Convergence of discrete schemes for the
Perona-Malik equation
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Abstract

We prove the convergence, up to a subsequence, of the spatial semidiscrete
scheme for the one-dimensional Perona-Malik equation u; = (¢'(uz))z, ¢(p) :=
+1og(1 + p?), when the initial datum % is 1-Lipschitz out of a finite number of
jump points, and we characterize the problem satisfied by the limit solution. In
the more difficult case when @ has a whole interval where ¢" (%) is negative, we
construct a solution by a careful inspection of the behaviour of the approximating
solutions in a space-time neighbourhood of the jump points. The limit solution
u we obtain is the same as the one obtained by replacing ¢(-) with the truncated
function min(¢(-),1), and it turns out that u solves a free boundary problem.
The free boundary consists of the points dividing the region where |u;| > 1 from
the region where |uz| < 1. Finally, we consider the full space-time discretization
(implicit in time) of the Perona-Malik equation, and we show that, if the time
step is small with respect to the spatial grid h, then the limit is the same as the
one obtained with the spatial semidiscrete scheme. On the other hand, if the
time step is large with respect to h, then the limit solution equals w, i.e., the
standing solution of the convexified problem.

1 Introduction

The Perona-Malik equation is a nonlinear forward-backward parabolic equation intro-
duced in [11] with the aim of recostructing an image on a computer. In one spatial
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dimension the equation is the gradient flow of the nonconvex functional
1
P = [6(e) do, o) = 5log(1+5?) (1.1)
I

I :=(0,1), and reads as
ur = (¢ (ua))a- (1.2)
We couple (1.2) with the initial condition

u(0) =, (1.3)

and periodic boundary conditions on d/. Since ¢” > 0 in the “stable” region STy :=
(—1,1) of ¢ and ¢" < 0 in the “locally unstable” region LUSy := R\ [—1,1] of ¢,
equation (1.2) is forward parabolic when u,(z,t) belongs to STy, while it becomes
backward parabolic, and therefore ill-posed, when u,(z,t) € LUS,. We define

stab(u(+,t)) := {z € I 1 uy(z,t) € STy} = {x € I : |uy(z,t)] < 1},

unstab(u(-,t)) :={z € [ : uy(z,t) € LUSy} = {x € I : |uy(z,t)| > 1},

and Jy) C I the set of jump points of u(t). Due to instabilities and lack of regularity
that one can expect in unstab(u) (effectively observed in numerical experiments [12],
[9], [13], [4], see also Figure 1) the (even local) existence of a solution to (1.1), (1.3)
in some functional class becomes a nontrivial question, when the initial datum @ is
transcritical, i.e., when both stab(@) and unstab(@) have nonempty interior. Various
notions of solutions and regularizations have been proposed for (1.2), see for instance
(1], [4], [7], [13] (and [6], [14] for other ill-posed equations). It is worth noting that, in
general, it is to be expected that different regularizations lead to completely different
results. From the mathematical point of view, one interesting problem is the identi-
fication of the limit of the approximate solutions as the regularization parameters go
to zero; to our best knowledge, this is a largely open question, at the origin of the
present paper. Indeed, we are here interested in studying the limit behaviour of the
spatial semidiscretized schemes and of the full space-time discretizations for (1.2), un-
der periodic boundary conditions. As we shall see, the semidiscretized schemes and the
full space-time discretizations can lead to completely different limits, which is a strong
indication of the unstable nature of equation (1.2).

Our first results (Theorems 4.4 and 4.6) identify the limit along a subsequence of the
functions u" which are the solutions of the spatial semidiscretization of (1.2). i.e.,

" = Dy (¢'(Dy (")),  u"(0) =7", (1.4)

h the grid size, D,f as in (2.4), u" — u as in Section 3.1, provided the initial datum
u has a pointwise unstable region. This means that @ is smooth with %, € ST, in a
finite number of adjacent intervals, and % jumps at the separation points: intuitively,



unstab(u) reduces to a finite number of points 0 < @; < --- < G, < 1, which are the
jump points of u (i.e. unstab(u) = Jz). We write u € P?(I) to denote such a class of
initial data. We prove that, if w € P?(I), then u(t) is I-periodic and solves

( u(t) € P¢(I)7 Ju(t) - Jﬁa
ur = (¢'(uz))a in Utzo (I \ JU(t)) x {t},
. (1.5)
lim u,(y,t) =0 for a.e. ¢ > 0 such that @; € Jy),
y—)aj
[ u(0) =T.

This result means that, provided u,(t) belongs to the stable region of ¢ and no jumps
disappear or re-appear, then u solves the natural forward parabolic equation, coupled
with zero Neumann boundary conditions at the interior jump points. In order to derive
(1.5) we need a strong compactness property of the space-time gradients of the functions
u® (see Proposition 3.3) which allows to pass to the limit in the nonlinear terms of the
approximating equations, and to control the boundary terms which give raise to the
interior Neumann conditions. Note also that the piecewise linear approximations @”,
used as initial data in the semidiscretization scheme, are effectively transcritical, since
unstab(u") is not pointwise and consists of isolated intervals of length h. Hence, the
assumption that the initial datum = has a pointwise unstable region does not prevent
the discretized problem to be influenced by the backward parabolic character of the
equation.

From (1.5) we have that the jumps of u(t) are among the jumps of @, and that some of
the jumps of u(t) can disappear at some time t* > 0. Note carefully that Theorem 4.4
does not exclude that, once a jump has disappeared at ¢ = t*, it may reappear again
among the jumps of u(s) at some time s larger than ¢*. Namely, we cannot exclude
the situation

a; € Jyu for t € 0,t%), a; & Jui), @; € Jy(s) for some s > t*. (1.6)

and pathological behaviours of the above sort may happen several times (see Remark
4.1).

This is related to the possibility that two parts of the graph of u(t) where |u,| < 1
and that separately flow from the two sides of a jump point @;, collide at @; at ¢*. In
general one could expect that, after the collision, the two branches merge in a unique
larger branch that continues the flow keeping the condition |u,| < 1 (or even |u,| < 1)
without creating a new jump point (located necessarily at @;). However, we cannot
exclude that the larger branch develops the jump at @; for some s > t* (as in [5] it
is possible to show that solutions of Theorem 4.4 are not unique). Note that if this
happens, the nondecreasing property of the set-valued map ¢ — stab(u(t)) is violated
(while it is known to be always true that ¢ — stab(u"(¢)) is monotone for any h > 0,
see [8], [10] and Proposition 2.3 (d)).



Let us now pass to describe the more interesting case when % is transcritical; in our
notation u € A®(I) (see Section 2.1). The identification of the limit of the spatial
semidiscrete schemes in this case seems to be a difficult problem, related to the un-
derstanding of the (probably quite complicated) quick formation of microstructures in
unstab(z). In Example 5.1 we show that, as an indication of the presence of this phe-
nomenon, the various derivatives of the discretized solution change alternatively their
sign (at fixed h). In Theorem 5.2 we show that, given @ € A?([), it is possible to find
a sequence (d) of positive numbers converging to zero, and functions us, € P?(I) con-
verging to @ as k — 400 and such that the corresponding solutions (given by Theorem
4.6) converge to a function u such that u(t) € A?(I) for all ¢ € [0, 4+00) which solves

/ wg 1 dz dt +/ & (u)thy do dt =0,  u(0)=7  (L7)
Ix(0,+00) Utzo(stab(u(t)) x{t})

for any test function . The most delicate part in the proof relies on the choice of
s, in the open intervals (@;,b;) of unstab(z) and on the control of the behaviour of
the corresponding solution us, (given by Theorem 4.6) in (Ej,gj). Roughly speaking,
in (a;,b;) the initial datum % is approximated with a staircase function u;, of size
approximately d;, in such a way that, whenever a collision of two adjacent branches
of us, appears at some jump point T at some time ¢, such a collision happens with
nonzero relative velocity, and in such a way that T ¢ ka(s) for all s > t. Note
carefully that Theorem 5.2 is valid only for the specific approximating sequence (s, )
of W; no assertion is given for a generic L?([)-approximation of .

