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Abstract

We rigorously prove that the semidiscrete schemes of a Perona-Malik type equation con-
verge, in a long time scale, to a suitable system of ordinary differential equations defined
on piecewise constant functions. The proof is based on a formal asymptotic expansion
argument, and on a careful construction of discrete comparison functions. Despite the
equation has a region where it is backward parabolic, we prove a discrete comparison
principle, which is the key tool for the convergence result.
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1 Introduction

The one-dimensional Perona-Malik equation is the forward-backward parabolic equation

ut =

(
ux

1 + u2
x

)

x

, u(0) = u0, (1.1)

in I × (0, T ), I = (0, ℓ) ⊂ R, and it is obtained as the gradient flow of the nonconvex functional

F (u) :=
1

2

∫

I

log
(
1 + u2

x

)
dx. (1.2)

The analog of equation (1.1) in two space dimensions was introduced in [17] in the context of image
segmentation in computer vision: the convex-concave behaviour of the function log(1+p2), depending
on whether |p| is smaller or larger than one, is, roughly speaking, the motivation for the following
reasonable picture. Regions of the graph of the solution where the slope is less than one are expected
to be further smoothened, in view of the heat-type character of the equation. On the other hand, in
the remaining regions the solution should even increase its slope, thanks to the antiparabolic character
of the equation. Contours of the image are therefore expected to be enhanced, at least for short times.
However, even considering the simpler case of one space dimension, from a mathematical viewpoint
we cannot still make rigorous the above picture. Indeed, the backward parabolic character of (1.1) in
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regions where |ux| > 1 makes the equation ill-posed. Despite this fact, in [11] it was recently proved
that sufficiently smooth local solutions do exist for a dense class of initial data. These solutions seem
not to necessarily reproduce the instabilities observed in numerical experiments: numerical solutions
obtained with different regularization schemes exhibit, for short times, microstructures where |ux| > 1,
and nonsmooth solutions could also be expected. We refer to [6], [9], [14], [19], [15], [21], [13], [10],
[22], [8] for a discussion on the subject.
Let us consider a subdivision of I in N = ℓ/h equal intervals with nodes xh

i = xi := ih, and let us
fix Dirichlet boundary conditions u(0) = 0, u(ℓ) = M 6= 0. Let φ : R → [0,+∞[ be a smooth even
function, increasing on [0,+∞[, and satisfying the conditions

φ(p) = p2/2 for |p| ≪ 1 and φ(p) = log |p| for |p| ≫ 1. (1.3)

We are interested here in the long-time behavior of the semi-discrete solutions to the equation

∂u

∂t
= (φ′(ux))x, (1.4)

obtained as the gradient flow of the functional (1.2), once one replaces 1
2 log(1+ |p|2) with the function

φ(p). As in the case of (1.1), the main qualitative features of φ are the sublinearity at infinity, the
strict convexity for |p| small and the strict concavity for |p| large. Our choice of assuming φ(p) to be
exactly equal to p2/2 near the origin and log |p| near infinity simplifies computations; we expect our
results not to change qualitatively in the case of the Perona-Malik integrand in (1.2). We also note
that values of the gradients of order O(1) are never achieved in our analysis. With a small abuse of
notation, we shall still refer to (1.4) as to the Perona-Malik equation.
Numerical simulations show that, on a sufficiently long time scale, the numerical solution to (1.1)
tends to be piecewise constant, and to move its plateaus in vertical direction. Let us consistently
introduce the rescaled time variable τ := ht; discretizing equation (1.1) in space in a standard way,
we obtain

hu̇h −D+φ′(D−uh) = 0, uh(0) = u0, (1.5)

with Dirichlet boundary conditions

uh(0, τ) = 0, uh(ℓ, τ) = M. (1.6)

Here we identify a function with the vector of its nodal values, and the discrete derivative operators
D± are defined in (2.4). Moreover, in view of the previous discussion, we assume the initial datum u0

to be piecewise constant. Our main result is the following convergence theorem (see Theorem 5.4 for
a precise statement):
Assume that u0 is piecewise constant. Then the solutions uh to (1.5) converge locally uniformly in
I × [0, Tsing[ to a limit function ulim, which is piecewise constant in space, and is such that the height
aj of its jth-plateau with endpoints yj−1 < yj evolves with vertical velocity given by

ȧj(τ) =
1

yj − yj−1

(
1

aj+1(τ) − aj(τ)
−

1

aj(τ) − aj−1(τ)

)
. (1.7)

The time Tsing > 0 is the first time when (1.7) singularizes, namely when there is a collision of two
adjacent plateaus. The proof of this result is based on an asymptotic expansion and on a comparison
argument. More precisely, in Section 3 we perform a formal discrete asymptotic expansion of the
solutions to (1.5) up to the order two. This requires a rather delicate computation, especially at the
extremal nodes of the grid. Despite the fact that the reasoning is formal, it is a crucial tool, since the
expansion suggests both the limit evolution law (1.7) and the form of suitably adapted comparison
functions to make rigorous the convergence argument. Comparison functions Θ±h are modeled on
the notion of central solution (Definitions 4.1 and 4.4), with an addition of a vertical shift of order h2
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and a shape correction of order h3. In Theorem 5.3 we prove a sort of comparison principle, and in
Theorem 5.4 we prove the convergence result. The fact that the convergence is based on a comparison
argument may be surprising, in view of the concavity of φ for large slopes. Technically, in the proof
we consider separately the subintervals of I close to the jump points, where the slope of the solution
falls in the concavity region of φ.
For clarity of exposition, before considering the general case, we prove the main results in the case
of two jumps only (see Theorems 4.3, 5.1 and 5.2), when the comparison functions are actually strict
sub/supersolutions of (1.5).
Eventually, we point out that the piecewise constant functions are the natural class of initial data
for equation (1.5). Indeed, in [10, 4] it is proven that the solutions to the discretized version of (1.4)
converge to a piecewise constant function, as t→ +∞.

2 Notation and preliminaries

We consider a subdivision of I := ]0, ℓ[ in N = ℓ/h equal intervals Ki, i = 1, ..., N with nodes
xh

i = xi := ih, so that Kh
i = Ki = [xi−1, xi], where we set x0 := 0 and xN := ℓ. The nodes

x2, . . . , xN−2 will be called inner nodes, and x1, xN−1 extremal nodes. The intervals K2, . . . ,KN−1

will be called inner intervals, and K1, KN extremal intervals. For notational simplicity we omit the
dependence on h of the nodes and of the intervals. Unless otherwise specified, we fix the Dirichlet
boundary condition u(0) = 0, u(ℓ) = M. We denote by V D

N the (N−1)-dimensional space of Lipschitz
piecewise affine functions on the grid {x1, . . . , xN−1} assuming the Dirichlet boundary datum.
Throughout the paper we assume that φ : R → [0,+∞) is an even function of class C2, and increasing
on [0,+∞). Moreover, we shall assume that there exist 0 < p0 < p1 such that

φ(p) = p2/2 for |p| < p0,
φ(p) = log |p| for |p| > p1.

