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Abstract

Given a double-well potential F', a Z"-periodic function H, small and with zero average,
and € > 0, we find a large R, a small § and a function H. which is e-close to H for which the
following two problems have solutions:

1. Find a set E. r whose boundary is uniformly close to 0By and has mean curvature equal
to —H. at any point,

2. Find u = u. g, solving

F/
Csaus T Loy
0 2
such that u. rs goes from a d-neighborhood of +1 in Bg to a d-neighborhood of —1

outside Bg.
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1 Introduction and main result

In this paper we deal with entire solutions of the elliptic equation
—Au+ F'(u) + H(x) =0, z € R", (1.1)

where the smooth function F' is a double-well potential.
More precisely, we shall assume that

e F(t) >0 for any t € R,
o F(t) =0if and only if t = £1,

e there exist positive constants sy and ¢ such that F'(—1 —s) < —c and F'(1 + s) > ¢ for
any s > sg,

e F(—1+4+s)=F(1+s)and F"(1+s) >0 for any s € [—so, So.

The function H € C?(R™) in (1.1) will be a small periodic perturbation of the operator. To this
extent, we suppose that

® || H| oo (rny is suitably small,



e H is Z"-periodic, with zero average on [0, 1], that is

H(x+ k) = H(x) Vr € R" and k € Z"
1.2
and H(z)dr = 0. (12)
[0,1]™
Notice that (1.1) is the Euler-Lagrange equation of the functional
[Vul?
5 + F(u) + H(z)u dx. (1.3)

The functional in (1.3) has been considered in [DLN06, NV07, NV09a] as a mesoscopic model for
phase transitions (see also [DY06, DYCO08]| for the analysis of the gradient flow of (1.3)).

When H = 0, (1.1) is called the Ginzburg-Landau or Allen-Cahn equation, which is a popular
model for superconductors and superfluids. The term H may be seen as a small defect which
favors locally one of the phases: condition (1.2) then says that such defect is “neutral” on large
scales, in the sense that both the phases are equally treated.

In [NV07], minimizers of (1.3) have been dealt with. We say that u € W’l})f (R™) is a minimizer if

u2
/ |V2| + F(u) + H(z)u dx
v (1.4)

< [ FOLOE L psy) + H@) ) de
U

for any ¢ € C§°(U) and any bounded domain U (minimizers of this type are often called “local”,
or “class A”, minimizers). As usual in the calculus of variation framework, the word minimizer
for (1.4) refers to the fact that the energy is increased by compact perturbations, even if the
energy (1.3) in the whole of R” may well be infinite.

In particular, the following result has been proved in [NVO07].

Theorem 1.1. Let F and H be as above. Then, there exist two Z"-periodic minimizers U+
of (1.3), with UT = U~ 4+ 2. The uniform distance of the minimizers U from +1, respectively,
can be estimated in terms of the norm || H|| oo (n)-

Moreover, given w € S™ 1, there exists a minimizer u, of (1.3) which connects Ut and U~ far
from wr, and such that

{z eR": (w,z) <0} C{z eR": y,(z) >0} C {zeR": (w,z) <C}. (1.5)
for a constant C' > 0 independent of w.

We also recall the following result on minimal surfaces in periodic media, which has been proved
in [CdILO1] (see, in particular, Section 11.1 there).

Theorem 1.2. Let H as above. Then, one can find a uniform constant C > 0 such that for
all w € S there exists a local minimizer (i.e. a minimizer up to compact perturbations) E,, of
the functional

lD(E)—l—/EH(aU)dJU7 (1.6)

such that
{reR": (w,z) <0} C E, C{xeR": (w,x) <C}. (1.7)



The analogy between (1.5) and (1.7) is evident. We refer to [SZ97, NV09b] for further related
results.
Given a function F' as above, we let v : R — R be the unique solution of

"+ F'(y) =0, (1.8)

connecting +1 at +oo, respectively, and such that v(0) = 0.
We also let

2
co = / (v (2))" dx. (1.9)
R
The main result of this paper is the following:

