THE GEOMETRY OF MESOSCOPIC
PHASE TRANSITION INTERFACES

MATTEO NOVAGA AND ENRICO VALDINOCI

ABSTRACT. We consider a mesoscopic model of phase transitions and we investigate the
geometric properties of the interfaces of the associated minimal solutions. We provide density
estimates for level sets and, in the periodic setting, we construct minimal interfaces at a
universal distance from any given hyperplane.
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INTRODUCTION

Given a bounded domain  C R" and a function u € WH2(Q), we consider the energy
functional

(1) Eq(u) := /Q (|Vu(a:)\2 + F(z,u) + H(z) u(x)) dz .

The function F' here above is supposed to be a so-called “double-well potential”. More
precisely, we assume that:
e F is non-negative, locally bounded and F(z,1) = F(z,—1) = 0;

e for any 6 € [0,1), |iT1f9F(a:,u) > 0;
u|<

e there exist £ € (0,1/2) so that:
— F(z,t) > const (1 — [t|)2, if [t| € (¢,1);
— Fis C! and, if |s| < £, then
Fy(z,—1+ s) > const s, Fy(z,1—s) < —const s;
— Fy(z,u) is increasing for u € [-1 — £, -1+ U[1 - £,1+¢].
The function H € L*°(R") in (1) will be thought as a small perturbation of the standard
Ginzburg-Landau-Allen-Cahn functional. To this extent, we suppose that

sup [H| < n,
R'n.
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where 7 will be taken suitably small (in dependence of n and of the structural constants of
the problem). We also assume that H is Z™-periodic and with zero-average, that is

H(z+k) = H(x) Vk e Z"

) and H(z)dx = 0.
[0,1]"
The functional in (1) has been introduced in [DLNO06] (see also [CCOO05] and references
therein) as a mesoscopic model for phase transitions, and its limiting behavior in the T'-
convergence sense in relation with suitable anisotropic surface energy has been established
there (under more severe hypotheses then the ones in this paper). Heuristically, one may
think that the functional in (1) is given by three terms (the first two being the ingredients of
the standard Ginzburg-Landau model):
e a “kinetic interaction term” (namely, |Vu|?), which penalizes the phase changes of
the system,
e a double-well potential term (i.e., F'), which penalizes sensitive deviations from the
“pure phases” +1,
e a “mesoscopic” term (namely, Hu) which, at each point, prefers one of the two phases,
but is “neutral” in the average.

We say that u is a local minimizer in 2 if
3) Eq(u+¢) > Eq(u)

for any ¢ € Wy (Q).
We denote by £ the n-dimensional Lebesgue measure on R*. We prove the following density
estimates for local minimizers:

Theorem 1. Fiz § > 0. Let u be a local minimizer in a domain Q, with |u| < 3/2. Then,
there exist positive constants ¢ and rg, depending only on § and on the structural constants,
in such a way that

Ep,g(u) < er™t,
for any r > rg, provided that B,,s(§) C Q.

Theorem 2. Fiz § > 0. Let u be a local minimizer in a domain S, with |u| < 1+ 7', for
some n' > 0. Then, for any 0y € (0,1), for any 6 € [—6q,60] and for any ug > 0, if

@ £(Br(©)n{u>6}) > o,

then there exist positive constants ¢, ¢* and rg, depending on K, &, pg, Oy and on the structural
constants, such that

£(Br(€) N {u>0}) > e,
for any r € [ro,¢/n], provided that n and n' are suitably small (depending on n, ug, Oy, 6 and

the structural constants of F') and that By;s(x) C Q.
Analogously, if

(5) £(Bx(©n{u<8}) > mo,

then
z(B,,(g) N{u< 9}) > ¢t
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for any r € [ro,¢/n)], provided that n and n' are suitably small (depending on n, ug, Oy, 6 and
the structural constants of F') and that B,5(§) C Q.

The original idea of such density estimates goes back to [CC95]. An analogue of Theorem 1
when H = 0 plays also an important role in [AACO01]. Related techniques have been exploited
in [Val04], [PV05a] and [PVO05b]. Analogous density estimates for Caccioppoli sets are also
crucial in the study of minimal surface functionals penalized by a volume term (see [CdILO01]).
As a consequence of Theorems 1 and 2, we show that, once the minimizer is controlled at a
given point, the levels sets suitably far from +1 occupy a “small portion” of the space, at
a suitably large scale. This will also allow to replace the measure theoretic assumptions (4)
and (5) by pointwise assumptions, that are often easier to deal with in applications.