(2.1)

The Perona-Malik-type equation (1.4) is discretized in space using standard piecewise linear finite
elements with mass lumping as done in [17], thus obtaining

∂uh

∂t
= D+φ′(D−uh) (2.2)

with boundary conditions
uh(0, t) = 0, uh(ℓ, t) = M (2.3)

(here we identify a function with the vector of its nodal values). The operators D± are defined as

h(D−u)i = ui − ui−1, i = 1, ..., N,

(2.4)

h(D+w)i = wi+1 − wi, i = 1, ..., N − 1,

where the Dirichlet values (2.3) are taken into account.
Let us introduce the rescaled time variable τ := ht. The derivative u̇h of uh with respect to τ solves
the rescaled semidiscrete Perona-Malik equation

HPM(uh) := hu̇h −D+φ′(D−uh) = 0, (2.5)

with Dirichlet boundary conditions

uh(0, τ) = 0, uh(ℓ, τ) = M. (2.6)
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Definition 2.1. Let T ⊆ [0,+∞[ be an interval. We say that a smooth function τ ∈ T → v(τ) ∈ V D
N

(or, with a slight abuse of notation, the vector {vi(τ)}
N−1
i=1 of its nodal values) is a strict supersolution

(resp. strict subsolution) of the semidiscrete Perona-Malik equation (2.5) in I × T if

HPM(v) > 0 (resp. HPM(v) < 0), (2.7)

where the inequalities are required to hold in the whole of I × T , or equivalently at all inner and
extremal nodes for τ ∈ T .

3 Formal asymptotic analysis

In this section we perform a formal asymptotic expansion of the solution uh of (2.5), (2.6), under the
assumption that the solution ulim of the limit problem as h→ 0+ has only two jumps, located exactly
at the two boundary points {x0, xN} of I. To begin the analysis, we fix an initial height

a0 6∈ {0,M}, (3.1)

which is the initial value of ulim in ]0, ℓ[. Since ulim must assume the Dirichlet boundary datum, it
has initially only two jumps at x0 and xN .
We expect an evolution with a plateau evolving vertically in time: ulim(x, τ) = a(τ), with a(0) = a0.
We are interested in determining the vertical speed ȧ(τ). Our aim is to determine the first terms of
an asymptotic expansion of the discrete solution uh in terms of powers of h, valid for small values of
h > 0. A key point is that we cannot simply expand the nodal values uh

i , since the number of nodes
also depends on h, and xi assumes different positions as h→ 0+. Therefore we will suppose that there
are functions of x of which we use only the nodal values. We stress that the asymptotic expansion is
formal; nevertheless, it is useful to prove the rigorous convergence result of Section 5.
We shall assume that the discrete solution uh(τ), which for simplicity we occasionally denote also by
u(τ) = (ui(τ))i, can be expanded in terms of h with functions Uj which are independent of h, and so
that Uj(·, τ) are smooth in I. Precisely, we assume

uh(xi, τ) = a(τ) + hU1(xi, τ) + h2U2(xi, τ) + ..., i = 1, . . . , N − 1. (3.2)

We also assume that during the evolution the space derivative of uh is always << 1 in the inner
intervals Ki, i = 2, ..., N − 1, whereas it is >> 1 in the two extremal intervals K1 and KN . In
this way equation (2.5) will coincide with the space-discretized heat equation at all inner nodes xi,
i = 2, ..., N − 2 (recall (2.1)).
Using (3.2) the derivative of uh with respect to τ can be expressed as

u̇h(xi, τ) = ȧ(τ) + hU̇1(xi, τ) + h2U̇2(xi, τ) + O(h3). (3.3)

3.1 Analysis at the inner nodes in case of two jumps

We need to express the discrete space derivatives in terms of the continuous ones, using Taylor

expansion. If v = v(x) is smooth in I we have v(xi±1) = v(xi)±hv
′(xi)+

h2

2 v
′′(xi)±

h3

6 v
′′′(xi)+O(h4),

and

(D+D−v)i =
1

h2
(vi+1 − 2vi + vi−1) = v′′(xi) + O(h2). (3.4)

Substituting in (2.5), using (3.3) and (3.2) we get

hȧ(τ) + h2U̇1(xi, τ) = hU ′′

1 (xi, τ) + h2U ′′

2 (xi, τ) + O(h3), i = 2, . . . , N − 2, (3.5)

where again we denote by ′ the derivative with respect to x.
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Note that if we want to extend (3.5) to the order 3 we need to make use of the fourth derivative of v
in (3.4).
We now equate the coefficients of the same powers of h.

Order 1. From (3.5) it follows that U1 has constant second space derivative at the inner nodes. It is
then natural to impose for U1 the requirement

U ′′

1 (x, τ) = ȧ(τ) ∀x ∈ I. (3.6)

Integrating twice we can write, for any x ∈ I,

U ′

1(x, τ) = ȧ(τ)

(
x−

ℓ

2

)
+ β(τ), (3.7)

U1(x, τ) =
1

2
ȧ(τ)

(
x−

ℓ

2

)2

+ β(τ)

(
x−

ℓ

2

)
+ γ(τ) =: Ũ1(x, τ) + γ(τ), (3.8)

where the time depending functions β and γ are still to be determined.

Order 2. We get

U ′′

2 (x, τ) = U̇1(x, τ) =
1

2
ä(τ)

(
x−

ℓ

2

)2

+ β̇(τ)

(
x−

ℓ

2

)
+ γ̇(τ) ∀x ∈ I, (3.9)

so that U2 is a polynomial of degree 4 having fourth space derivative given by ä(τ).
The functions a and β will be determined at the end of the discussion of the 0-order terms in Section
3.2, see formulae (3.21), (3.23). The function γ will be determined in (3.29).

3.2 Analysis at the extremal nodes in case of two jumps

It is essential to analyze what happens at the two estremal nodes x1 and xN−1. Let us concentrate
on the node x1; we need to accurately compute the two incremental quotients (D−u)i, i = 1, 2. It is
here convenient to Taylor-expand about the point x = 0, whose position does not depend on h. If v
is smooth in I, by expanding the values v(x2) = v(2h) and v(x1) = v(h) about 0, and subtracting we
end up with

(D−v)2 = v′(0) +
3

2
hv′′(0) + O(h2). (3.10)

This formula can be used to compute, using (3.2),

(D−u)2 = hU ′

1(0, τ) + h2

(
U ′

2(0, τ) +
3

2
U ′′

1 (0, τ)

)
+ O(h3). (3.11)

Similarly, expanding about ℓ,

(D−u)N−1 = hU ′

1(ℓ, τ) + h2

(
U ′

2(ℓ, τ) −
3

2
U ′′

1 (ℓ, τ)

)
+ O(h3). (3.12)

In the first extremal interval K1 the situation is different, since we have to take into account the
Dirichlet value u(0) = 0. Moreover, since we end up with a very large O(1/h) space derivative, we
need to use the definition φ′(s) = 1/s (see (2.1)). Using Taylor expansion about 0 for the value of u
at x1, from (3.7) we have

φ′
(
(D−u)1

)
=

[
a(τ)

h
+ U1(0, τ) + h (U2(0, τ) + U ′

1(0, τ)) + O(h2)

]−1

(3.13)

=

[
a(τ)

h
+ U1(0, τ) + O(h)

]−1

=
h

a(τ)
− h2U1(0, τ)

a2(τ)
+ O(h3).
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Similarly, we find

φ′
(
(D−u)N

)
=

[
M− a(τ)

h
− U1(ℓ, τ) + O(h)

]−1

=
h

M− a(τ)
+ h2 U1(ℓ, τ)

(M− a(τ))2
+ O(h3).

