,...,k}. If ki1 < k; are
two consecutive indices in Z, then for k;_; —1 < j < k; — 1, d; = p;(j) where p; is an appropriate first
order polynomial p;(j) = a;j + 8;- We want to determine p; on the basis of p;_1, setting po(j) = j+ 1.
Then

dei—1 = (L+)pic1(ki —2) —pi1(ki — 3)
ypi—1(ki = 2) + i1

yai—1(ki —2) + vBi—1 + i1,

dr, = (L+7)dk,1—7"pi1(ki —2)

and so

i = di, —di;—1 =Y(dr;—1 — ypi—1(ki — 2))
= Y(pi—1(ki — 2) — pi—1(ki — 3)) = yai1,
Bi = dr—1—ai(ki—1)
= V-1 + aim1 — Y-
It follows that a;; = v* and 3; = vB;i_1 + (1 —¥)y* ™! = 4* (v +4i —iv). In particular the determinant
of the minor (N — 1) x (N — 1) can be calculated with
Iy = n(N sty 315)

and it cancels out only for the value Yerit(k) = — 5= for & € {0,1,..., N —1}. For k = N, dy_1 # 0.
Besides, it is clear that dy_1 changes its sign when + is greater than this critical value, in fact the term
in brackets in (3.15) is decreasing with respect to y and therefore it is negative when verit (k) < ¥ < 0,
whereas «a,, has sign (—1)*. O
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Remark 3.8. In order to calculate u~ we should observe that if dy_1 # 0 than the eigenvalue 0 is
simple and therefore = can assume the values k or Kk — 1 only, in fact Lemma 2.14 implies that at
least IV — k eigenvalues are nonnegative and therefore the negative ones are at most . In other words,
since 0 is an eigenvalue with multiplicity 1, it follows that the negative eigenvalues are at least x — 1.
On the other hand the sign of dx_; gives the parity of the negative eigenvalues; dy_1(—1)* > 0.
Thus if verit (k) < v < 0, p~ has opposite parity with respect to the parity x and therefore = = k- 1.
Hence we obtain
{ V> VYarit(k) = pT =K1
¥ < Yait(K) = p~ =k.

Eventually, the proof of Theorem 3.2. is a consequence of (i) of Lemma 3.4, Proposition 3.7 and
Remarks 3.6 and 3.8. O

Remark 3.9. Let k € {1,...,N}. If H > £, from Remark 2.8 we have one and only one satisfactory
solution a, € (0,1) given by (2.16). With the approximation N >> x we have from (2.16) that

P
T
The ratio v is given by v = é =—-a? = —% which entails || < |Yerit(k)[, i.e. p~ =& —1.
We have seen in Proposition 2.9 that
H >0, u Dirichlet discrete local minimizer of F, =— & € {0,1}. (3.16)

The following corollary gives a sort of converse of (3.16).
Corollary 3.10. Assume that H > 0. Let v°2 be a critical point of (2.6) and let k = k(v°Y). Then
k € {0,1}, N sufficiently large = = u® Dirichlet discrete local minimizer of Fj,.

Proof. Recalling Corollary 3.3, it is enough to consider the case k = 1 and to show that (1.6) is
satisfied for N sufficiently large. From (2.16) we have

_H- \/;1:(]; 4_hi§N -1 _ % +o(h) = NL;[ +o (%) . (3.17)
Hence a? = Nﬁ—ip + 0 (3= ), and therefore (1.6) is valid provided
122 1
N +o (N) <1
O

Remark 3.11. Assume that H > 0. Let v°? be a critical point of (2.6) and assume that k =
k(v®d) = 0. If N is sufficiently large then u* is a Dirichlet discrete local but not global minimizer
of Fp,. Indeed, we already know that if N >> 1 then «" is a local minimizer. A direct computation
shows that Fn(u®) = O(1). On the other hand, if we take a stable equilibrium v} of (2.6) with
k(vy) = 1, one checks that the corresponding uj is such that Fj(u}) = o(1) for h > 0 small enough.
We conclude that Dirichlet discrete global minimizers of F}, necessarily have k = 1 for N large enough,
independently on the value of H.
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4 TI'-expansion of the discrete functionals Fj,

We recall [7] that a family of functionals G, : L*(I) = [—00, +-00] I'-converges to G(®) :=T'— hlirg1+Gh :
—
LY(I) = [—00,+o0] as h — 0T if
- (T-liminf inequality) for all u € L1(I) and for every sequence {uy} converging to u in L'(I) we

have GO (u) < liminfGp, (up);
h—0+

- (T-limsup inequality) for all u € L'(I) there exists a sequence {up} converging to u in L!([)
(called recovery sequence) such that GO (u) = hlirngGh(uh).
—

We now give the definition of asymptotic expansion by I'-convergence, following [6].