It is interesting to remark that (1.7) is the same limit equation obtained in [5] for a

different function ¢. More precisely, if we denote by ¢, the truncated function

¢.(p) ;== min(¢(p),1), peR,

then the solution to (1.2) for a transcritical @ is the same as the one obtained by consid-
ering the gradient flow of the (nonsmooth) functional Fj, . The qualitative properties
of solutions of the gradient flow of F},, have been discussed in [5]; here we only recall
that the unstable region of u(t) stay still, and can be invaded by the stable one, giving
origin to a free boundary problem. Or, also, jumps may appear at the points subdi-
viding the stable region of @ from the unstable one, even if @ is of class C*. See Figure
1 where one can observe that, for the Perona-Malik equation, the unstable region of @
is gradually eroded by the stable one.

It is interesting to make more precise the previous comment that different regulariza-
tions lead to different solutions in the limit. The starting remark is that applying the
implicit time discretization (or minimizing movement method [2]) to the functional F?
(no discretization in space) leads in the limit as the time step A~ goes to zero, to the
standing solution %, independently of the presence of stable or unstable regions of u.
The reason is that minimizing F'? is equivalent to minimize its lower semicontinuous
envelope, i.e., Fy-, where ¢ is the convexification of ¢. Since in the present case
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Figure 1: (a): transcritical initial datum; (b) short-time evolution

¢** = 0, we deduce that the implicit time discretization scheme leads, in the limit, to
the standing solution @ for all times. Such a solution is of course completely different
from the function u of Theorem 4.6; note that the remark applies also when unstab (@)
is empty, a case in which it is reasonable to expect the solution to (1.2) (now forward
parabolic everywhere) to be well defined and nontrivial. Therefore, the use of such
a type of implicit time discretization may be questionable. This observation suggests
that, if we approximate (1.2) with a full space-time discretization (implicit in time)
described by the two parameters h and ), provided A\~! goes to zero sufficiently fast
with respect to h, the limit solution should be the standing solution w. On the other
hand, by Theorem 4.6 it is natural to expect that, if h goes to zero sufficiently fast with
respect to A, the solution v in (1.7) should be reached in the limit (h, A) — (0, +00).
We substantiate these assertions with Propositions 6.1, 6.2. Classifying all possible
limits of the completely discrete schemes as the grid size and the time step go to zero
independently is beyond the scope of the present paper.

After this paper was finished, is has been pointed out to us that Theorem 4.4 was
independently proved in [10, Corollary 2.11 and Remark 2.12].

2 Preliminaries

BV (I) is the space of functions with bounded variation in I, see [3]. Unless other-
wise specified, any u € BV (I) is identified with its representative defined pointwise
everywhere as u(z) = (u(zy) + u(z_))/2 for any = € I, where u(z_) and u(z,) are
respectively the left and the right limit. If u(z,) # u(z_) we say that x is a jump
point of u and J, indicates the set of jump points of u. We set u(0) := u(0,) and
u(l) :==u(l1o).



The functional F*¢ in (1.1) is defined on the whole of BV (I) as

F(u) = /1 s(ut) dv,  ue BV(I), (2.1)

where u$ is the absolutely continuous part of the distributional derivative of w.

If u depends on (z,t) € I x (0,7T), we write u(t)(-) = u(-,t) = u(t).

AC?([0,+00); L*(I)) is the space of absolutely continuous functions u from [0, +00) to
L*(I) such that u; € L*(I x (0,400)), see for instance [2].

Given an integer N > 0 and i € {0,..., N}, we divide I in N intervals of length
h := 1/N (the grid-size). Since we work in the I-periodic setting, throughout the
paper we identify the node 0 with the node N (hence N +1 with 1 and —1 with N —1).
Sequences (g");, of functions will be simply denoted by (g").

We denote by Cj, the class of the functions ¢ € C'(R x [0, +00)) which are 1-periodic
in z for all t > 0 and #(-,¢) = 0 for all ¢ large enough.

|-| is the lower integer part.

By ¢ we indicate a positive constant independent of A, the value of which may vary
from line to line.

2.1 The classes P?(I) and A?(I)

We denote by P?(I) the class of all piecewise Lipschitz functions with pointwise unstable
set, i.e., those functions v € BV (I) with u(0) = u(1) such that J, is finite and, if C is
a connected component of I\ J,, then u is Lipschitz in C with u, € STy (i.e., |uz| < 1)
almost everywhere in C. For such a function u we set

unstab(u) = J,.

We denote by A?(I) ¢ BV(I) the set of all ¢ -admissible functions. Precisely, an
I-periodic function u belongs to A?(I) if there exist a natural number m > 0 and real
numbers

0<a <bh)<...<ap<b,<1 (2.2)

such that
u is Lipschitz with u, € ST, almost everywhere in each connected component of

I\UL lay, byl
if j € {1,...,m} and a; < b;, then u is monotone in [a;, b;] and

lu(z) —u(y)| > |z —y| for z,y € [a;,b;], x #y. (2.3)

It may happen that [a;, b;] reduces to a point: if a; = b; for some j € {1,...,m} then
we require a; € Jj,.



Remark 2.1. Recalling that u(z) = (u(z_) +u(z4))/2, if a; < b;, a; € Jy, and if u is
nondecreasing in [a;, b;], then u(a;) < limgyq, u(z).

Note also that b; < a;1; in (2.2), hence there cannot be two adjacent intervals where u
is monotone and (2.3) holds.

For a function u € A?(I) we set

unstab(u) = U[aj, bjl,  stab(u) = I\ unstab(u).

2.2 Spatial discretizations

PL(I) is the N-dimensional vector subspace of Lip(I) of all piecewise linear functions
defined on the grid. Note that PL(I) is not contained in A?(T).
PCy(I) is the N-dimensional vector subspace of L2(I) of all left-continuous piecewise
constant functions on the grid.
Given u € PLy(I) (resp. u € PCh(I)) we denote with uy,...,uy the coordinates of
u with respect to the basis of the hat (resp. flat) functions, and u € PL,(I) will be
identified with (uq,...,uy) € RY, where u; := u(ih), i = 1,...,N (and up = uy).
PLy(I) is endowed with the L*-norm [[ul[3,, ) = RN Juil?.
We define the linear map D, : PLy(I) — PCy(I) and its adjoint D) : PCy(I) —
PL,(I) as
_ 1 1 :

(Dh ’U,)Z = E(’U,z - ui_l), (D,’:w)z = E(’U)H_l — wi), 1€ {1, Cee N} (24)
If we PLy(I) and i € {1,..., N}, then (D, u); = ug in ((i — 1)h, ih).
The restriction F, of F to PLy(I) is a smooth function of N variables and reads as

Fiu) =Y 6 (D)) = h2¢(%), wePL(D.  (25)

We indefferently use the notation ¢'((D, u);) or ¢'((D, w)):.

Remark 2.2. The L?(I)-gradient flow of F, on PLy(I) is expressed by the following
system of nonlinear ordinary differential equations:

. 1 0F; 1 ’ 7 — Uy ' 1 Wi— ! -
Ui =~y 81: =5 {¢ (%) —¢ (%)} = (D;¢ (Dhu))i , (26)

i€ {l,...,N}, with the periodicity condition ug = uy.

Useful properties of solutions to the gradient system of F}, in the space PL(I) are
described by the following proposition.