Theorem 3. Fiz § > 0 and 6y € (0,1). Let u be a local minimizer in a domain 0, with
lu| <147/, for some n' > 0. Suppose that |u(x)| < Oy for some x € Q. Then, there exist
positive constants c, ¢, and ro, possibly depending on 6y, 6 and on the structural constants,
such that

(6) min {E(Br(x) N{u> 90}) , E(B,«(x) N{u< —90})} > o™
and
(7) £(Br(x) N {u| < 90}) > el

for any r € [ro,¢/n], provided that n and n' are suitably small (depending on n, ug, O, 6 and
the structural constants of F') and that B, 5(z) C .

We now consider the problem of finding minimizers of our functional in a periodic setting,
whose level sets lie in a strip of universal width and assigned slope. These kind of problems
are related with a PDE version of Mather theory, as recently developed (among others)
in [Mos86], [Ban89], [CdIL01], [Val04] and [RS04]. In this framework, we prove the following
result:

Theorem 4. Let F' satisfy the assumptions on page 1 and suppose also that

(8) F(x+ k,u) = F(x,u)
foranyz € R, u € R and k € Z™, that

) F(z,-1+4+s) = F(z,1+s)

for any s € [—dy,d0] and that

(10) Fy(z,—1—5)<—c and Fy(z,14+s)>c

for any s > &g, for suitable ¢ > 0 and dp € (0,1/10).

Then, there exists a positive constant My, depending only on n and on the structural constants
of the functional, so that the following holds.

Fized any w € R" \ {0}, there exists a function

Uy - R — [—1—(50,1+(50]

which is a local minimizer in any bounded domain of R and so that
(11) {luy| <1 =480} C {6 € R® such that ‘f . |w_“ < MO} )
w

provided that n is suitably small (possibly in dependence of &y).
Moreover, u, enjoys the following quasi-periodicity and monotonicity properties:
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o if we Q" then

(12) uy(z + k) = uu(z),
for any x € R" and any k € Z™ such that w-k =0, and
(13) (@ + ) < ()

for any x € R* and any k € Z™ such that w-k > 0;
o ifw e R*\ Q", then given any sequence of vectors w; € Q" so that

dim w; = w,

J—>t+o0
there exists a sequence of functions u,, : R* — [~1 — g, 1 + g, which are local
minimizers in any bounded domain of R™, which satisfy the level set constraint and
the periodicity and monotonicity properties in (11), (12) and (13) (with w; replac-
ing w there), and which converge to wu, uniformly on compact subsets of R", up to
subsequences.

Theorem 4 may be seen as an extension of Theorem 8.1 of [Val04] (and it reduces to it
when H = 0). Roughly speaking, it says that, given any hyperplane 7 in R", it is possible to
construct a minimal interface of the mesoscopic model lying at a bounded universal distance
from 7 (namely, in the statement of Theorem 4, w is just a normal vector to 7, the interface
is given by the level sets {|uy,| <1 — d} and the universal distance from = is given by M).

e (=0

The zero level set of u,, as in Theorem 4.

Theorem 4 is also related to Mather theory, in the sense that it constructs minimal solutions
of any given “frequency” w, as well as minimal measures of any given rotation vector are
constructed in Lagrangian dynamical systems (see [Mat91]).

The proof of Theorem 4 relies on the construction given in [CdILO1] and [Val04]. It will
make use of the density estimates of Theorem 3 and of a suitable energy renormalization. We
point out that assumption (9) implies that the two (periodic) global minimizers uy given by
Lemma 7 below have the same energy on bounded periodic domains, and this fact is in turn
necessary for the existence of the minimizer u,, in Theorem 4. Indeed, assumption (10) is nec-
essary to let the minimization method work (see, e.g., Lemma 7 below), while assumption (9)
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makes it possible to appropriately define a rescaled energy functional (see formula (49) below).
In case H = 0, assumptions (9) and (10) are not needed (see [Val04]).

To end this introduction, we note that, while the density estimates in the usual Ginzburg-
Landau setting are valid for any r > rg (see [CC95] and [Val04]), the results in Theorems 2
and 3 here hold on the intermediate (i.e., “mesoscopic”) range of radii between ry and O(1/7).
A similar mesoscopic effect happens in the density estimates for volume penalized minimal
surface functionals: see [CdIL01]. On the other hand, the minimization property in Theorem 4
does hold at any scale.