Definition 4.1. Let Gy, : L*(I) — [0,+00] be a family of functionals, let G© := T — lim,_,o+ Gp
and let w9 be a local minimizer of G©. Let fi, fo : (0,1) — [0, +00] with limp,_,o+ f1(h) = 0 and
f2(h) € o(fi(Rh)) as h — 0. Finally let wY € LY(I). We write

Gh = GO + LG + L(W)GP) +o(f2(h)), (4.1)
and we say that (4.1) is the T'-expansion of Gy up to the order 2, if
Gp — GO (w()
S GW =T — lim 2 & /.
TR T A
- w s a local minimizer of GM);
— GO (0 — (1) ()
6@ T - iy GO - ARG )
h—0+ f2(h)

Remark 4.2. The authors in [6] consider global minimizers instead of local ones, hence their I'-
expansion does not depend on the choice of w(® and w(V).

We extend the definition of Fj, to the whole of L*(I) by setting Fj, = +oc in L*(I) \ PL,(I).
Denoting by PC(I) the space of piecewise constant functions defined on I with a finite number of
jump points, we define F(© F(1) . L1(T) — [0, +o0] as

0 = W . ) #Ju if ue PC(I)
=0 o) = { +oo if we LL(I)\ PC(I),

where J, C I is the set of jump points of u and # its cardinality.

Remark 4.3. Any @ € PC(I) is a local minimizer of F).

Finally, given @ € PC(I) we define F\2) : L1(I) - [—o0, +00] as

—00 if ue PC(I) and #J, < #Jz
FE@)(U) — zg log|u(zy) —u(z_)| if we PC(I) and #J, = #Jz (4.2)
+o0 if we LY(1) \ PC(I),

where u(z4) are the right and left limits of u € PC(I) at x € J,.

Theorem 4.4. Fizu € PC(I). The following T'-expansion of Fj, up to the order 2 holds:

1
F 2 FO 4+ he (ﬁ) FO 4 hE? 4 o(h).
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Proof. Tt is easy to check that I'—limy, Fj, = 0 = F(% using the property of sublinear growth at infinity
of ¢ together with the L'(I)-density of the space PC(I) in L'(I), and the lower semicontinuity of
T-limits.

We now show that

Fy

lim ———.

h—0+ ho(1/h)

In order to check the I'-limsup inequality, since the argument is local, it is enough to consider the case
of a function u having a single jump. In particular, if we let

FO 11—

_J ao if x € (0,7),
u(e) = { ay ifx € (7,0), (4.3)
where Z € (0, /), a recovery sequence {up} C PLx(I) can be constructed as follows:
ag if0<z<h|Z/h|
x T T T . _ —
up(x) == ({EJ +1_E) ag + (ﬁ_ {EJ>a1 ifh|Z/h] <z <h(|Z/h]+1) (4.4)
ap if h(|ZT/h] +1) <z <Y,

where || denotes the integer part. Indeed, up — u in L*(I), and letting i, := | £| + 1, we have

£/h

. Fuplun) . 1 (un)i — (un)i—1
I RALR)  nts B(L/R) ; ¢( h )
o |(un);, — (un);, 4|
= 0m Sa/m) o8 < h : (45)
o log |(un); = (un); 4] L
o h11>rtr)l+ < |log h| = 1) =1=#Ju

To prove the T-liminf inequality, let u € L*(I) and let up — u in L'(I) as h — 0*. We have to show
that

oo Fr(up)
FY(u) < liminf —2—% 4.
(w) < limint ) (4.6)
We can assume that lim inf}, o+ % < +o0o (so that {up} C PLy(I)), otherwise there is nothing to
prove, and that u is not identically constant in I. Possibly passing to a (not relabelled) subsequence,

o o Fh(un)
that the lim inf Fnlur) 5 5 limit, that ¢ :=
we can assume that the liminfy, o+ ggr7zy is a limit, that ¢ Slilzp hé(1/h)

< +o0, and that up = u

almost everywhere as h — 0%. As a consequence, we can fix points
0<Z1 <+ <Tpy1 <Y, 4.7)

with n > 1, such that each T; is a Lebesgue point of u, limy,_,g+ up(Z;) = w(T;), and w(Tir1) # w(ZT;)-
Moreover, without loss of generality, we can suppose un(Zi+1) — un(Z;) > 0. The thesis follows if we

prove that
. Fp(up)
1 f > n.
nsor he(L/h) ="

Note that the points Z; may not belong to the mesh. In order to prove (4.8) we use the characterization
of Dirichlet discrete minimizers of F} established in Section 3, in particular Remark 3.11. For any

h>0andie€{l,...,n} welet 2 :== h |2 | and we define

(4.8)

Ibi= (b 2l + ).