(3.14)

Finally, using (3.11), (3.13) and (2.1), we have

(D+φ′(D−u))1 =
1

h

(
φ′((D−u)2) − φ′(D−u)1

)
=

1

h

(
(D−u)2 − φ′(D−u)1

)

= −
1

a(τ)
+ U ′

1(0, τ) + h

(
U ′

2(0, τ) +
3

2
U ′′

1 (0, τ) +
U1(0, τ)

a2(τ)

)
+ O(h2),

(3.15)

and similarly

(D+φ′(D−u))N−1 =
1

M− a(τ)
− U ′

1(ℓ, τ)

+ h

(
−U ′

2(ℓ, τ) +
3

2
U ′′

1 (ℓ, τ) +
U1(ℓ, τ)

(M− a(τ))2

)
+ O(h2).

(3.16)

Regarding the time derivative in (2.5), we express (3.3) at the node x1 in terms of x = 0 by Taylor
expansion, e.g.

U̇1(x1, τ) = U̇1(0, τ) + hU̇ ′

1(0, τ) + O(h2).

Therefore, substituting in (3.3)

hu̇1 = hȧ(τ) + h2U̇1(0, τ) + h3(U̇2(0, τ) + U̇ ′

1(0, τ)) + O(h4) = hȧ(τ) + h2U̇1(0, τ) + O(h3). (3.17)

Similarly

hu̇N−1 = hȧ(τ) + h2U̇1(ℓ, τ) + h3(U̇2(ℓ, τ) − U̇ ′

1(ℓ, τ)) + O(h4) = hȧ(τ) + h2U̇1(ℓ, τ) + O(h3). (3.18)

Equating (3.17) to (3.15) and (3.18) to (3.16), we get equations for various orders in powers of h that
we now specify.

Order 0. Terms of order 0 are only present on the right-hand-side; they give

U ′

1(0, τ) =
1

a(τ)
, (3.19)

U ′

1(ℓ, τ) =
1

M− a(τ)
. (3.20)

Integrating (3.6) on the whole of I and equating the result with (3.20) minus (3.19) we get the most
important result:

ȧ(τ) =
1

ℓ

(
1

M− a(τ)
−

1

a(τ)

)
, τ ∈ [0, Tsing[, (3.21)

which is sufficient to recover a(τ) in terms of the initial value

a(0) = a0. (3.22)

Here Tsing = Tsing(M, a0) ≤ +∞ is the first time when

either lim
τ→T

−

sing

a(τ) = 0 or lim
τ→T

−

sing

(M− a(τ)) = 0.
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Remark 3.1. Let M > 0. If a0 = M/2 then a(τ) ≡ M/2 is an unstable equilibrium (Tsing = +∞).
In the other cases, we have Tsing < +∞. Moreover if a0 ∈ ]0,M/2[ (resp. a0 ∈ ]M/2,M[) then ȧ < 0
(resp. ȧ > 0) in [0, Tsing[, and limτ→T

−

sing
ȧ(τ) = −∞ (resp. limτ→T

−

sing
ȧ(τ) = +∞).

We can also substitute (3.19) (evaluated at x = ℓ) in (3.7) to uniquely recover, using (3.21), the
function β:

β(τ) =
1

2

(
1

a(τ)
+

1

M− a(τ)

)
, τ ∈ [0, Tsing[. (3.23)

Order 1. Collecting all terms of order h in (3.15) and (3.17) we get, for τ ∈ [0, Tsing[,

U ′

2(0, τ) +
U1(0, τ)

a2(τ)
= ȧ(τ) −

3

2
U ′′

1 (0, τ) = −
1

2
ȧ(τ), (3.24)

where we use (3.6) evaluated at x = 0. In (3.24) we have two unknowns, since the value of U1(0, τ)
depends on γ(τ) which we do not know yet. However, we still have to enforce a similar equation on
the rightmost node xN−1, which gives another independent relation for γ(τ) and U ′

2(ℓ, τ), the latter
being related to U ′

2(0, τ) via (3.9). From (3.16), (3.18) and (3.6) we get

−U ′

2(ℓ, τ) +
U1(ℓ, τ)

(M− a(τ))2
= ȧ(τ) −

3

2
U ′′

1 (ℓ, τ) = −
1

2
ȧ(τ). (3.25)

Adding (3.24) and (3.25) we get

U ′

2(0, τ) − U ′

2(ℓ, τ) +
U1(0, τ)

a2(τ)
+

U1(ℓ, τ)

(M− a(τ))2
= −ȧ(τ). (3.26)

From (3.8) we have

ℓγ̇ =

∫

I

U̇1 dx−

∫

I

˙̃
U1 dx. (3.27)

Furthermore, from (3.9), (3.26) and (3.8) we obtain

∫

I

U̇1 dx = U ′

2(ℓ, τ) − U ′

2(0, τ) = ȧ(τ) +
U1(0, τ)

a2(τ)
+

U1(ℓ, τ)

(M− a(τ))2

= ȧ(τ) +
Ũ1(0, τ)

a2(τ)
+

Ũ1(ℓ, τ)

(M− a(τ))2
+

(
1

a2(τ)
+

1

(M− a(τ))2

)
γ(τ).

(3.28)

From (3.27) and (3.28) we deduce

ℓ γ̇(τ) =

(
1

a2(τ)
+

1

(M− a(τ))2

)
γ(τ) −

∫

I

˙̃
U1(x, τ) dx+ ȧ(τ) +

Ũ1(0, τ)

a2(τ)
+

Ũ1(ℓ, τ)

(M− a(τ))2
. (3.29)

Since a and β have already been determined, also the function Ũ1 defined in (3.8) is determined. Then
(3.29) is a linear ordinary differential equation in γ, with smooth coefficients in [0, Tsing[. Therefore,
γ cannot singularize before Tsing, and is uniquely defined in [0, Tsing[, once γ(0) has been assigned.
Consequently, the expressions of U1 and U2 in (3.2) in [0, Tsing[ at the inner and extremal nodes are
given by (3.8) and (3.9).
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x
i j−1 j−1

y x
i j−1
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i
y
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+h+h +2h

(h)ψ

Figure 1: The points in (3.30) and (3.31) and the function ϕj and ψj defined in (3.37), (3.40)
respectively.