Proposition 2.3. For h € (0,1) we have F, € C®(PLy(1))NC Y (PLy(I)). Therefore
the Cauchy problem

_ 1k,

has a unique solution v" € C*°([0,+00); PLy(I)). Moreover

(u) for ie€{l,...,N}, u(0) =u € PLy(I), (2.7)

i =

(a) the function t € [0,+00) — F,(v"(t)) is nonincreasing, and
V" (t2) " () |2y < (Fa("(00))) 2 [ta—ta]/?, 0 <ty <ty < +o0; (2.8)

(b) the function t € [0,+00) — sup,e; V" (x,t) (resp. t € [0,+00) — infyer v (z,1))
is nonincreasing (resp. nondecreasing);

(¢) the function t € [0,+00) — ||V2(t)||r1(r) is nonincreasing;

(d) ifu € PLy(I) N A%(I), then

0 < t; <ty = stab(v"(t1)) C stab(v"(ty));

(e) if |V (x,t)] <1 at some (z,t) € I x[0,+00), then |V (z,t+7)| <1 for any T > 0.

Proof. The regularity, existence and uniqueness assertions follow from the analiticity
of ¢ and of the maps t € [0, +00) — (D;, v"(t));, together with the boundedness of ¢'.
Since D, is a linear operator we have

N

d d
prdl (") = hi_zlﬁ((D;?Vh))z’(Dﬁth)i dz
(2.9)
N N ,
= —hY _(Df¢' (D "))t = =Y (1) = —[[7* [y < 0.
=1 =1

Using Holder’s inequality and (2.9) we get

to

h(ty) — (1) |2y < |to — £ M2 A2, dar) < (B (0))) Pt — 1] 2
" (t2) — v* () |2y < [t2 =t VHL2(I) ) < (Fu(VM(t))) It — ta] 2
t

1

We say that i € {1,..., N} is a relative maximum for the function v"(t) if v*(¢); >
max{v"(t);_1,v"(t)i11}. Recalling (2.6), we have v"(t); < 0 if 7 is a relative maximum.
Since the case of relative minima is similar, (b) follows.

If we define

sign(v"(t)ip1 — vM(t);) i VM(t)ig1 # V(D)
Si(t) == t €0, 4+00),
sign (n(t)ig1 — on(t)i) i V" (t)igr = "(2);
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then following [5, Lemma 5.3, Theorem 5.4] we have

N

d d m - y
dt+||yz||L1 Z—+ | _ZS z—|—1 z) = (Si—l_Si) v,

i1 i=1

where d/dtt is the right derivative. Hence to prove (c) it is enough to show that
(Si—1 — S;)* <0 for any 7 € {1,..., N}, and this can be done as in the proof of [5,
Theorem 5.4 (d)], as well as the proof of assertions (d) and (e). See also [10]. O

3 Convergence of the spatial semidiscrete scheme

We approximate (1.2), (1.3) with (2.6) with well prepared initial data in the following
sense.

3.1 Approximation of @, definition of v and the limit u
Let

a € P(I), Joe=A{a1,...,0n}, (3.1)
and h € (0,1). If we define

" € PL,(I) N A®(])

as Ul := u(ih) for i € {0,..., N}, a direct verification (see [5, Lemma 6.1]) yields that:
there exist mesh points 0 <ap < ... <ak < 1with @ € [a},a} + h] for any
j €{1,...,m}, such that

unstab (@ U [}, @) + A, (3.2)
: a7 : —=h = . —h _
lim [ |2y = 0 = lim (Il — [llaven) . lim (@) = Fé(m). (33)

Note that " does not necessarily belong to P?(I): indeed, jump points of % correspond
to intervals of length & where the slope of u" belongs to LUS,.

Definition 3.1. For an initial datum as in (3.1) and the corresponding sequence (u®)
described above, we denote by u" € C*®([0,+00); PLy(I)) the solution of the Cauchy

problem
i'(t) = D (#(Dyu(®),  u(0) =" (3.4)

From (2.9), (3.3) and Proposition 2.3 it follows that

sup sup F (u" (£)) + sup [[*l| 2o, ro0)iz2(0) + 5UP [0 l1=(o.soeymviny < +00- (3.5)
>



As a consequence, if we define
X = L®((0,+00)); BV (I)) N AC*([0, +00)); L*(1)),

we have that the sequence (u”) admits a (not relabelled) subsequence weakly converging
in H*((0,T); L*(I)) for any T > 0 and weakly* in L°°((0,+o0)); BV (I)) (we shortly
say that (u”) weakly converges in X) to a function

u € X. (3.6)
Moreover u"(t) — u(t) weakly* in BV (I), with ||u(t)||sv(r) < |[@|lsv () for any ¢ > 0.

3.1.1 Some qualitative properties of u

Denote by L(@;) the half-line in space-time defined as

L(a;) := {a;} x [0, 4+00). (3.7)
Proposition 3.2. Let u be as in (3.1). Then the function u in (3.6) satisfies
u(t) € PP(I), Jupy CJz Yt € [0,+00), (3.8)

and |u(@;_,-) —u(@;_,-)| € C°([0,+00)) for any j € {1,...,m}.
Proof. Proposition 2.3 (d) implies that stab(u®) C stab(u”(t)) for any ¢ > 0 and any
h € (0,1), therefore u”(-,t) is one-Lipschitz in each connected component of stab(u").
Let K be any interval compactly contained in I\ J;. Then u”(-,t) is one-Lipschitz in
K for h small enough, hence (recall Proposition 2.3 (b)) the sequence (u") admits a
subsequence uniformly converging in K to u(-,t). It follows that u(-,t) is one-Lipschitz
in each connected component of I\ Jg, and (3.8) follows.
Let § := minj—g, . m(@;+1 — @;) > 0, where @ := 0 and @y, := 1. As a consequence
of (3.8), we have that u(:, s) is one-Lipschitz in (a; — 0,@;) and in (a;,a; + 0) for any
s>0. Fixt,s >0, s#t,and z,2' € (a; — d,a; +J) with z < @; < z’. We have
0@y, 1) — u(@_, 8)] < 26+ [u(a, 1) - u(@, ),
u(z,s) —u(z',s)| < |u(@;,,s) —u(@,_,s)| + 29,
so that
u(@, 5) = u(z, )| + [u(a’, s) — u(@, )] > [u(z,t) — ul@, )] — |u(z, s) — u(@’, )]
> u(@g,,t) —u(@;_,t)| — |u(@;,,s) —u(@;_,s)| — 44.
From (3.6) it follows that u(y,-) is continuous on [0,+oc) for almost every y € I,
therefore we can choose z and z' continuity points. Letting s — ¢ in the above inequal-

ities, interchanging the role of s and ¢, and using the arbitrariness of 4, it follows that
lu(@;_,-) — u(@;_,-)| is continuous on [0, +oc) for all j € {1,...,m}. O

As a consequence of Proposition 3.2 we have

U G < 8) = U {@.0) € L@) (@, 1) # (a0} (39)

>0
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3.1.2 Strong compactness of the sequence (¢'(u”))

In order to characterize the limit function u, some form of strong compactness of the

sequence of gradients (u”) is required. This is the content of the following proposition

(see also [10, Proposition 3.3 and Theorem 2.10] for a similar result).