ProoOF OF THEOREM 1
First, we show that the integral of H in large balls grows way less than the size of the balls:

Lemma 5. There exists suitably large positive constants ro and C in such a way

H(y)dy| < Cnr™ ',

B.(z)

for any x € R" and r > .

Proof. For any k € Z™, we set Qi := k + [0,1]™. As a consequence of (2), we have that

H =0, Vk € 7.
Qk
We denote by Y the collection of the cubes @ which lie inside the ball B,.(x). In this way,
U Qr C Br(x)
QreY

and the above union is non-overlapping.
Moreover, if we set

D, := BT('T)\ U Qk
QreEY
we get that
D, C{yeR"st.r—y/n<|z—y| <r}.
and so £(D,) < const r"~! for large . Then,

Jo™| -
B, (x)

as desired. 0

/ H‘ < constnr™t,
D,

We now observe that
(14) Au = Fy(z,u) + H(x)

in Q, due to (3). Therefore, given any domains V' C U contained in B,, we have that

(15) lullwi2(vy < const v/ L(U),

thanks to interior elliptic estimates (see, e.g., Theorem 1 on page 309 of [Eva98]; the constant
in (15) may depend on the boundary distance of V' and U). Let now h € C*(Q) be so
that h = —1in B,_1 and h =2 in Q \ B,. Let also 7 € C*°(Q2) be so that 7 = —1 in B,_;
and 7 = —2 in Q\ B,. Of course, we can take ||h||c1(q) and ||7||c1(q) to be less than a suitably
large constant.



6 MATTEO NOVAGA AND ENRICO VALDINOCI

We also define
@(z) := max{u(z), 7(z)} and o(z) := min{i(z), h(z)}.

Let ¢ := 0 — u. We have that ¢ is in W12(Q) since u, h, 7, @ and o do. Also, 0 = @ = u in
Q\ B,, since we assumed that |u| < 3/2. Therefore, ¢ € Wy*>(B,) and so, by (3),

EQ(U) < EQ(u + ¢) = EQ(O’) .

Then, since 0 = —1 in B,_1,
(16) Eq(u) < / (|Va|2 + F(z,0) + H(z) d:c —/ H(x
T\B'I‘ 1 B,_1
Also, by applying (15) with V := B, \ B,_1 and U := B, 52 \ B,_1_5/2, We get that

/ Vol? 5/ (IVuf? + VAP +197?)
B:\Br_1 B:\Br_1

< const L(By15/2 \ Br—1-5/2)

<constr™ !,

(17)

as long as r is conveniently large. Also, |o| < 2 by construction, and so
(18) / F(x,0) + H(z)o(x)dr < constr™ !
T\B'I‘ 1

for large r.
By collecting the estimates in (16), (17) and (18), and by exploiting Lemma 5, the claim in
Theorem 1 plainly follows.

PRrROOF OF THEOREM 2
We begin with a technical observation:

Lemma 6. Fiz v € N. Let aj, > 0 be a sequence such that a1 > ¢, ar, < Cy LYk™ L, and
(nfl)/n
(19) (> @) < Co (ai+ Y e Mgy 4 o)
1<j<k 1<j<k

for any k € N and some positive constants ¢, L, cy, and Cy. Then, if L is suitably large (in
dependence of v, n, ¢y and Cy) and ¢ is suitably small (in dependence of v, n, ¢y Cy and L),
there exists ¢ > 0, depending on n, ¢y and Cy, such that

ar > kvt
for any k € N.

Proof. The argument we present here is a modification of the one given on page 10 of [CC95].
We define

_ . 1
(20) Cc = mln{co, W} .
We also suppose that L is so large that
gn—1)/n

(21) L7 —m
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and

(22) el > 2.