3.3 Asymptotic analysis in case of many jumps

In order to prove the convergence result in Section 5.2 in case of many jumps, we need an asymptotic
expansion localized on a generic subinterval of I having bundary points which are not grid points. Let
k ≥ 1 be an integer independent of h, and y0, y1, . . . , yk be points of I with

y0 := 0 < y1 < . . . < yk := ℓ. (3.30)

Define Ij :=]yj−1, yj [, and assume that yj−1 and yj do not belong to the grid. We denote by ij ∈ N

the index satisfying
yj ∈ ]xij

, xij
+ h[, (3.31)

which is unique for h > 0 sufficiently small.
We now repeat the formal analysis of Section 3 when I is replaced by Ij , assuming the validity of the
expansion

uh(xi, τ) = aj(τ) + hU1,j(xi, τ) + h2U2,j(xi, τ) + ..., i = ij−1 + 1, . . . , ij , (3.32)

with the conventions
a0(τ) ≡ 0 and ak+1(τ) ≡ M.

Arguing similarly to Section 3.1 we obtain

U1,j(x, τ) =
1

2
ȧj(τ)

(
x−

yj + yj−1

2

)2

+ βj(τ)

(
x−

yj + yj−1

2

)
+ γj(τ) =: Ũ1,j(x, τ) + γj(τ) (3.33)

and

U ′′

2,j(x, τ) = U̇1,j(x, τ) =
1

2
äj(τ)

(
x−

yj + yj−1

2

)2

+ β̇j(τ)

(
x−

yj + yj−1

2

)
+ γ̇j(τ), (3.34)

for any x ∈ Ij . In particular
U ′′

1,j = ȧj in Ij . (3.35)

Some changes are required in the arguments of Section 3.2, since now the boundary points of Ij
are not points of the grid, and the Dirichlet condition is not satisfied anymore. Taking this remark
into account, and observing that the boundary points yj−1, yj of the interval do not change with h,
expanding about yj−1 yields that the analog of (3.10) reads as

(D−v)ij−1+2 = v′(yj−1) +

(
1

2
+ ϕj−1(h)

)
hv′′(yj−1) + O(h2), (3.36)

where

ϕj−1(h) :=
xij−1

+ h− yj−1

h
. (3.37)
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Similarly the analog of (3.11), using (3.32), reads as

(D−u)ij−1+2 = hU ′

1,j(yj−1, τ) + h2

[
U ′

2,j(yj−1, τ) +

(
1

2
+ ϕj−1(h)

)
U ′′

1,j(yj−1, τ)

]
+ O(h3), (3.38)

Similarly, formula (3.12) is replaced by

(D−u)ij
= hU ′

1,j(yj , τ) + h2

[
U ′

2,j(yj , τ) −

(
1

2
+ ψj(h)

)
U ′′

1,j(yj , τ)

]
+ O(h3), (3.39)

where

ψj(h) :=
yj − xij

h
= 1 − ϕj(h). (3.40)

Let us now compute (D−u)ij−1+1 and (D−u)ij+1. We have

(D−u)ij−1+1 =
aj(τ) − aj−1(τ)

h
+ U1,j(yj−1, τ) − U1,j−1(yj−1, τ) + O(h)

(D−u)ij+1 =
aj+1(τ) − aj(τ)

h
− U1,j+1(yj , τ) − U1,j(yj , τ) + O(h).

(3.41)

Hence, recalling (2.1),

φ′((D−u)ij−1+1) =
h

aj(τ) − aj−1(τ)
− h2U1,j(yj−1, τ) − U1,j−1(yj−1, τ)

(aj(τ) − aj−1(τ))2
+ O(h3), (3.42)

and

φ′((D−u)ij−1
) =

h

aj+1(τ) − aj(τ)
+ h2U1,j+1(yj , τ) − U1,j(yj , τ)

(aj+1(τ) − aj(τ))2
+ O(h3), (3.43)

Therefore, from (3.38) and (3.42) we get

(D+φ′(D−u))ij−1+1 = −
1

aj(τ) − aj−1(τ)
+ U ′

1,j(yj−1, τ)

+ h
[
U ′

2,j(yj−1, τ) +

(
1

2
+ ϕj−1(h)

)
U ′′

1,j(yj−1, τ)

+
U1,j(yj−1, τ) − U1,j−1(yj−1, τ)

(aj(τ) − aj−1(τ))2

]
+ O(h2),

(3.44)

and from (3.39) and (3.43)

(D+φ′((D−u))ij
=

1

aj+1(τ) − aj(τ)
− U ′

1,j(yj , τ)

+ h
[
− U ′

2,j(yj , τ) +

(
1

2
+ ψj(h)

)
U ′′

1,j(yj , τ)

+
U1,j+1(yj , τ) − U1,j(yj , τ)

(aj+1(τ) − aj(τ))2

]
+ O(h2).

(3.45)

Recalling (2.5), using the expansion

U̇1,j(xij−1
+ h, τ) = U̇1,j(yj−1, τ) + hϕj(h)U̇

′

1,j(yj−1, τ) + O(h2),

and
hu̇h = hȧj + h2U̇1,j + O(h3), (3.46)
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we get, equating the terms of order 0 in h,

U ′

1,j(yj−1, τ) =
1

aj(τ) − aj−1(τ)
, U ′

1,j(yj , τ) =
1

aj+1(τ) − aj(τ)
. (3.47)

Taking the difference of the two equations in (3.47), and integrating in Ij equation (3.35) it follows

ȧj(τ) =
1

yj − yj−1

(
1

aj+1(τ) − aj(τ)
−

1

aj(τ) − aj−1(τ)

)
, j = 1, . . . , k. (3.48)

Using (3.33) and (3.48) we have

1

aj+1(τ) − aj(τ)
= U ′

1(yj , τ) =
1

2
ȧj(τ) (yj − yj−1) + βj(τ)

=
1

2

(
1

aj+1(τ) − aj(τ)
−

1

aj(τ) − aj−1(τ)

)
+ βj(τ),

which implies

βj(τ) =
1

2

(
1

aj+1(τ) − aj(τ)
+

1

aj(τ) − aj−1(τ)

)
, j = 1, . . . , k. (3.49)

Moreover, using (3.46), equating the terms of order 1 in h, and adding the two formulae in (3.44), we
get

U ′

2,j(yj , τ) − U ′

2,j(yj−1, τ) = (ϕj−1(h) + ψj(h) − 1)ȧj

+
U1,j(yj−1, τ) − U1,j−1(yj−1, τ)

(aj(τ) − aj−1(τ))2
+
U1,j+1(yj , τ) − U1,j(yj , τ)

(aj+1(τ) − aj(τ))2
.