Proposition 3.3. Let u be as in (3.1) and let K be an interval compactly contained
in stab(w). Then the functions u" in Definition 3.1 enjoy the following property:

Ve € (0,1) the sequence (%qﬁ'(ug)) is bounded in L*(K X (e, 4+00)). (3.10)

Proof. Define v" € PCy(I) and wy, € PCy(I) as
ol == (D;uM);, wl = ¢' (v, ie{l,...,N}.
From (3.4) it follows
o} = (Dyi"); = (D Dy ¢/ (v")); = (D Difw™);, i€ {l,...,N}, (3.11)

with periodic boundary conditions.
Let j,k € N be such that

[(j — k)h, (j + k)R] CC stab(q).
For h € (0,1) sufficiently small we have
[(j — k)b, (j + k)h] C stab(a"),
and from Proposition 2.3 (d), there exists hy > 0 such that
[(j — k)h, (j + k)R] C stab(u"(t)) t>0, he(0,h). (3.12)

Multiplying both sides of (3.11) by %! and summing over i yields

jt+k j+k
> ofif =Y (D Diw"); o}
i=j—k i=j—k
j+k—1 ) .
= — Y (Dfw")(Dfu"); + E(D;Twh)mwﬁhk — E(D;wh)j,k,lwf_k (3.13)
i=j—k
147! ) 1 _ 1 _
= —3% > ((Dfw™))” + E(D:wh)j-l—kw?-i—k — E(D;Twh)j—k—lw?—k-
i=j—k
Take a smooth function f with the following properties:
frl-L1-R  f0)=0, f=& nST=[-11] (3.14)

11



Then, for i € {(j — k)h,...,(j + k)h},

Bl = )il = o) STl it = ¢l = (SF)% (3.19)

As a consequence, using also (3.13) and the equality 4" = D w", it follows

j+k d ) 1d jt+k—1 , 1 .
i;k (%f(’l)f’)) = _5% K ((D:wh)z) + E(D’—i_wh)]+kw;7’+k — E(D}twh)j—k—lw?’_k
14780 1., 1 _

Y i_j_k(“?)Q + ﬁ“?+kw?+k - EU?—k—lw?—k- (3.16)

Integrating both sides of (3.16) on the time interval (e, +00), and recalling (2.9), we
get

Jjtk

+oo d 9
Ry [ ()
i=j—k€
L oo
< 5 Y @OPT [l 0l d (310)
i=j—k ¢
hj+k71
< 5 (@ ())” + 1851l 2((e,00)) 1051kl 226, 00))
i=j—k

+||u?_k_1||L2((e,+oo)) ”w;'l—k”LQ((e,—{—oo))-

Observe that, given n € N and a function n € L*((0,+00)), there exists €, € (5=, ©)

2n’n

1
such that n(e,) < 2n [T 1 ds < 2en < 2, ¢ := ||n||11((0,400))- Therefore, since by (3.5)
2n n

the function hS N, (al(t))? is uniformly bounded in L'((0,+00)) with respect to h,
there exists €' € [¢/2, €] such that

hy ) (()? <

o ol

Hence, replacing € by € (still denoted by €) and using (3.15), (3.17), (3.12) and the
bound |¢"| < 1in STy, we get

2 C sk d .o n
h Z H%f(vi )HL2((5,—|—00)) < P 11451 ]l 220,400 ”%f(vj-l-k)HL?((e,—Foo))
i=j—k

. d
+ ”“;'Lfkfl”Lz((O#oo)) H%f(vahfk)”L?((e,+oo))'(3'18)
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Define now for £ > 1

Jt+k—1 _
2 & . .
o i=h D N Gf ey = B = NiGeallisroon + I8-killiaoctoo:
1=j—k+1

In this notation, (3.18) implies vVhal ; < 28/ /al., — of. Hence

h 2 h
oh ot >y k) > h e/ 98 3.19
BETREE T g(8h)? A(pp? - (3.19)

If we set v := —1/al, (3.19) yields

1
ABR)*

Recall that Jensen’s inequality implies ¢( 27 (82)2) < L3¢ ¢((8)?) for a convex
function ¢. If we choose ¢(z) = % for 2 > 0, for k > ko —1>1 1nequahty (3.20) gives

Ve —vE>h (3.20)

k-1 k—1

h 1 h? -1 k— ko)2

M= Voo g > ’W 27,2‘0+Z(k—k0)2(h > (5?)2> > v, + B (k= ko)” - 0) ,
i=Kko i i=Kko

where ¢ = 8h N | ||uh||L2( (0,400 18 uniformly bounded with respect to h.
From the previous 1nequahty we deduce

ol > (ai R M)l. (3.21)

Since dist (hy tab())
ist (hj, unstab(@
- I (3.22)
it follows that the right hand side of (3.21) must be positive for all £ for which (3.22)
is valid. Hence

oap <400 VE<|

jt+ko—1 _ _o
of,=h 3 H GOl [P g <e (dist (hj, unstab(@)) — h(ko + 1)) ,
i=j—ko+1

(3.23)
for all kg with 1 < ko < | ;dist (hj, unstab(a))].

Let us choose j, k € N such that

K c [hj—k+1),h(j+k=1)]Clh(j—k—=1),h(j+k+1)]

C Ky, ={z€l:dist(z,K) <d/2},

13



where ¢ := dist(K,unstab(z)) > 0. Observe that
dist(hj, unstab(a)) — h(k + 1) > dist(K,, unstab(a)) = 4/2.

From (3.23) and the fact |¢"]| <1 (recall (3.12)) it then follows

j+k—1 d I j+k—1 d o
h Z Ha‘/ﬁ (v; )HL2((E,+00)) <h Z H Ef(vZ )}‘Lz((€’+oo)) (3.24)
i=j—k+1 i=j—k+1

i} SR
< g + ¢ (dist (hj, unstab(@)) — Ak + 1))~ < S + 5_5

Therefore (3.10) is proved. O

Corollary 3.4. Let U be as in (3.1) and let u" be as in Definition 3.1. Then the
sequence (ul) has a subsequence converging to u, almost everywhere in I x (0, +00).

Proof. Fix an interval K compactly contained in stab(w), and let n € N. Define
w" := ¢'(D; u"). From Propositions 3.2 and 3.3 it follows

d
50 (50 e g + DT oy ) <400 (32

Therefore, if we denote by w"(t) the piecewise linear function having the same values
as w"(t) at the nodes of the grid, we have that (@w") has a subsequence converging in
LZ(K X (0, +OO)), as h — 0. From this, ||wh _@hl|L2(Kx(0,+oo)) < h“D;L'_wh“L?(KX(O,—Foo))
and (3.25) it follows that (w") has a subsequence converging in L2(K x (0, +00)). The
assertion then follows by letting n — oo, invading stab(w) with a sequence of intervals
compactly contained in stab(w), and using the fact that ¢’ is strictly increasing in
ST, O

Remark 3.5. Notice that, if K is an interval compactly contained in stab(u(t)) for
some ¢t > 0, reasoning as in the proof of Corollary 3.4 we obtain the estimate

d
sup <||@wh||L2(Kx(t+5,+oo)) + ||D}_L|—wh||L2(I><(O,+oo))> < F00. (3.26)
Remark 3.6. An inspection of the proof of Proposition 3.3 shows that the supre-

mum on the left hand side of (3.25) (resp. of (3.26)) depends on % only through
dist(K, unstab(w)) (resp. dist(K,unstab(u(?)))), and through ||a| gy () and F?(u).

4 The limit problem satisfied by u when u € P¢(I)

We want to identify the limit equation satisfied by u in (3.6), provided @ is as in (3.1).
To better understand the next results, an observation is in order.

14



Remark 4.1. In general, some jump points of u(¢) among the points @y, ..., a, may
disappear during the flow, and may possibly subsequently re-appear. Indeed, there
exist, locally around x = 1/2, translating solutions which are convex, even with respect
to 1/2 and one-Lipschitz, that can be approximated with piecewise linear translatory
solutions 7" with the following properties:

7" are convex and one-Lipschitz in a left neighbourhood of 1/2 and in a right neigh-
bourhood of 1/2 + h;

7" have, in (1/2,1/2 + h), slope diverging as h — 0 of order smaller than 1/h.

Hence, the approximating solutions have an unstable region containing the point 1/2+
h/2 for all times, which disappears in the limit A~ — 0. Suitably modifying such
approximating functions into functions 7", it is reasonable to expect that a jump point
located at 1/2 may appear at a positive time ¢. This is possible since, in general, the
maximum principle in unstab(7"(#)) can be violated, and therefore the slope of 7"(t)
in (1/2,1/2 + h) may increase and become of the order 1/h, thus originating a jump
in the limit » — 0 at time ¢. Note that, at the discrete level, the unstable region
(1/2,1/2+ h) of 7"(t) is always present, also for times before .