Theorem 1.3. Let F' and H be as above, and assume that H #£ 0. Then, for any & > 0 there
exist constants Ry, b9, C > 0 and a function H. € C*(T"), with

[ Hellpoo(rny < [[H || poo (1) (1.10)
|He — Hl| iy < 4de||H| poo(rny, (1.11)
H.(z)dz = 0, (1.12)

’]Tn

such that the following holds:
1. for any R > Ry there exists a set E. g with smooth compact boundary such that
Br C E. r C Bryc, (1.13)
and the mean curvature of OE. r agrees with —H. at any point;

2. for any R > Ry and § € (0,dg] there exists a function u. s of

Fl
5 Au+ ;“) n %OHE -0, zecR" (1.14)

such that
|u€7R,§($) — 1| S 05 on BR,

1.15
and |ue gs(z) + 1] < Cd on R™\ Bric. (1.15)

The factor ¢p/2 in (1.14) is, of course, just a normalization constant: roughly speaking, it is
needed to make (1.14) approach the prescribed mean curvature problem equal to —H,, and not a
constant multiple of it.
We observe that Theorem 1.3 does not hold, in general, if we choose H. := H. However, it would
be interesting to know:

e whether an analogous result holds if we replace the L' norm in (1.11) with a stronger one
(e.g., the L*° norm),

e under which conditions on H it would be possible to choose H. := H in Theorem 1.3,

e whether or not the results in Theorem 1.3 hold for § = 1.

Remark 1.1. The geometry of the solution u. g s found in Theorem 1.3 is very different from
the bump solutions usually obtained in the literature (see [RS01, RS04, RS08] for the Allen-Cahn
case and [NV09a] for the mesoscopic case). Indeed the bump constructed in the previous literature
was a somewhat “planar” oscillation from almost —1 to almost +1 and return. In Theorem 1.3 such
an oscillation is not somewhat “planar”, but somewhat “spherical”. That is, the set {u. rs = 0}
is somewhat close to a sphere (compare (1.13) and (1.15)).

We refer to [AJM02, B05, dILIVO7] for other related results.



\2

The “spherical” bump of Theorem 1.5...

...versus the “planar” bump of the literature.




With essentially the same proof one can get the following extension of Theorem 1.3, showing the

existence of “multibump” solutions of (2.12) and (1.14). For this, it is enough to modify the

barriers by appropriately repeating their bumps (notice that vﬁ are constants outside a ball).

To more precisely state the result analogous to Theorem 1.3 for multibump solutions, we introduce
some notation. Given R, C' > 0, we let Fr ¢ be the family of subsets of R" defined as follows:
E € Fprc if and only if there exist a sequence of points z; € R™ and a sequence of numbers R; > R,

with ¢ € I C N, such that |« —xfc] > R;+ Ry + C for all i,k € I and for all j € {1,...,n}, and
E = Bg, ().
el
We also define

E & Bc = U Be(x).
ek

Then, in analogy with Theorem 1.3, we have the following result of multibump type:

Theorem 1.4. Let F' and H be as above.
Then, for any € > 0 there exist constants Ry, d0,C > 0 and a function H. € C*(T") satisfying
(1.10)«(1.12) such that for any E € Fr,c:

1. there exists a smooth set E. such that
EFECE.CE®Bc,
and the mean curvature of OE. agrees with —H. at any point;
2. for any 6 < 6 there exists a solution u. s of (1.14) such that
|uc 5(x) — 1| < C6 on E,

and |uc5(x) +1| < Cd on R™\ (E & Be).

Once more, the geometry of the multibump obtained here is quite different from the multibumps
of the previous literature, since the excursions obtained in Theorem 1.4 are somewhat “spherical”
instead of somewhat “planar” (recall Remark 1.1).

2 Proof of Theorem 1.3

Step 1. We prove the first statement of Theorem 1.3. Since H does not vanish identically and it
has zero average,
— i%lf H > 0.