(3.50)

Reasoning as in Section 3.2 and using (3.35) we obtain

(1 − ϕj−1(h) − ψj(h))ȧj =U ′

2,j(yj , τ) − U ′

2,j(yj−1, τ)

+
U1,j(yj−1, τ) − U1,j−1(yj−1, τ)

(aj(τ) − aj−1(τ))2
+
U1,j+1(yj , τ) − U1,j(yj , τ)

(aj+1(τ) − aj(τ))2
.

(3.51)

Using also (3.34) we deduce
∫

Ij

U ′′

2,j(x, τ) dx =

∫

Ij

U̇1,j(x, τ) dx = U ′

2,j(yj+1, τ) − U ′

2,j(yj , τ)

=(1 − ϕj−1(h) − ψj(h))ȧj −
U1,j(yj−1, τ) − U1,j−1(yj−1, τ)

(aj(τ) − aj−1(τ))2

−
U1,j+1(yj , τ) − U1,j(yj , τ)

(aj+1(τ) − aj(τ))2

=

∫

Ij

˜̇U1,j(x, τ) dx+ γ̇j(τ)(yj+1 − yj).

(3.52)

Since aj and βj have been already computed, (3.52) is a system of equations which determines the
unknown γj . Once also γj has been found, we have the complete expression of U1,j and hence of U2,j .

4 Construction of barriers and comparison functions

Based on the asymptotic analysis developped in Section 3 we construct a strict supersolution and a
strict subsolution of (2.5), (2.6) (that we call barriers) in case of two jumps. In case of many jumps,
we will construct suitable comparison functions, which will be strict super/subsolutions only in certain
subintervals of I. Although potential φ is not convex, we shall nevertheless be able to prove a version
of the maximum principle suitable for our situation. We will denote by C a positive constant the
value of which may vary from line to line.
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Figure 2: Graph of the central solution uh in (4.1) when a0 ∈ ]M/2,M[, for M > 0. In view of
(3.21) and (3.23), if a(τ) ∈ ]M/2,M[, then the abscissa of the vertex of the parabola defining U1(·, τ)
in (3.8) belongs to ] −∞, 0[, so that U1(·, τ) is increasing in ]h, ℓ− h[.

4.1 Central solution in case of two jumps

The construction of barriers is based on a central solution uh defined using the asymptotic analysis of
Section 3, to which we shall add/subtract appropriately selected terms.
More precisely, recalling that a(τ) is the solution of (3.21) and (3.22), we give the following

Definition 4.1. We define the central solution uh as

uh(xi, τ) := a(τ) + hU1(xi, τ) + h2Ũ2(xi, τ), i = 1, . . . , N − 1, τ ∈ [0, Tsing[ , (4.1)

where Ũ2 is obtained by integrating twice (3.9), choosing the first integrating constant in such a way
that (3.24) and (3.25) are satisfied, and the second integrating constant in any way, e.g. by imposing

that Ũ2 vanishes at x = ℓ/2.

Note that uh satisfies the Dirichlet boundary conditions, namely

uh(0, τ) = 0, uh(ℓ, τ) = M.

Upon substituting uh in (2.5) we get a (small) residual HPM(uh) that we must compute separately at
the inner nodes x2, ..., xN−2 and at the extremal nodes x1 and xN−1.
Let now T ∈ ]0, Tsing[. Recalling the analysis up to the order two in Section 3.1 we readily get

|HPM(uh)i| ≤ C h3, i = 2, ..., N − 2, τ ∈ [0, T ], (4.2)

with a constant C depending only on T and ℓ. It is thus possible to control this residual using an
appropriate time-dependent, constant in space, vertical shift of order O(h2).
Furthermore, recalling the analysis up to the order one in Section 3.2 we also get

|HPM(uh)i| ≤ C h2, i = 1 and i = N − 1, τ ∈ [0, T ], (4.3)

with a constant C depending only on T and ℓ.

11



Remark 4.2. Due to the Dirichlet boundary condition, the O(h2) vertical shift (see the term C1(τ)h
2

in (4.4) below) that we will need to control the residual at the inner nodes in (4.2) produces a change in
the derivative at the extremal intervals which in turn produces an O(h2) modification of the computed
residual that needs to be compensated if it has the wrong sign. This is the reason of the presence
of an additional shape correction of order O(h3) in the form of our super/subsolutions (see the term
C1(τ)C2h

3(x1 − ℓ/2)2 in (4.4)) that we define in the next section.

4.2 Discrete sub and supersolution in case of two jumps

The supersolution u+h and the subsolution u−h of (2.5), (2.6) are defined using the first two terms of
the formal asymptotic expansion with the addition of a vertical shift C1(τ)h

2 and a shape correction
C1(τ)C2h

3(x− ℓ/2)2. More precisely, recalling the expression of uh in (4.1), and given T ∈ ]0, Tsing[,
for any τ ∈ [0, T ] we define u±h(τ) ∈ V D

N as

u±h(xi, τ) := uh(xi, τ) ± C1(τ)h
2 ± C1(τ)C2h

3

(
xi −

ℓ

2

)2

, i = 1, . . . , N − 1, (4.4)

and
u±h(0, τ) := 0, u±h(ℓ, τ) := M. (4.5)

The positive function C1(τ) and the positive constant C2 will be chosen later on independently of h
(but possibly depending on T ). Having shift terms of order at least O(h2) is important to ensure that
all functions between the two barriers, which are at mutual distance O(h2), have spatial derivatives
that differ of O(h) from the derivative of the central solution uh, which in turn ensures that the regions
of the domain of φ where φ′′ < 0 are not actually used.
The following result confirms the usefulness of the formal asymptotic expansion made in Section 3.
We point out that we use the symbol O(hσ), σ ≥ 0, to denote an infinitesimal of order hσ, which is
independent of τ ∈ [0, T ].

Theorem 4.3. Fix T ∈ ]0, Tsing[. Then there exist a smooth positive function C1 : [0, T ] → ]0,+∞[,
a constant C2 > 0, and h0 > 0 such that the function u+h (resp. u−h) defined in (4.4) is a strict
supersolution (resp. strict subsolution) of the semidiscrete Perona-Malik equation (2.5) in I × [0, T ],
for all h ∈ ]0, h0[.

Proof. We only consider the function u+h, since a similar argument works for u−h. We set

S1 := C1(τ)h
2, S2 := C1(τ)C2h

3(x− ℓ/2)2, (x, τ) ∈ I × [0, T ].

We call S1 the vertical shift and S2 the shape correction to the central solution uh.

Inner nodes. Let us first analyze the situation at the nodes x2, ..., xN−2. The vertical shift S1

contributes only to the time derivative u̇+h, with contribution C ′
1(τ)h

3. The shape correction S2 has
a contribution to u̇+h, bounded by C ′

1(τ)C2ℓ
2h4, which can be neglected if h is small enough, and a

contribution (with negative sign) to the discrete space derivative which is bounded by C1(τ)C2ℓh
3.