Definition 4.2. We say that R(j1, jo, 51, 52) = [@j,, Tj,] X [s1,82] is a nice space-time
rectangle for u if 0 < s; < s9, j1,7J2 € {1,...,m}, a;, < a;, and

(@;,,a;,) is a connected component of stab(u(t)) Vit € [s1, $9].

Remark 4.3. Proposition 3.2 implies that there exist nice space-time rectangles for
u. Moreover, if R(j1, j2, $1, S2) is such a rectangle,

de >0 : |u(@j+,t) —u(@;,_,t)| >c, ke {1,2}, t € [s1,s9)- (4.1)

Theorem 4.4. Let uw € P?(I) and let u be as in (3.6). Let R = R(ji, ja2, S1,52) be a
nice space-time rectangle for u. Then

/ w Y dx dt +/ &' (uz)hy dx dt =0 V) € C#. (4.2)
R R

Therefore, u solves

Uy = ¢”(um)umm in R:

(4.3)
lim ug(y,t) =0 a.e. t € (s1,892), k=1,2.
y—aj,, (Y1)ER
Proof. Let ¢" : [0,+00) — PLy(I) be defined as ¢"(t); := ¢(ih,t), i € {0,..., N},
Observe that ¢" — 4 in Lip(I x [0,+00)) as h — 0. Let ¢ > 0 be such that (4.1)
holds. Set

sy
M) = h Y SOt @) DY) telsisl  (44)

oL zh
i=2+aj /h

15



which is a sort of discretized version of the second addendum on the left hand side
of (4.2). Then, omitting the dependence on ¢ in the notation when no confusion is
possible,

@,
"6 = —h Y, (Did(Dyuh) vl
i:1+a;?1/h
+¢I((D}:uh)1+6§"2/h) ¢gg2/h - ¢I((D;“h)1+a§q/h) %ﬂta;"l /h
/b
e (45)
i:l—f—E;’l/h
+¢'((D,:uh)1+a?2/h) 1#%2” - ¢’((D;u”)1+a;1/h) wﬁa;?l /h
= T'@)+15() + I (2).

Note that
@)+ |15(t)| <eh,  t€[s1,s), (4.6)

since 1" are uniformly bounded with respect to h, ¢'(p) = O(1/p) as p — oo, and by
(4.1)
(D u™(t)) 1400 sl >eh ™, k€ {1,2}, t € [s1, 50,
Ik

for h small enough. Integrating (4.6) in time, we get

52

lim [ (15() + 15(0)) d = 0. (47)

h—0 51

Moreover, since 4" — u, in L*(I x (0,+0c)) as h — 0 (see (3.5)) and the functions 1"
are uniformly bounded, from (4.5) we get

S

lim mﬂﬁ:—/W¢Mﬁ (4.8)
R

h—0 51

From (4.7) and (4.8) it then follows

52
lim Wﬂﬁ:—/W¢Mﬁ (4.9)
h=0 J, R
Recalling that R is a nice space-time rectangle, by Corollary 3.4 it follows that the
sequence (u’) converges to u, almost everywhere in R. Since (¢") converges to 1 in

Lip(I x [0,+00)), we can integrate (4.4) in time and pass to the limit as h — 0 to
obtain

lim [ 1*(t) dt = / ¢ (ug)ty dxdt. (4.10)
h=0 Jg, R
Then (4.2) follows from (4.9) and (4.10). O
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- .
-
: 3 t* |

a, a. X a. a. X
h ) I Iy

Figure 2: A possible example when two branches of the solution u (adjacent to @,,) collide and then

detach. We have J,;) = {@;,,a;,} for all t € [0,t*), Juu) = @y, for all t € (t*,s), and Ju) = {@j,,@j, }

for all t € (s,4+00). Hence Us>o(Ju(ry X {t}) is the union of the solid vertical segments contained in

L(a;,) and L(a;,) respectively (see (3.7)). The gray boxes are examples of nice space-time rectangles.

Remark 4.5. If there exists an interval (b;,a@;41) C stab(w) where w € P?(I) takes
the constant value o and {b;,@;11} C Jy, then

u(t)=a on (bj,aj11) Vit € (0,7),
where 7 := inf{t € (0,+00) : b; & Juw) or Gj11 ¢ Juw} > 0.
Differently from Theorem 4.4, the next theorem states a global property of v in I x
(0, +00).
Theorem 4.6. Let w € P?(I) and let u be as in (3.6). Then
/ up ¥ dxdt +/ &' (ul) Vy dxdt =0 Vi € CL, (4.11)
Ix(0,+00)

Ix(0,4+00)

where ul(-,t) is the absolutely continuous part of the distributional derivative of u(-,t)
with respect to x.

Proof. Let (") be as in the proof of Theorem 4.4. For any h € (0,1) and any j €

{1,...,m} define T} := sup {t > 0 : unstab(u”(t)) N [E?,E?] # @}. Observe that T} €

(0, +00], [a”, B;] = unstab(u”(t)) N [a, b;] for all ¢ € [0, T}), and

R

7h  —h _ h
Set also [6?,5?] = for all t € (T}, +00).

Possibly extracting a (not relabelled) subsequence, we can assume that limy g Tjh —
T; € (0,+o00] for any j € {1,...,m} (the strict positivity of T} can be proved using
arguments similar to those used in the proof of Proposition 3.2, see also [5]).
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I"(¢) := h > ¢ (Dyul(t):) (D" ()i,  t€[0,4+00). (4.13)

1:((i—1)h,ih) Cstab(u”(t))

Define, for ¢t > 0, 3"(t) := {j € {1,...,m} : T} > t}, a',, = @}, and J(0) :=
{1,...,m}. Using also (2.6) we have

I"t) = —h > (D} ¢' (D, u™)) 40

i((i=1)h, z‘h)cstab(uh( )

+ > (Sed@, ) vh@n - S i) 0 6L)

JETR(2)

= —h > af )

ix((i—1)h, ih)Cstab(uh( )

+ Y (Ph@,, ) v@y - ¢, 0) v (,1).

JETR(E)

Inserting inside the summation above the expressions

hi (5], 1) = ¢ (ul(0; 1) — ¢/ (ul(b;_, 1)),
we obtain
N
") = —hZu? W
+ Z[ @ ,.1) (@, 1) — ¢ (E;_,0) v (). 0)
JET(t)

= L) +15(t)

(note the sum over the whole set of indices, and the presence of 5?_ inside the parenthe-
ses). By (4.12) we have ¢/ (ul(@? 1)) = ¢/ (ul(B; _,1)), and [¢" (@, 1) — " (b}, 1)| < .
Therefore, using the boundedness of ¢’ it follows

12(t)| < e h. (4.14)
Integrating in time, and using an argument similar to the one leading to (4.8), we

deduce oo oo
lim 1"(t) dt = - / / ug) dadt. (4.15)
0 I

From (4.14) and (4.15) it then follows
+0o0
lim 1"(t) dt = — / ug) dadt, (4.16)
Ix(0,+00)

h—=0 Jq

18



and from Proposition 3.3 and (4.13) we get

+00
lim 1"(t) dt = /

h=0 Jo stab(@) x (0,400)

& (1), davdt = / & (), dedt.  (4.17)

Ix(0,400)
Putting together (4.15) and (4.17), we obtain (4.11). O

We point out that results similar to Theorems 4.4 and 4.6 have been independently
proved in [10, Corollary 2.11 and Remark 2.12].

Remark 4.7. From (4.11) and the strict monotonicity of ¢’ on [—1, 1], it follows that
Ug (@, t) = ug(@;_, ) a.e. t € (0,400), je{l,...,m}. (4.18)

In particular, condition (4.18) is valid on the “phantom” segments contained in L(g;),
i.e., at those points (@;,t) with ¢ € (¢, s) in (1.6) (and at the remaining points of L(@,)
equality (4.18) is fulfilled, since u satisfies zero Neumann boundary conditions from
the left and the right of @;).