Further, we assume that ¢ is so small that
E(n—l) /n
4Cy L¥ nn—1)/n

The proof is by induction. If £ = 1, the claim is true, thanks to (20). Thus, we now take k > 1,
we suppose the claim to hold for any j = 1,...,k and we prove it for ag;. To this effect, we
observe that, from the inductive hypothesis,

(23) e <

( Z a]) n—1)/n > é(n—1)/n( Z o1 (n—1)/n
1<5<k S
b (n—1)/n
~(n—1)/n n1g
> cC (/0 ¢ t)
gn-1/m
= aom R

On the other hand,
Z e L(k+1— ] < C()LV Z e~ L(k+1— ]
1<5<k 1<5<k
< COLuknflefLZefLi
i>0
< 20,LYk" e L,

due to (22).
By collecting the above estimates, we thus deduce from (19) that

( a1/

CO n(nfl)/n
n-1)/n

2Cone/n ¥

Ap+1 > - QCoLye_L - éLu) kn_l

n—1

due to (21) and (23).
We also notice that (20) and the fact that k£ > 1 imply that

1 k \n-1
© =93¢0 \ky1)
Then, the above inequalities give that ag 1 > &(k + 1)" !, as desired. O

We now deal with the proof of the first claim in Theorem 2, the second claim being analogous.
For this, we borrow several ideas from [CC95] and [Val04]. First, we observe that, with no
loss of generality, we may assume @ to be as close to —1 as we wish. Indeed: assume the
result to be true for 8* (say, close to —1), and let 8 € [—6y, 6p], with 6* < —6y. Then,

fio < E({u > 0}ﬂBK) < £({u > 0%} ﬂBK) ;
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therefore, using the result for * and Theorem 1, we conclude that

constr” < L{{u>0"}n Br)

IN

IN
o o

1

IN

IA

which gives that
£({u > 601N BT) > const "

for large r and small 1. Thus, in the rest of the proof, we may and do assume that 8 is as
close to —1 as we wish.

In what follows, A is a suitably large positive parameter; we will also make use of two further
parameters © and T: we will fix © small enough and then choose T so that OT is suitably
large (possibly depending on 6p). We also set

(24) 6 =6-C,e®T,

where C denotes a suitably large constant.
Let k € N. On page 183 of [Val04], a function h € CHL([0, (k +1)T]) was constructed so that
~1<h<1,h((k+1)T) =1, ¥(0) =0,

(25) h(r) +1 < const e ©T(k+1-7)
if 7 € [(j — 1T, §jT), for j =1,...,k +1,

|W'(1)| < const O7(h(r) + 1)
if 7 €0,1],

|A'(7)| < const O(h(r) + 1)
if 7 € [1, (k +1)T), and
(26) |h"(7)| < const O(h(r) + 1)
if - € [0, (k + 1)T]). We then define

h(z) := 14+7)(R(z))+1) =1,  o(z) := minf{u(z), h(z)}
and  B(z) := min{u(z) — o(z), 1 +0}.

Since h >1+7n" > wuon OB(41)r; it follows that 0 = u on 0B(;11yr and so

(27) EByi1yr (u) < EBgi1yr (o)
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as long as B,y C €, due to (3). We use the Cauchy and Sobolev Inequalities and (27),
to gather that

([ s#)" < comt [ NERY
B(k+1)T B(k+1)Tﬂ{u—a§1+0}

const A (|Vul]? = |Vo|?> =2V (u — o) - VJ))
B(k+1)Tﬂ{u>0'}

IN

const

2
A /B(k+1)Tﬂ{u—051+5}

(u—o0)

(28) - constA( (IVul? = |Vo]?)

BT

+2/ (u— o) AU)
B(k+1)Tﬂ{u>a}

const 9

(u—o)

/B(k+1)Tﬂ{u<T<1+9}

constA[/B (o) (F(ac,o) — F(z,u) + H(z)(o — u))
(kryrN{u>o

IA

const

+2/ (u—J)A0]+ / (u—o0)?.
BT A BynyrN{u—o<1+6}

We now estimate the left hand side of (28). If OT is large enough and 7’ is small enough, we
see from (25) that & — h > (1 — 6y)/2 in Byp. Consequently,

(29) 8> 1_290 in Byr N {u > 6}.
Thus, given p > 0, if we set
V(p) = £(B,n{u>0}),
we deduce from (29) that the left hand side of (28) is bigger than
const V(kT)nT_1 .