Therefore, in order to have the inequality

HPM(u+h) > 0 at the inner nodes, (4.6)

we need
C ′

1(τ) ≥ C
(
1 + C1(τ)C2

)
, (4.7)

for some C > 0 big enough, depending only on T and ℓ, where the extra term 1 in (4.7) is needed in
order to control the residual in (4.2).

Extremal nodes. Let us consider the extremal node x1. Recall that, thanks to the Dirichlet boundary
datum (4.5), the value of u+h at x = 0 is not modified with the vertical shift. Hence, in the interval

12



K1, the space derivative of u+h differs from the space derivative of uh essentially of an amount C1(τ)h,
which is due to the term S1. More precisely, we have

D−u+h(x1, τ) = D−uh(x1, τ) + C1(τ)h+ C1(τ)C2O(h2),

with |O(h2)| ≤ ℓ h2. Being
∣∣∣∣D

−uh(x1, τ) −
a(τ)

h

∣∣∣∣ ≤ ‖U1(x1, ·) + h Ũ2(x1, ·)‖L∞([0,T ]),

we get, using the second assumption in (2.1),

|φ′
(
D−u+h

)
(x1, τ) − φ′

(
D−uh

)
(x1, τ)| ≤ CC1(τ)

(
h3 + C2h

4
)
, (4.8)

where the constant C depends only on T and ℓ. This term needs a compensation, which is given by S2

that in turn influences the discrete space derivative of u+h in K2. Recalling that x1 = h and x2 = 2h,
we have, using (2h− ℓ

2 )2 − (h− ℓ
2 )2 = −ℓh+ 3h2,

D−u+h(x2, τ) = D−uh(x2, τ) − ℓC1(τ)C2h
3 + 3C1(τ)C2h

4,

which gives, using the first assumption in (2.1),

φ′
(
D−u+h

)
(x2, τ) = φ′

(
D−uh

)
(x2, τ) − ℓC1(τ)C2h

3 + 3C1(τ)C2h
4. (4.9)

From (4.8), (4.9) and the definition of HPM we then obtain

HPM(u+h(x1, τ)) ≥ HPM

(
uh(x1, τ)

)
+ C1(τ)

(
C2ℓ− C − CC2h

)
h2,

where the term CC1(τ)C2h
3 absorbs the last addendum on the right-hand side of (4.8) and (4.9).

Recalling from (4.3) that HPM(uh(x1, τ)) is of order h2, we obtain

HPM(u+h(x1, τ)) > 0, (4.10)

provided we choose h0 > 0 small enough and C2 > 0 and C1(0) > 0 large enough.
Once we have chosen C2 and C1(0) we can define the increasing function C1(τ) such that also (4.7)
holds, so that the thesis follows from (4.6) and (4.10).

In the case of the extremal node xN−1 one can reason in a similar way, observing that (4.9) is replaced
by

φ′
(
D−u+h

)
(xN−1, τ) = φ′

(
D−uh

)
(xN−1, τ) + ℓC1(τ)C2h

3 + 2C1(τ)C2h
3 − 3C1(τ)C2h

4.

4.3 Discrete comparison functions in case of many jumps

The super and subsolutions defined in (4.4) are perturbations of the central solution uh, which at
time 0 has only two jumps at the boundary of I. In order to deal with more general initial data, we
shall patch together the super and subsolutions previously defined, thus obtaining what we will call
the comparison functions.
Let k ≥ 1 be an integer independent of h, and y0, y1, . . . , yk be points of I with y0 := 0 < y1 < . . . <
yk := ℓ. Let u0 : I → R be a function which is constantly equal to some constant a0

j in the interval

]yj−1, yj [, for 1 ≤ j ≤ k. Let also a0
0 := 0, a0

k+1 := M. We assume that a0
j 6= a0

j+1 for j = 1, . . . , k− 1.
Set

u0(x) :=

k−1∑

j=0

a0
j+11[yj ,yj+1[(x), x ∈ I, (4.11)
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where, given a subinterval A of I, we indicate by 1A its characteristic function, namely 1A(x) = 1
if x ∈ A and 1A(x) = 0 if x ∈ I \ A. We think of u0 as assuming the Dirichlet boundary datum
(2.6), therefore if a0

1 6= 0 (resp. a0
k 6= M) the point y0 (resp. yk) is considered a jump point of u0.

For simplicity, in the sequel we shall assume that yj is not a grid point, so that in particular u0(xij
)

is well defined (see Figure 3). The general case can be treated in a similar way, with only minor
modifications.
As in Section 3.3, for all 1 ≤ j ≤ k we define

Ij := ]yj−1, yj [. (4.12)

and we denote by ij the index for which yj ∈ ]xij
, xij

+h[, see Figure 1. Let a0(τ) ≡ 0, ak+1(τ) ≡ M,
and (a1(τ), . . . , ak(τ)), τ ∈ [0, Tsing[, be the solution of the ODE’s system

ȧj(τ) =
1

yj − yj−1

(
1

aj+1(τ) − aj(τ)
−

1

aj(τ) − aj−1(τ)

)
, j = 1, . . . , k, (4.13)

with
aj(0) = a0

j , j = 0, . . . , k + 1. (4.14)

The time Tsing ∈ ]0,+∞] is the first time for which at least one index j ∈ {0, . . . , k} is such that
lim infτ→T

−

sing
(aj+1(τ) − aj(τ)) = 0.

System (4.13) is a generalization of equation (3.21), and reduces to it when k = 1, and has been
formally derived in Section 3.3.
Define the piecewise constant function ulim : I × [0, Tsing[ → R as

ulim(x, τ) :=

k−1∑

j=0

aj+1(τ)1[yj ,yj+1[(x), (x, τ) ∈ I × [0, Tsing[. (4.15)

Again, we assume that ulim satisfies (2.6), therefore if a1(τ) 6= 0 (resp. ak(τ) 6= M) the point y0 (resp.
yk) is considered a jump point of ulim(·, τ) (see Figure 3).
Observe that the vertical velocity ȧj of each horizontal plateau of the graph of ulim(·, τ) depends on
the behaviour of its contiguous plateaus. Set Julim

:= ∅ if k = 1 and Julim
:= {y1, . . . , yk−1} if k ≥ 2.

The set Julim
is therefore the set of jump points of ulim(·, τ) which are inside I. The case k = 1 is when

the jumps of ulim(·, τ) are both located at the boundary of I, and has been considered in Theorem
4.3.

Definition 4.4. Let T ∈ ]0, Tsing[. For τ ∈ [0, Tsing[ and j = 1, . . . , k, we define the central solution
uh as

uh(xi, τ) := aj(τ) + hU1,j(xi, τ) + h2Ũ2,j(xi, τ), i = ij−1 + 1, . . . , ij , (4.16)

where Ũ2,j is obtained by integrating twice (3.34), choosing the integrating constants as in Definition
4.1.