Remark 4.8. Assume that the phenomenon of attaching-detaching appears, i.e., let
@; and t* be as in (1.6). As a consequence of Proposition 2.3 (d) and the conver-
gence of (u") to wu, it follows that if u(@;_,t) < w(a;_,t) for t € (0,t*), necessar-
ily w(a;_,7) < u(a;,,7) for all 7 € (t*,+00). Similarly, if u(a;_,t) > u(a;,,t) for
t € (0,t*), necessarily u(a;_, ) > u(@;,,7) for all 7 € (t*, +00).

5 The limit problem satisfied by u when u € A?(I)

The aim of this section is to provide a notion of solution to (1.2), (1.3) when u € A?([)
is transcritical.

We first show an example which indicates the existence of the wrinkling phenomenon in
a very short time scale for an initial datum having an unstable region with nonempty
interior. Unlike the rest of the paper, for simplicity in the example we deal with
Dirichlet boundary conditions. We use for simplicity the notation u?(¢) in place of

Example 5.1. Let 8 > 1, so that ¢"(8) < 0. Consider the solution u”* of (2.6) for
i€ {l,...,N — 1}, with «"(0) = 0 and »"(1) = B(1 — h), with transcritical initial
condition
0 x € [0, h]
' (z):=< B@—h) =z€l[h1—h)|, (5.1)
B(1—2h) z€[l—h1],

which can be considered as an approximation of a (some sort of) solution of (1.2) and
(1.3) with u(z) = Bz under Dirichlet boundary conditions «(0,¢) = 0 and u(1,t) = .
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As a consequence of (2.6) and (5.1), we have

i3 (0%) = ¢'(B)/h >0, iy ,(07) = —uif(07) <0,

(5.2)
ut(0T) =0 forie{2,...,N —2}.
Similarly, from
—y h_ yh
il = (M) i, ity - o (M) @ i), 6
it follows
iy (07) = ¢"(B)ur(07) <0, iy ,(0%) = —iif(0%) >0,
(5.4)
ir(0t) =0 forie {3,...,N —3}.
More generally,
d\’ 1 d\" !
<%> “?(t)|t:0+ =72 "(8) <%> U?f1(t)|t:0+
A d\’ 1 d\"
(@) uyr (1) im0+ = — (%) up () j1=o+ = W "(8) (a) Uy i1 (8o
(5.5)

where, if N is odd, ¢ € {4,..., %1} and, if N is even, 1 € {4,..., 3}, and

d\’ d\’
(E) Ul (t) =0+ = (@) uh_i(t)jmo+ =0  Vji<i—1

Note that (%)i ul(t);—o+ has alternate signs (and if N is even (%)N/2 U)o (8) ji=0+ = 0).
This is an indication of the emergence of the so-called wrinkling phenomenon, see
Figures 3, 1.

We now prove our result concerning a notion of global solution to (1.2), (1.3) when @

is transcritical.
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B(1-2h) —

slope>1

|

0 h 1

Figure 3: Example 5.1: the i-th arrow starting from the left indicates the initial i-th derivative of
the solution; all previous initial derivatives vanish. Note the alternate signs

Theorem 5.2. Let u € A®(I) \ P?(I). Then there exist a sequence (6;) C (0,1)
converging to zero as k — +o0o, and a sequence (s, ) C P?(I) with

sup (N@slBvay + F?(@s,)) < [allpva) + F*(@) < +oc, (5.6)
converging in L*(I) to uw as k — +oo, such that, if we denote by us, the solution

described in Theorem 4.6 having initial datum s, , then (us,) has a subsequence weakly
converging in X to a function u € X which satisfies

(u(t) € A?(I)  for a.e. t € (0,4+00),

) / ug Y dx dt + / ¢ (ug)tpy dz dt =0 VY €Cy, (5.7)
I%(0,4-00) Usso (stab(u(t)x{})

L u(0) = 7.

Proof. Denote by |J, (@, b;] the union of the closures of the connected components of
unstab() having nonempty interior, namely @; < b; for all i € Z. Define U := % in
I\ Ujez[@i, bi], and Ws to be a staircase function of horizontal size 6, § = ”% for some
n € N, see Figure 4. Note that the functions 7u; converge to u in L*(I) as § — 0, and

Sl;P (I[Es]| v(ry + F*(5)) < |[allpvry + F*(@) < +oo. (5.8)

Moreover s € P?(I), so that we can consider the solution us given by Theorem 4.6
(obtained as a weak limit in X of u as h — 0) in correspondence of the initial datum
us. Observe also that by (3.5) and (5.8) it follows that the functions us are uniformly
bounded in X with respect to d, therefore (us) has a (not relabelled) subsequence
weakly converging in X' to a function u € X.
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(=1
=1
[=4]

staircase of horizontal size §

Figure 4: The function % and the functions s in Theorem 5.2

For all z € Jz, we define Ts(z) > 0 as
T5(z) := sup Js(x), T5(z) :== {t € (0,+00) : & € Jyy) }- (5.9)

The set J5(x) may fail to be connected, since adjacent branches of stab(us) at x can
collide during the flow and then detach at some subsequent time. In particular, it may
also happen that, at some finite positive time ¢ the point z does not belong to Jy)
and still T5(z) = +o0.
For any i € T let n! € [1, (b; —@; + 6)/J] be the number of jump points of u; in [a;, b,
which we denote by

v € faibi],  je{1,...,n}, (5.10)
ordered as y;{jl < g;{jz if j1 < Jo.
Claim. It is possible to choose a sequence (dy) converging to zero as k — +oc in such
a way that J5, () is connected for any = € Jy, and any k € N, i.e.

(5.11)

T € Jﬂak { y Ju‘sk(t) Vit € (07T5k (z)), Vk €N,

xé Jus, (1) vt € (T5,(x), +00), Yk € N.
Fix 6 > 0. Given z € Jg, define
ts(z) = inf {t € (0, +00) : x € stab(us(t))},

with the usual convention that inf() = +00. We have 0 < t5(z) < Ts(z) and we want
to show that we can pick 6 > 0 in such a way that

ts(z) = Ts(z) Vo € Jy. (5.12)

If t5(x) = +o0o there is nothing to prove. Therefore, we can assume that z € Jy, is
such that
ts(x) < +o0. (5.13)

22



Let
B:={x € Jg, : ts(x) < ts(y) for all y € Jy }.

From Remark 4.5 it follows that

B C U{yilayf,m}
i€
Namely, points in B are among the extremal jump points of Ts in each [@;, b;]. Let us
fix the attention on one of the elements T € [a;, b;] of B, and assume without loss of
generality that z = @;{1 and that %, is nondecreasing in [a;, b;]. Recall from Remark
2.1 that
us(T_) < us(T4)- (5.14)

Hence, using Remark 4.8,
us(T_,t) < us(Ty,t) V> 0. (5.15)
By the choice of T, we have us(t) = us in [z,7],,] for all ¢t € [0,25(%)], which implies

lim (us), (z,15(z)) = 0.
On the other hand, using (5.13) and provided we slightly reduce us(Z.) — us(Z-),
we may assume that the collision of the two branches happens with nonzero velocity,

namely
lim (us), (z,t5(Z)) > 0 (5.16)

1T
(the limit in (5.16) exists by the smoothness up to the boundary of the solution of
(4.3)) Therefore, at the time ¢5(Z), we have the collision of the flowing branch of the
graph of us(t) on the left of T (coming from below), with the horizontal segment on the
right; such a collision takes place with nonzero relative velocity. Moreover, recalling
(1.5) and (5.16), in a left neighbourhood of Z we have that

the function us(-, t5(7)) is uniformly convex. (5.17)

Indeed, if we consider (on the left of T) the solution v of the equation in (4.3) with zero
Neumann boundary conditions, we have that v(t) = us(t) for ¢ < t5z), and therefore
by continuity v(t) = us(t) also at t = t5(T).
Define

u* = U(;(T, t(s(f)).
We divide the proof of (5.12) into two steps.
Step 1. There exists a sequence (s,) of times, with s, | t5(T), such that