Thus, we may fix R > 0 large enough such that

1
o< CinfH (2.1)
R 2 Tn
Let
U .= BRJrCE \ Béfcs' (22)

We denote by 7w : R® — T" the natural projection, we let Ug(l) := 7(U), and we choose the

constant ¢ in such a way that \Ug(l)| = ¢/4. Of course, “| -|”

is here the Lebesgue measure on T".



We let U€(2) C T™ be an open set such that Ug(l) C U€(2) and \U€(2)| = ¢/2, and we take a partition

of unity ¥. € C*(T",]0,1]), with ¢ =1 on Us(l) and . = 0 outside US(Q).
Let also p: be a convolution kernel such that |H — H * pc|1(rn) < € |[H|[ oo (1)
Finally, we let

- it 2 € U
* n n 2)\ 77
K@) = § o) %+ (L= @)1= )+ p) (@) i € U\ UL
(1—&)(H % p.)(x) if z € T\ U
Qe = T K;(y) dy
H.(z) = KI(z)— o, (2.3)
and we extend H. by periodicity to the whole of R"™. We claim that
|ae| < e[H| oo (). (2.4)
In order to prove (2.4), we first observe that
1H * pel oo (rny < [[H || oo (1n)- (2.5)
Also, in Ug(l),
n_ |[H g (rm)
Kill=—<—7— 2.
K2 = % < ), (26)
due to (2.1).
Thus, we deduce from (2.5) and (2.6) that
‘/ K* M| < IH] £ ™) ) = I H|l1, () @7
oo 2 8
Moreover, in U€(2) \ Ug(l), we have that
N n
K*— Hxp.= . (E - (H*p€)> — (1 — ) (H = pe).
Therefore, making use of (2.1) and (2.5) once more, we see that, in U \ v,
N n
K2 = Hoepel < e (4 1H xpel ) +2(1— ) [H »
[ H || oo (n
< Yo (T [ H g ) + 2 (1= ) | H e on)
[ H || Loo (17
< (L I H ey ) + ellH ey
3
Consequently,
* 3 HHHLOO(T”) (2) (1) 3
’/UE@)\UE(I) Ka _H*pé < f |Ug \UE ‘ = <8 +€> 5HHHL°°(T”)' (28)




Also, from (1.2), we have that

H xp.dx = 0. (2.9)
Tn
Thus, since
K*— H*p. = —eH * p. in T"\ UL,

we obtain from (2.9) and (2.5) that
‘/n\UE(Q) £ *pE € An\U£2> *pE € /[;152) *106
&% || H|| poo ()

< e[ H % pell ooy U] < ——5

(2.10)

By collecting the results of (2.7), (2.8) and (2.10), we obtain that

K? — H * p.

R

Tn

This proves (2.4).

As a consequence, we see that condition (1.10) follows immediately from (2.1) and (2.4), condition
(1.12) is automatically satisfied, and condition (1.11) comes from (2.3) and (2.4).

Notice that, since

| < ellH oo oy,
’]I‘n

and so, using (2.9) once more,

< ellH|| poo (my.-

H.=-n/R—a.onU (2.11)
from (2.4) we get that the mean curvature of 0Bpg, that is (n — 1)/R, is strictly less than —H.,,

for all R € (R — cg, R+ ce), so that 0Bp is a strict subsolution of the geometric equation
k+ H; =0, (2.12)

where k denotes the mean curvature of 0Br. We recall that (2.12) is the Euler-Lagrange equation
of the functional

P(E) +/ H.(x)dx. (2.13)
E
Fix now R > R and let
ER = U (Z + BR)
ZEZ":Z+BRCBR+1
Fr = ﬂ [R+2]w+ E,,
wGSnflmZn

where [z] denotes the integer part of x, and the set E, is as in Theorem 1.2 (applied here
with H := H.).
Notice also that

srlnzn = {(il,0,0,...,O), (0,+1,0,...,0), (0,0,+1,...,0), (o,o,o,...,¢1)}.