In analogy with (4.4), we also give the following

Definition 4.5. Let T ∈]0, Tsing[. For τ ∈ [0, Tsing[ and j = 1, . . . , k, we define the comparison
functions Θ±h(τ) ∈ V D

N as

Θ±h(xi, τ) := uh(xi, τ) ± (−1)j+1C1(τ)h
2 ± (−1)j+1C1(τ)C2h

3

(
xi −

yj−1 + yj

2

)2

,

Θ±h(0, τ) := 0, Θ±h(ℓ, τ) := M, (4.17)

for all i = ij−1 + 1, . . . , ij.
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Figure 3: Jump points (k = 6) and the values of the function ulim(·, τ).

The positive function C1(τ) and the positive constant C2 will be chosen later on independently of h
(but possibly depending on T ).
The functions Θ±h are no longer super/subsolutions in the whole of I×[0, T ], as shown in the following
theorem.

Theorem 4.6. Fix T ∈ ]0, Tsing[. There exist a smooth increasing function C1 : [0, T ] → ]0,+∞[, a
constant C2 > 0, and h0 > 0 such that, for all h ∈ ]0, h0[, the function Θ+h (resp. Θ−h) defined in
(4.17) is a strict supersolution (resp. subsolution) of (2.5) in Ij × [0, T ] for j ∈ {1, . . . , k} odd (resp.
even), while it is a strict subsolution (resp. supersolution) in Ij × [0, T ] for j ∈ {1, . . . , k} even (resp.
odd).

Proof. It is enough to consider the function Θ+h. We also fix j ∈ {1, . . . , k} odd, the argument being
similar when j is odd.

Inner nodes. The analysis at the inner nodes is exactly as in the proof of Theorem 4.3, and we omit
the details.

Extremal nodes. It is enough to consider the extremal node xij−1+1, since the arguments for xij
are

the same. In the interval Kij−1+1, the space derivative of Θ+h differs from the space derivative of uh

of an amount 2hC1(τ). More precisely, we have

D−Θ+h(xij−1+1, τ) = D−uh(xij−1+1, τ) + 2C1(τ)h+ 2C1(τ)C2O(h2),

with |O(h2)| ≤ ℓ h2. Being

∣∣∣∣D
−uh(xij−1+1, τ) −

aj(τ) − aj−1(τ)

h

∣∣∣∣ ≤ ‖U1,j−1(xij−1+1, ·) + h Ũ2,j−1(xij−1+1, ·)‖L∞([0,T ])

+ ‖U1,j(xij−1+1, ·) + h Ũ2,j(xij−1+1, ·)‖L∞([0,T ]), (4.18)

we get
|φ′

(
D−Θ+h

)
(xij−1+1, τ) − φ′

(
D−uh

)
(xij−1+1, τ)| ≤ 2C1(τ)C (h3 + C2h

4), (4.19)
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where the constant C depends only on T and ℓ. Moreover, we have

D−Θ+h(xij−1+2, τ) = D−uh(xij−1+2, τ) − (yj + yj−1)C1(τ)C2h
3 + 3C1(τ)C2h

4,

which gives

φ′
(
D−Θ+h

)
(xij−1+2, τ) = φ′

(
D−uh

)
(xij−1+2, τ) − (yj + yj−1)C1(τ)C2h

3 + 3C1(τ)C2h
4. (4.20)

From (4.19), (4.20) and the definition of HPM we then obtain

HPM(Θ+h(xij−1+1, τ)) ≥ HPM

(
uh(xij−1+1, τ)

)
+ C1(τ)

(
C2(yj + yj−1) − C − CC2h

)
h2,

where the term CC1(τ)C2h
3 absorbs the last terms on the right-hand side of (4.19) and (4.20).

Recalling that HPM(uh(xij−1+1, τ)) is of order h2, we obtain

HPM(Θ+h(xij−1+1, τ)) > 0, (4.21)

provided we choose h0 small enough, C2 big enough and C1(0) > 0.

5 The convergence result

5.1 Comparison and convergence in case of two jumps

We want to prove a comparison principle between the super and subsolutions of (2.5), (2.6) constructed
in Section 4.2.

Theorem 5.1. Let u0 ≡ a0 /∈ {0,M} in I. Assume that u0 satisfies the Dirichlet boundary condition
u0(0) = 0 and u0(ℓ) = M 6= 0, so that 0 and ℓ are the two jump points of u0. Let uh : I× [0,+∞[ → R

be the solution of (2.5), (2.6), with

uh(xi, 0) = a0, i = 1, . . . , N − 1.

Let u±h : I× [0, T ] → R be the strict super and subsolution of (2.5) constructed in Section 4.2. Then,
there exists h0 > 0 such that

u−h(x, τ) ≤ uh(x, τ) ≤ u+h(x, τ), (5.1)

for all (x, τ) ∈ I × [0, T ], and h ∈ ]0, h0[.

Proof. We argue by contradiction. Let τ0 ∈ [0, T ] be the infimum of the times when one of the
inequalities in (5.1) is not satisfied. Notice that τ0 > 0, since |uh(x, 0) − u±h(x, 0)| ≥ ch2 for some
positive constant c > 0, if h is small enough. Hence at time τ0 the graph of uh touches the graph of
one of the barriers u±h. Suppose for instance that at τ = τ0 the graph of uh touches the graph of
u+h at some (possibly nonunique) node xi0 , so that u̇h(xi0 , τ0) ≥ u̇+h(xi0 , τ0). Since u̇+h is a strict
supersolution of (2.5) we then have

hu̇h(xi0 , τ0) = D+φ′(D−uh)(xi0 , τ0) ≥ hu̇+h(xi0 , τ0) > D+φ′(D−u+h)(xi0 , τ0). (5.2)

We now divide the proof into two cases.

Case 1. Assume that i0 ∈ {2, . . . , N−2}, namely xi0 is an inner node of I. Note that, by construction,
there exists a constant C > 0 (depending on T ) such that

|u+h(x, τ) − u−h(x, τ)| ≤ Ch2, (x, τ) ∈ [h, ℓ− h] × [0, T ].

Hence, since the grid size is h and u−h ≤ uh ≤ u+h in [h, ℓ− h] × [0, τ0], it follows that

|D−uh(x, τ)| ≤ Ch, (x, τ) ∈ [2h, ℓ− h] × [0, τ0]. (5.3)
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Recalling that φ′(p) = p in a neighbourhood of 0, (5.2) implies

D+D−uh(xi0 , τ0) > D+D−u+h(xi0 , τ0), (5.4)

which gives a contradiction, since u+h(·, τ0) ≥ uh(·, τ0) on [0, ℓ] and u+h(xi0 , τ0) = uh(xi0 , τ0).