(ug)z(y 8n) <0 somewhere in (Z, ny) , VneN (5.18)
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u(t) u(t)
| |
- R
uF | u*

T~ t<t5® t=t8®

X

>

Figure 5: A collision at time t5(Z). The branch on the left of T has positive vertical velocity at T at
the time ¢5(%)

To prove such an assertion we distinguish two cases.
Case 1. There exists a sequence (s,) with s, | t5(Z) such that

us(T_, sn) > u™. (5.19)

In this case, there exists a sequence (s,,) with s, € (£5(T), s,] which satisfies the asser-
tion of step 1. Indeed, if not, the solution is nondecreasing in (7, @;{2), hence it assumes
its maximum at the right extremum y;{Q. We can now use the maximum principle for
the solution us (in the interval (Z,77,)) of the forward strictly parabolic equation in
(4.3) with zero Neumann condition at the right extremum 7/, and deduce, being u* a
solution of the problem,

’LL(;(', Sn) S u&('a t&(j)) = ﬂ&() =u in (Ta ggﬂ)' (520)
On the other hand from (5.15) and (5.19) we have

us(Ty, 8n) > us(T_, sn) > u',

which contradicts (5.20).
In the remaining case we concentrate on a left neighbourhood of 7.
Case 2. There exists 7 > 0 such that

us(Z_,s) <u* Vs € ts(T),t5(T) + 7). (5.21)
In this case, we have
(ug), (T_,t) <0 for aset of times t € [t5(T),15(T) + 7] of positive measure. (5.22)
Indeed, assume by contradiction that

(us), (F_,t) >0 for ae. t € (ts(T), t5(T) + 7). (5.23)
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Recalling also (5.17) we can choose

a left neighbourhood U of 7,

a time 7 € (0, 7),

a function ¥ defined in U X [t5(T), t5(Z) + 7] having the following properties:
I(-,t5(T)) < us(-,t6(T)) in U x {t5(T)} and H(T_, t5(T)) = us(T, t5(T)),

¥ is a smooth (sub)solution of (1.2) in U x [t5(T), t5(Z)+7], has zero Neumann boundary
condition at {ZT} X [t5(T), t5(T) + 7] and translates with positive vertical velocity of the
order 1 limgz(us)e(x, t5(T)).

By (5.23) and the maximum principle it follows that us(Z_,s) > 6(Z_, s) > u* for all
s € (t5(T), ts(x) + '] for some 7" € (0,7), which falsifies (5.21). Hence (5.22) is proved.

Recalling from Remark 4.7 that (u;), (7_,t) = (us), (T4,t) for almost every ¢ €
(t5(Z),ts(T) + 1), it follows that necessarily (5.22) holds also with T_ replaced by
Z4. This implies (5.18).

Step 2. Conclusion of the proof of (5.12).
From step 1 and the weak convergence in X of (u}) to us, it follows that the func-
tions ul(s,) are strictly decreasing somewhere on (E, y;{Q) for h small enough (possibly
depending on n).
We now claim that

T € stab (u}(sn)) - (5.24)

To prove the claim, assume that
{z,7],} C unstab (u}(s)) Vs € (0, sp). (5.25)

Then u} is monotone nondecreasing in (z, 7 ,) for all s € (0, s,,). Indeed, if this is false,
there is 5 € (0, s,) such that u}(s) is strictly decreasing somewhere in (,7),), hence
it has is a minimum point in (z,7?,), which contradicts Proposition 2.3 (b).

It follows that (5.25) is false, and therefore either Z € stab(u}(s,)) or 7, € stab(u}(sy)).
Since the first point which disappears among 7,7, is T, (5.24) is proved.

Therefore, by Proposition 2.3 (d), we have T € stab (ul(s)) for all s > s,, which in turn
implies T € stab (us(s)) for all s > t5(%), hence (5.12) holds with z = Z. By iterating
the previous argument, we can choose a sequence (J;) converging to 0 such that all
jumps of 7, have mutual distance of order d; in each interval [@;, b;], and whenever a
jump of us, disappears, the collision of the two branches happens with nonzero velocity.
By a diagonal procedure, we get (5.11) and the proof of the claim is concluded.

Define
TP == Ty, (7, ;)-

. : o -0 . =5
Then for any i € Z there exists two indices £%, 7" € {1,...,n*}, with £ < 7%, such

1 771
that Tf; is strictly increasing and finite in j for j € {1,... ,ﬁf’“}, Ti‘s is constantly equal

k
J
to 400 for j € {£%* +1,... ,ka — 1}, and TZ‘S;“ is strictly decreasing and finite in j for

JE {ij, ...,nl¥}. See Figure 6.
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Figure 6: Definition of ¥s, ; in (5.26)

Up to a subsequence, denote by ¢, € [a@;, b;] (resp. ¢ € [@;, b;]) the limit of the points
he% (vesp. hEo*) as h — 0.
Define

nfk—l
bk 0 o mly, b
Ef5k,i = U [yz',kj:yi,kj—f—l] X [O:mln(Ti,;‘aTi,;-H)): EJk = U Efjk’i' (5'26)
j=1 1€Z
N(()ste that min(]}‘fﬁ,]}’fﬁl) = TZ‘S;“ (resp. = ﬂ‘z?ﬂ) for j € {1,...,£%} (resp. for j €
7 5
{6, ..., ng+}.

For ¢ € Z we also define the function s, ; : I — [0, +00] as

- d, F) . 5 s
©s,,i(T) == mm(Tij’Ti,;H) if x € [yi,kjayz',’}'ﬂ]
v 0 otherwise.

From the monotonicity properties of Tf;“ it follows that the function g, ;(-) is non-

. . _ . . . -0k _
decreasing in [yf’“l,ﬁf’“], nonincreasing in [Eik,y‘,s’c 5], and constantly equal to 0 on
) i,n,

I\ [yfkl,yf’; L';k]. As a consequence, possible passing to a subsequence, for all ¢ € T

the functions 5,4 converge pointwise as k — 400 to a nonnegative function ¢;, with
Pilane) € BVioc((@i;¢;)) and @i, 5, € BVioc((€, i), and with the property that ¢;
is nondecreasing in (@, ¢;), identically equal to +oco in (¢;,¢;), and nonincreasing in

(¢i, bi). Moreover, each set X5, ; converges in the L topology to

Y = {(z,1) € [a;, bi] x [0,+00) : 0 <t < i(z)}

as k — +o0.

We are now in the position to conclude the proof of the theorem. By definition, we

have
(’U,(sk)w = (U’Jk)t =0 a.e. in E(sk. (527)
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It follows that us, = us, in Xs,, which implies

u=u inYX:=|]J% (5.28)
=1

(where u(z,t) := u(z) for any ¢t > 0). Moreover

¥ C (U[ﬁi,gi]) X [0, 400) C unstab(@) x [0, +00). (5.29)

1€l

From (5.28) and (5.29) it follows

% C | (unstab(u(t)) x {t}). (5.30)

£>0
On the other hand the fact that us, is one-Lipschitz in (I x [0, +00)) \ £;, implies that
u is one-Lipschitz in (I x [0,400)) \ %, i.e.,
L (stab(u(t)) x {t}) € (I x [0,400)) \ .
>0
Hence (J,5, (unstab(u(t)) x {t}) C ¥. Therefore from (5.30)
% C | (unstab(u(t)) x {t}) C . (5.31)

>0

Note that the particular form of the functions ; implies that ¥ \ ¥ has zero Lebesgue
measure. Hence from the inclusions in (5.31) it follows that the three sets X, X, and
U,>o (unstab(u(t)) x {t}) have the same Lebesgue measure.