The set FR.
By construction,
Ep is a subsolution and Fg is a supersolution of (2.12). (2.14)
Also,
Bgr C ER C Bry1 C Fr C Brycy2-

where C' is as in Theorem 1.2.

Then, the set F. r claimed in the statement of Theorem 1.3 can be obtained by minimizing the
functional (2.13), with the additional constraint Erp C E C Fpr. Notice that by (2.14) and the
strong maximum principle (see, e.g., [CdILO1]) we have

aE&R N (8ER U@FR) = @,

so that the mean curvature of OF; g agrees with —H,, as required.
Step 2. We now prove the second statement of Theorem 1.3. Let 17 : R — R be the solution of

"+ F" ()= — + %0 : (2.15)

such that 7(0) = 0.



Note that, since the right-hand side of (2.15) is orthogonal to 7/, the function 7 is uniquely defined
under mild growth conditions at infinity and
. N L €0
I, @) = oo = 5y
We refer to Section 6.1 of [Pa97] for further details on the construction of 7.
We now fix 6 € (0,1), to be taken suitably small in the sequel (possibly in dependence of € too).
Since v and 7 approach their limit values exponentially fast, together with their derivatives, we

have that )

> D/ (@) = D]+ D ()~ n)| < 6°if Jo] = K]log] (2.16)
§=0
Here above, K > 0 is a suitably large structural constant, depending only on the potential F'.

We now follow some ideas of [Pa97] in order to construct useful barriers by means of v and 7.
We let 75, n; € CH(R) be such that

V5(x) = () for x € (—=K|logdl|, K|log d|)

ns(e) = n(x) for € (~K]log |, K| log ), (217
(z) = 1 for z > 2K]|log /]
TEIT 21 for @ < —2K]log 4.
and
ns(z) = Noo for x > 2K|log d|.
Due to (2.16), we may construct 5 and 7, in such a way that
2 . .
D D (@) = D] + | DY (ns(w) = meo)| < 6°if |2] > K] log . (2.18)

J=0

We set

Ao Al
vmmw—%< 5”)—6%( 5')Ham—qﬁ,

Here above, ¢; > 0 is a constant, to be taken suitably large with respect to other structural
constants.
Notice that

v 5(x) = 1 — 0o He () — ¢10% when |z| < R — 2K6|log |, and

R 2.19
Ve s(z) = =1 — oo He(z) — ¢10% when |z| > R — 2K §|log d|. (2.19)

We claim that
g, is a strict subsolution of (1.14) (2.20)

provided ¢; is sufficiently large and ¢ € (0, dp], with &y sufficiently small with respect to £ and to
the other structural constants.



To prove (2.20), we use polar coordinates to compute the Laplacian and we obtain

F'(v c

— (5A7)575 + (56’6) + EOHa

~ " n—1 on—1
<5+ 780+ (15700 (\as|)775’(*))Ha + dlng' ()| |V He |

F -6 H. — 162

+ 5250 AH, | + 060 %5(*) =) Pt (2.21)

" n—1 o(n—1
< —%(*) + 2] vs' (%) + (775”(*) - (‘x|)"75/(*))H6

, B )
n F' (75(x) 57756(*)H8 c167) + F"(1)neo H- + constd.

Here and in the sequel, we use “x” as a short hand notation for “(R — |z|)/d” and “const” to
denote suitable quantities, possibly depending on ¢, F and H, but independent of 4.

Thus, we distinguish now the case in which |R — |z]|/6 > K|logd| from the one in which |R —
2l1/8 < K]|log .

When |R — |z||/6 > K|logd|, we use that

|F'(£1 4 s) — F"(1)s| < consts?
for small s and so, recalling (2.18),
F'(5(x) = ons (%) He — €16%) < F"(1) (75() £ 1 — ns(¥) He — c16%) + constd?

for |k — |z||/6 > K|log4].
Consequently, when |R — |z||/d > K|logd|, (2.21) gives that

F/
—5 Aveg + (Z;E"S) + %OHE
e n—1 d(n—1)

IN

500+ T 00+ ()

F'"(1)(v5(%) £1 = b5 (%) He — ¢16)
)
< —c1F"(1)8 + constd < 0,

+ + F"(1)neo H- + constd

where (2.18) was used once more.