Let us now estimate the right hand side of (28). To this extent, we denote the right hand
side of (28) by

L+ 1,
with
I := constA (H(w)(a - u)) and
B(k+1)Tﬂ{u>a}
I, = constA[/ (F(m,a) - F(m,u))
Bp+1yrN{u>0}

t
+2/ (u—o0) Aa] + co;ls / (u—0)?.
By B(;H_l)Tﬁ{ungl—ke}
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First of all, we estimate I;. To this effect, we recall that r := (k + 1)T" € [rg,¢/n] and so
Ii < constn L(Bgyiyr) < constn(k+1)"T"
< consté(k+1)" Tt < constck™ T L.
We now estimate I. For this scope, we first consider the contribution of I in {u < @}. Since

h > —1, we have that —1 < h = o < u at any point of {u > o}, and so

(w+1)? = (o +1)2 - %(U—UV

1
= (u—o) (Eu—i-ga—l—Q) >0
in {u > o}. Accordingly, in {0 < u < 0},

P~ Fao) = [ Rieod
> const /u(g‘—l—l)dg

= const [(u +1)? = (o + 1)2]
> const (u—0)?.

The latter estimate and (26) imply that the contribution of I3 in {u < 6} is controlled by

(30) (F(ac, o) — F(z,u) + const VOF,(z,0)(u — a))

/B(k+1)Tﬂ{<7<u59}

as long as A is sufficiently large.
We now show that this quantity is indeed negative. Since we assumed 6 to be close to —1,
we have that F' and F,, are monotone in {0 < u < 6}, that F(z,0) — F(z,u) is negative and
that

|Fu(z,0)(u—0)| <|F(z,0) — F(z,u)].
Since we assumed © to be small, we conclude that the quantity in (30) is negative, and then
so is the contribution of I in {u < 6}.
Let us now bound the contribution of I in {u > 0}. The contribution in B 1yr \ Ber of
such term is bounded by

/ (IF(,0) ~ Fla,u)] + (o + 1)(u—o0) + (u—0)?),
(B(k+1)T\BkT)m{u>0}
thanks to (26). The above quantity is then bounded by

£<{u >0} N (Biryr \ BkT))
= V((k+1)T)-V(T).
Let us now look at the contribution of Is in {u > 8} N Byy. We observe that
ByrN{o<u<o+1+0} CBirn{oc<u<b},

due to (25), provided that C, in (24) is large enough.
Consequently,

(u—0)? =0

/BkTﬂ{ua<1—|—é}ﬁ{u>0}
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and so the contribution of Is in {u > 6} N By is controlled by

/ (F(e,0) ~ Pla,u) + |Ah]) <
BkTﬂ{U>9}

k

oy = / F(,h) + |Ah]) .
jz:; BjT\B(jl)Tﬂ{u>0}< )

By our assumption on F', we have that
F(z,—1+s) < consts,

provided that s > 0 is small enough. Thus, we bound the above term in (31) by
k .

e OTEH [y (1) - V((j - )T)] |
=1

J

thanks to (25). Thus, the quantity above provides a bound for the contribution of Iy in
{u > 0} N Bg.
By collecting all theses estimates, we get that

1

const (V (kT)) =
k
< V((k+DT) - V(T) + Y e 7D V(GT) - V(G - 1)T)]
j=1
+ /c\knflTnfl .

Then, the desired result follows from Lemma 6, applied here with a; := V(§T) -V ((j — 1)T).

PROOF OF THEOREM 3

This is a modification of some arguments on pages 167-169 of [Val04].
We first prove (6). To this effect, we define 6 := (1 + 6y)/2. Exploiting (14) and interior
elliptic regularity theory (see, e.g. Theorem 3.13 in [HL97]), we have that w is uniformly
Lipschitz continuous in B (z), with Lipschitz constant, say, A > 1. Thus,
[u(y)| < Ju(z)| +Alz —y| <6,
as long as |z —y| < (1 — 6p)/(2A) =: K. Then,
min{E(BK(a:) N {u> —é}) : £<BK(:C) N{u< é})} = £(Bk(z)),
which gives the analogous of assumptions (4) and (5). Accordingly, by Theorem 2,
min {E(Br(x) N{u > —9}) ) £<Br(w) N{u < 9})} > constr",

for r € [ro,¢/n).
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Consequently, exploiting Theorems 1 and 2,

E(Br(x) N{u> 90})

> E(Br(x) N{u> —é}) - £<Br(a:) N {0 >u> —é})
1
> constr” — 7/ _ F(z,u)dz
inf e .00 & J B (@) {00 2u>-0)
> constr" — const Eg (5)(u) — constnr”
> constr” — constr™ !
> constr”,

for large r and small 7.
Analogously,

E(Br(x) N{u < —90}) > const 7",

as desired. The latter two estimates complete the proof of (6).
We now prove (7). For this scope, we denote by Per ;7(E) the perimeter of the (Caccioppoli)
set E in the (open) set U (see, e.g., [Giu84]). We also define

u(x) if |u(z)| < 6y,
a(z) == ¢ O if u(z) > 6o,
—6y if u(a:) < —6y
and

u(t,r) == min {c(B,(x) n{a> t}) : L’(Br(a;) n{a< t})} .