2
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Note that I" O (Z;,Tit1), and the boundary points of I} belong to the mesh. Let us now consider
the minimum problem

min {Fh(w,IZh) Tw e PLh(Iih), w(T,) = uh(fi), w(fH_l) = uh(fi_;,_l)} (4.9)
where we have set
zzh+1 +1
w(w, IM) := h Z ¢ ((Dyw);
jZT‘+1

the localization of the functional F, on the inteval I!. Let wy be a solution of (4.9). Then, by
Corollary 3.3, we have k(ws) € {0,1}. From Remark 3.11 it follows that for A > 0 small enough,
necessarily

k(wp) = 1.

We now estimate the slope a* = a*(wp) of wy, in its unstable region (which consists of one subinterval
of the mesh). Applying formula (2.15) for & = 1, when I is replaced by I* and # is replaced by
wr (x| + k) — wi(ak), it follows

h(a*)? — (wh(x?H +h) — wp (2! ))a + (o, —al) =0. (4.10)
Hence
. wh(a:f 1+ h)— wh(xf‘) 1 _ up(Tir1) — un(T;) + o(1) 1
@ = T +°<E)_ 7 +°<E)
. u (f, 1)—u (Tz) 1
= AT - b +o(ﬁ>.

We now estimate

Fa(wn, I*) > Fy(wp, unstab(ws)) = hé(a*) = he (“h(f"“)h_ “”(E")) + o(h|log h]).

We then have

h¢:1(1/hh) = 1/h ;Fh un, 1) + o(1) > m;F(thhH o(1)

n

(uh Tit1) . un (T )) +o0(1) > n+o(1).

i=1

Passing to the limit as h — 0 we obtain inequality (4.6) and u € PC(I).
Fix now @ € PC(I). It remains to prove that

— W (w
o h—0t h

(4.11)

Let w € PC(I). The I'-limsup inequality can be proved choosing the sequence {un} C PL(I) as in
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(4.4) (performing the construction for any jump point of u). Indeed, from (4.5) we get

. ( Fn(un) (1) <
Jim (28— g0/ 0@ ) = i, >~ 9 ((Dy) = 61 /W# e
L/h Wi
= lim (Zlog fua = o dims +10gh#Jﬂ>
: (un) 241 — (un) 2

= ) loglu(ey) —u(e-)| ~ lim logh (#J. — #Jz) = F, (u).

zEJ,

The T-liminf inequality can be also obtained reasoning as before. Let u € L'(I) and let {uy} C PLy(I)
be a sequence converging to u in L!(I) and almost everywhere, and let Zy,...Z,41 be as in (4.7). We

have
lim (L rlun) g /h)#Ju)

h—0+
. up(Tit1) — un(T:)
>
> lim, <Z¢( : >+o(|logh|)+10gh#=]>
o(|1og hl)
> ;10g|u Tip1) — ()| + lim logh(#J T T logh )

This implies, in particular, that the I-limit is +oo if u ¢ PC(I). Moreover, the expression (4.2)
follows from the fact that, if u € PC(I), we can choose n = #J,,. O

Remark 4.5. For all w € PC(I), we can consider the functionals F}, in a suitable ball of L%(I) (or
of L*(I)), centered at @, whose radius is chosen in such a way that @ is a global minimizer for F(!) in
such a ball. In this case, we have a I'-expansion for F}, in the sense of [6], of the type

Fy = h¢ (%) FO 4+ hF® 4 o(h),

where the functional

) { Y. loglu(zy) —u(z-)| u e PC(I)
Frw=q (4.12)
+o0 u e LYI)\ PC(I),

does not depend on the choice of @ € PC(I).

We observe that the restriction of F}, to a small ball of L?(I) is a natural assumption, when considering
the gradient flow of F}, for small times.
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