This proves (2.20) when |R — |z]|/d > K|logd].

On the other hand, when |R — |z]|/6 < K|logd|, we make use of (1.8), (2.15), (2.17) and (2.21)
to deduce that

—§ Aveg+ F/(ga’d) + A
< —75”(*) + 71;,17’(*) + (") = W"'(*))HE
L) - 5n((s*)Hs —ad’) | F' (1700 H.
- P, R )+ (P00 + 7 () = F (o) e
5(n‘x—’ Do, + PO = 5?7((5*)He —a0) |y
< | Mt | a()a + consts

10



Also, if 0 is small enough with respect to € we have that
{|R — |2||/6 < K|logd|} C {|z| € (R —ce, R+ ce)}
and so, from (2.4), (2.2) and (2.11), we conclude that

n—1

1
+H5 < PN
|| SR

for & small enough; we recall that R is a structural constant, given by (2.1).
Therefore,

F/ /
Ay T8 o ) pn 06+ const o, (2.22)
’ d 2 8R
Now, if 4/() > /3, we have
/
)
- (f) — 1 F"(y(%))d + const § < —\[A + const(c; +1)0 <0 (2.23)
S8R S8R
for small 4.
On the other hand, if 4/(x) < V0, that is [7/(x)| < v/, we have that F”(y(x)) > F”(1)/2, and so
/ F// 1 5
_78(1;) — 1 F"(y(x))6 + const § < —612() + const § < 0 (2.24)
as long as ¢ is suitably large.
From (2.22), (2.23) and (2.24), we conclude that
F' (v,
6 Av. s+ (g o) | %OHE <0

when |R — |z]|/86 < K|log ).

This proves (2.20) also when |R — |z||/d < K|log .

Step 3. Let w € S™! be a rational direction such that the set E,, given by Theorem 1.2 is a
nondegenerate minimizer (see [Pa97, Definition 4.1]). Then, by [Pa97, Theorem 8.1] there exists
a supersolution u: s of (1.14) such that

— the Hausdorff distance between {u, s > 0} and the set E,, is of order §?|log §|?;
— there exists absolute constants £, c2, N > 0 (independent of w and §) such that

ul5() = 1= 0naoHe(z) + 626o0 (He(2))? + c20%|log 6*  if (w,z) > N

(2.25)
ul 5(2) = =1 = 6neo He(2) — %60 (He(2))” + c26°| log 6% if (w,a) < —N.
Notice that from (2.25) it follows that there exists N € N such that
u:,(S (fL‘ - N <wv $>) > 1)575(1‘) (2.26)

for all N > N and any x € R".
Let

Y= U m(0E,) .

wesSn—inzn
We can slightly perturb H,. in a neighborhood of ¥, without changing its value on ¥ itself, in such
a way that

11



— conditions (1.10)—(1.12) still hold;
— the sphere 0Bp is a strict subsolution of (2.12) for all R € (R—ce,R+ ce);
— E, is a nondegenerate minimizer of (1.6) for all w € S"~1 N Z".
In particular, we can use [Pa97, Theorem 8.1] and obtain (2.25), and so (2.26), for any w €

sn=lnzn.
Fix now R > R and let

R (x) . ZEL™: z{Ii-lg:CBRJrl U&&(x a Z)
+ ; + N

vp(x) = min  u r—|R+2+N w,a:).
R@) = min (e . )

We observe that vy (z) < v} (z) for all z € R", thanks to (2.26).

The function u. g s solving (1.14) and satisfying (1.15) that was claimed in Theorem 1.3 can now be
obtained by choosing u. r s as a minimizer of (1.3), under the additional constraint vp <u< UE.
As above, by strong maximum principle we have

vp(2) < ue g s(T) < vi ()

for all z € R", so that u. s is a solution of (1.14).
This completes the proof of Theorem 1.3. O
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