Case 2. Assume now that xi0 is an extremal node. Without loss of generality, we suppose i0 = 1,
since a similar reasoning holds if i0 = N−1. Then, as u+h and uh satisfy the same Dirichlet boundary
condition, we have that u+h(·, τ0) and uh(·, τ0) coincide in [0, x1], and therefore

D−uh(x1, τ0) = D−u+h(x1, τ0). (5.5)

On the other hand, we have uh(x2, τ0) ≤ u+h(x2, τ0), so that

D−uh(x2, τ0) ≤ D−u+h(x2, τ0). (5.6)

Inequalities (5.6) and (5.3) imply

φ′(D−uh)(x2, τ0) = D−uh(x2, τ0) ≤ D−u+h(x2, τ0) = φ′(D−u+h)(x2, τ0). (5.7)

From (5.5) and (5.7) we deduce

D+φ′(D−uh)(x1, τ0) ≤ D+φ′(D−u+h)(x1, τ0), (5.8)

which contradicts (5.2).

As a consequence of Theorem 5.1 and the explicit form of the barriers, we have the following conver-
gence result of the solutions of (2.5) to the solution of (3.21).

Theorem 5.2. Let u0 ≡ a0 /∈ {0,M} in I. Assume that u0 satisfies the Dirichlet boundary conditions
u0(0) = 0 and u0(ℓ) = M 6= 0, so that 0 and ℓ are the two jump points of u0. Let uh : I× [0,+∞[ → R

be the solution of (2.5), (2.6), with

uh(xi, 0) = a0, i = 1, . . . , N − 1.

Let ulim(x, τ) := a(τ) for all x ∈ I, where a(τ) solves (3.21), (3.22), and ulim satisfies the Dirichlet
boundary conditions. Then

lim
h→0+

uh = ulim uniformly in the compact subsets of I × [0, Tsing[. (5.9)

5.2 Comparison and convergence in case of many jumps

We now extend the comparison result of Theorem 5.1 to the more general comparison functions
constructed in Section 4.3.

Theorem 5.3. Let u0 be as in (4.11) and let uh : I × [0,+∞[ → R be the solution of (2.5), (2.6),
with initial datum

uh(xi, 0) = a0
j , j = 1, . . . , k, i = ij−1 + 1, . . . , ij .

Let T ∈ ]0, Tsing[, and let u±h : I × [0, T ] → R be the comparison functions defined in (4.17). Then
there exists h0 > 0 such that

Θ−h(x, τ) ≤ uh(x, τ) ≤ Θ+h(x, τ), (x, τ) ∈ Ij × [0, T ], j odd,

Θ+h(x, τ) ≤ uh(x, τ) ≤ Θ−h(x, τ), (x, τ) ∈ Ij × [0, T ], j even
(5.10)

for all h ∈ ]0, h0[.
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Figure 4: The comparison principle in the proof of case 2 in Theorem 5.1. The supersolution touches
the solution (the graph in bold) in correspondence of the first extremal point x1 of the grid.

j

husolution

comparison function +Θ h

comparison functionΘ+h

solution uh

y
j−1

x
i j−1

+h x ij
y

Figure 5: The comparison principle in case 2 of Theorem 5.3. When j is odd, the comparison function
touches the solution (the graph in bold) in correspondence of the extremal point xij−1

+ h, and it is
partly below and partly above the solution.
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Proof. The proof is similar to the proof of Theorem 5.1. Arguing by contradiction, we let τ0 ∈ ]0, T ]
be the infimum of the times when one of the inequalities in (5.10) is not satisfied. We fix for simplicity
j odd, being the argument analogous in the case of j even, by exchanging the role of Θ+h and Θ−h.
Hence at time τ0 the graph of uh touches the graph of one of the comparison functions, say Θ+h, at
some (possibly nonunique) point xi0 ∈ Ij , so that

hu̇h(xi0 , τ0) = D+φ′(D−uh)(xi0 , τ0) ≥ hΘ̇+h(xi0 , τ0) > D+φ′(D−Θ+h)(xi0 , τ0). (5.11)

We now divide the proof into two cases.

Case 1. Assume that xi0 6∈ {xij−1
+ h, xij

}, namely xi0 is an inner node of Ij . Note that, by
construction, there exists a constant C > 0 (depending on T ) such that

|Θ+h(x, τ) − Θ−h(x, τ)| ≤ Ch2, (x, τ) ∈ [xij−1
+ h, xij

] × [0, T ].

Hence, since the grid size is h and Θ−h ≤ uh ≤ Θ+h in [xij−1
+ h, xij

] × [0, τ0], it follows that

|D−uh(x, τ)| ≤ Ch, (x, τ) ∈ [xij−1
+ 2h, xij

] × [0, T ]. (5.12)

Then, being φ′(p) = p in a neighbourhood of 0, and being Θ+h a strict supersolution of (2.5) in
Ij × [0, τ0] by Theorem 4.6, we reach a contradiction as in Case 1 of the proof of Theorem 5.1.

Case 2. Assume now that xi0 is an extremal node, for instance xi0 = xij−1
+ h. Then, as

Θ+h ≤ uh in [xij−2
+ h, xij−1

] × [0, τ0],

we get
D−uh(xi0 , τ0) ≤ D−Θ+h(xi0 , τ0). (5.13)

Since (4.18) implies that |D−Θ+h(xi0 , τ0)| ≥ c/h for some c = c(T ) > 0, and φ′(p) = 1/p for |p| > p1,
from (5.13) we get

φ′(D−uh(xi0 , τ0)) ≥ φ′(D−Θ+h(xi0 , τ0)). (5.14)

On the other hand, we have uh(xi0 + h, τ0) ≤ Θ+h(xi0 + h, τ0), so that

D−uh(xi0 + h, τ0) ≤ D−Θ+h(xi0 + h, τ0). (5.15)

Inequalities (5.15), (5.12) and φ′(p) = p for |p| < p0, imply

φ′(D−uh)(xi0 + h, τ0) = D−uh(xi0 + h, τ0) ≤ D−Θ+h(xi0 + h, τ0) = φ′(D−Θ+h)(xi0 + h, τ0). (5.16)

Subtracting (5.14) from (5.16) we then deduce

D+φ′(D−uh)(xi0 , τ0) ≤ D+φ′(D−Θ+h)(xi0 , τ0),

which contradicts (5.11).

As before, from Theorem 5.3 and the explicit form of the comparison functions, we get the following
convergence result.

Theorem 5.4. Let u0 be as in (4.11), ulim as in (4.15), and let uh : I × [0,+∞[ → R be the solution
of (2.5), (2.6), with initial datum

uh(xi, 0) = a0
j , j = 1, . . . , k, i = ij−1 + 1, . . . , ij .

Then
lim

h→0+
uh = ulim uniformly on the compact subsets of I × [0, Tsing[. (5.17)

We conclude the paper with two observations. Firstly, we note that the evolution law (4.13) coincides
with the gradient flow of the Γ-limit of the functionals

∫
I
φ(ux) dx restricted to piecewise linear func-

tions and suitably rescaled (see [5]). Secondly, we observe that, if the Dirichlet boundary conditions
(1.6) are replaced by homogeneous Neumann (or periodic) boundary conditions, then the analysis
is simplified, and we expect the convergence of the solutions to a piecewise constant limit function
satisfying (4.13), with homogeneous Neumann (or periodic) boundary conditions in place of (4.14).
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