Recalling (4.11) and (5.27), for all ¢ € Cj; we have

/ (us,), ¥ dx dt +/ ¢ ((us,)e) Yodz dt =0. (5.32)
Ix(0,400) (Usso(stab(us, (£)x{t}))\Zs,,

In view of the weak convergence in X" of the sequence (us,) to u, we have

lim (ug, )t ¥ dxdt = / upt) dxdt. (5.33)

k—=+00 J1%(0,+00) I%(0,+00)

It remains to pass to the limit as £ — 400 in the second addendum on the right hand
side of (5.32). Since ug, (t) € P?(I) for any t > 0, it follows that

(I x (0,+00)) \U (stab(ug, () x {t})

£>0
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has zero Lebesgue measure. Hence (|, stab(us, (t)) x {t})\ Zs, converges in L}, (I x
(0, 4+00)) to (I x (0,400))\ X, which has the same Lebesgue measure of (I x (0, 4+00))\
Uiso(unstab(u(t)) x {t}).

We deduce that

({stab(us, () x {t}) \ s, converges in Lj,.(I x +o0) to | J (stab(u(t)) x {t}).

>0 >0

Observe that if R is a compact rectangle with R CC [J,5,(stab(u(t)) x {t}), then
R is contained in (U, stab(us, () x {t}) \ Zs,, for k large enough. Reasoning
as in Corollary 3.4, and recalling Remarks 3.5 and 3.6, we get that the functions
¢' ((us,)s) are uniformly bounded in H}, (U, stab(u(t)) x {t}) with respect to ,
which implies that, passing to a further subsequence, (us,), — u, almost everywhere
in (J,5o (stab(u(t)) x {t}). Passing to the limit in (5.32) as k¥ — 400, and using the
Dominated Convergence Theorem, we obtain that

lim o ((us,)o) oo dt = | ¢ (1) Yuds dt.
k=400 J (U, s o (stab(us, (£) x{t}) ) \Ss, Us>o(stab(u(t)) x {t})

(5.34)

Then (5.7) follows from (5.33) and (5.34). O

Note that, thanks to the inclusion u € AC?(0, +00); L*(I)), it is not possible that the
functions ¢; vanish identically.

6 Convergence of the space-time discrete scheme

The space-time discretization of (1.2) can be obtained by using the minimizing move-
ments method (see [2]), which is a generalization of the usual implicit Euler scheme.
We apply the method to F}, (extended to +oo in L*(I) \ PLy(I)), therefore we define
G : (1,+00) x L*(I) x L*(I) — [0, +0o0] as

G\, v,w) := Fy(v) + % / v —w|* dr, (6.1)
I

where A > 1 corresponds to the inverse of the time step. Given h € (0, 1), consider a
function w” : (1,4+00) x N — PL(I) such that w"(),0) = u" for any \ € (1,+oc),
and take

w"(\, k+1) € argmin {G (A, -, w"(\, k))}, A€ (1,400), ke N (6.2)

Minimizers w" of G(X,-,w™()\, k)) in (6.2) in general are not unique, however they
satisfy the Euler-Lagrange equation

10F,

(w" N\ kE+1)) + AMw" (N k+1) —w"(\ k)); =0, ie{l,...,N}. (6.3)
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We denote by
ulA(t) := (A + 1 — A)wh(\, [ M) + (At — [M))w" (N, | M) +1) (6.4)

the piecewise linear time interpolation between w”(A, |At]) and w”(\, [At] +1). Equal-
ities (6.3) and (6.4) imply that, up to a countable set of times, u™* is a solution of

( 10F,

WAt = =A(wh(A, [M]) +w(\, [ME] + 1)), = oy (u*(t + s2(1)))

\ = (D} (¢ (D; uh (¢ + 5x()))))s for i € {1,..., N},

| u0) =,

(6.5)
where t+s)(t) = (|At]+1)/A € [t,t+1/]], and therefore the Borel function s, satisfies

s\(t) €[0,1/)] V> 0. (6.6)

The next result says that if the time step 1/ goes to zero sufficiently fast with respect
to the mesh size h, then the space-time discretized solutions of (1.2) converge to the
function v in (3.6).

Proposition 6.1. Let u € P?(I) and let u be as in (3.6). Let (M) C (1,+00) be a
sequence satisfying
A > eP for any a > 2. (6.7)

Let uP* be defined as in (6.4). Then

VI'>0  lim ut =y in L*((0,T); L*(I)). (6.8)
—>

Proof. Define
et) = WP (1) = Oy 2 0.

From (2.6) and the boundedness of ¢' it follows

(DF (¢ (Dyuh))il <eh™,  ie{l,...,N}. (6.9)
Moreover,
\%(Dﬁ(d(D;(u"))))A <Tth?,  ijef{l.. N} (6.10)
From (6.10) we obtain, up to a countable set of times,
? = (u"(t) —u"(t), D} ¢/ (Dyul (1)) — D (¢ (D u ™ (t + 51, (1)) 220
< 72l (t) — a0 ey () — P+ sn, (0) ey
< e h%e(t) + ¢ h2/e(D) |l (8) — ut M (¢ + sx, (8]l e-
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Therefore, using (6.6) and (6.9) we have

0 o el + o ol < A )

Solving the Cauchy problem

f
—1, 0) =0,
e h 2/ F(VF+hA) 1(0)
we obtain f(t) = ﬁ(ea T 1)2. Then limy, 0 Sup;ejo, 7y €(t) < limp_yo sup,epo.r £ (1),
and the latter limit is zero provided (6.7) holds, and (6.8) follows. O

On the other hand, if the time step 1/\ goes to zero too slowly with respect to the
mesh size h, then the full discretized solutions converge to the standing solution ,
as proved in the next proposition, where we allow the initial datum also to have an
unstable set with nonempty interior.

Proposition 6.2. Let u € A?(I), with U of class C* in the closure of each connected
component of stab(u). Let (Ap) C (1,+00) be a sequence converging to +o0o as h — 0
satisfying

Ap < h™7  for some v € (0,1/2). (6.11)
Then

VT >0 limu™* =7 in L=((0,7); L*(I)).
h—0

Proof. Let v € (0,1/2) and fix a € (7y,1). We first show that
G, w" (M, 1),1) < (k' *log(1/R) + Ah*®). (6.12)

Let us consider a piecewise linear function vy, which approximates 7 in L?(I), having
alternatively
slope B, = O(h'™®) on an interval of length A,

and
slope B; = O(h*™!) on an interval of length h,

see Figures 7, 8.
Notice that

¢'(Br) = O(h* "), ¢'(By) = O(h* ), (6.13)

and
h=* (hBy + h*Br) = O(1). (6.14)

Moreover, from (2.1) and the expression of ¢ it follows
Fu(mh) = O(h= (h8(57) + h°6(6n)) ) = O (h'~*log(1/h) (6.15)
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Figure 7: The local shape of the function . The function % is linear of slope larger than one

Figure 8: The function @ (solid curves) and the functions @), (dashed segments)
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By the assumptions on u we also get
7 = sy = O(2). (6.16)
Then (6.12) follows from (6.15) and (6.16), since
G (A, w" (A, 1)) < G( A, Up, ).

Note that the right hand side on (6.12) converges to 0 as h — 0, since A\, < A7 and
v < 2a.
Since the function & — Fj,(w" (A, k)) is nonincreasing, from (6.12) we get

Fy(w"(An, k) <€ (h' “log(1/h) + Anh®®), (6.17)
hence, using also (6.16),

G(/\h,wh()\h,k+1),wh()\h,k)) S G(/\h,wh(/\h,k),wh()\h,k))

(6.18)
< ¢ (h'"*log(1/h) + Aph*®),
for all k£ € N. Recalling (6.4), from (6.17) and (6.18) we obtain
[Ant]
[ () = T2y < Z " (A, & +1) = w" (s B) 22
e 2G (A, (A, k + 1), wh(An, k)
< Z ’ ’ ’ (6.19)

Ah

< ¢t \//\hhl—a log(1/h) + A2 h2e,

which converges to 0 provided that v < min{1 — o, @}. The thesis now follows taking
a=1/2. O
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