Exploiting (6), we have that, if t € (—6y, 6p),

v

p(t,r) > min{L£(B,(s) N {a > 6}), £(Br(x) N {a < —60})}

min {£(B,(2) " {u> 60}) , £(B,(@) 1 {u < ~60}) }

>  constr”.

v

We now use the above estimate and the Coarea and Isoperimetric Formulas (see, e.g., [Giu84])
to deduce that

/ Vu| = / val
B, (z)N{|u|<60} B, ()

0o
> Per g (o) [ {u < t}) dt
2 /_00 Br()<{ })
bo n—1)/n
> const/ (u(t,r))( )/ dt
—6g

>  constr™ L.
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Consequently, taking a suitably large additional parameter A, by the Cauchy Inequality and
Theorem 1, we have that

1
const "L < Z/ (Vul? + AL(By(2) N {Ju] < 60})
B, (z)

1
< 1 Ep, (g)(u) + constnr" + Aﬁ(Br(x) N{lu| < 60})
t n—1
< COHSA’" + const ™ + AE(B,.(x) N {Jul < 90}) .

Using that nr is assumed to be small and choosing A appropriately large, (7) follows. This
ends the proof of Theorem 3.

PrOOF OF THEOREM 4
Let @ := [0,1]". We define the Q-periodic functions in W&)’CQ(R") by

per loc

wh2(Q) = {u € W23(R™) such that
(32)
u(z +e;) = u(x) for any = € R”} ,

where {e1,...,e,} is the standard Euclidean base of R". With this setting, we have:

Lemma 7. The functional Eq attains its minimum in Wplé%(Q). Also, if u is any of such
minimizers, then it is continuous, its modulus of continuity is uniformly bounded, and

(33) lu(@)| =1 < &,

for any x € Q, as long as n is small enough.

Proof. Let uj be a minimizing sequence. We may suppose that
(34) Eq(ug) < Eq(1) =0,

due to (2).
Also, it follows from (10) that

min{F(m,l—l—s)—F(m,l—l—éO), F(x,—l—s)—F(x,—l—éo)} > c(s— &)
(35) > |H(@) (6 - 5)]

for any s > dg, and
F(x,r)+ H(z)r > 0,
as long as |r| > Cp, with Cj appropriately large, if 1 is small enough. Consequently, by (34),

(36) [1vue < [ Hul < CoL@n.
Q Qn{|ur|<Co}
Furthermore, if we define
ug () if Jug(x)| < 1+ do,
up(z) := < 1446 if ug(z) > 1+ do,

—1—(50 1fuk(x) S —1—(50,
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then Eg(uj) < Eg(ug), thanks to (35). Accordingly, by possibly replacing uj with u}, we
may assume that

(37) lug| <1+ 6o

As a consequence of (36) and (37), the compact embedding of W2(Q) into L?(Q) yields
that uy converges to some u in L?(Q), weakly in W12(Q) and almost everywhere, up to
subsequences. Accordingly, u € Wple’%(Q) and

liminf/ |Vaug|? > / |Vaul?.
k——+o00 Q Q

inf FEg = liminf E > FE
it e = mind o(ur) 2 Eq(u),

Then, by Fatou Lemma,

thus v is the desired minimizer.
The fact that the minimizers are continuous follows from standard elliptic regularity theory
(see, e.g. Theorem 3.13 in [HLI7]).
We now prove (33). For this, we assume that u € Wpi(Q) is a minimizer for Eg and we
define
u(z) if |u(z)] < 1+ do,
u*(z) := < 1+ if u(z) > 1+ do,
o if u(z) < —1— do.
Then, by (35) and the minimality of u, we have

OgEQ(U*)—EQ(u)S—E[/ (u—1—50)+/ (—u—1-=4p)| <0,
2L tus1460) {u<—1-30}

which says that |u| <14 d§y. Moreover, if, by contradiction,
—1+ 60 < ufwg) <1 - do

for some zy € @, then the uniform continuity of u yields that

] ]

—1+§0§u(1)§1—50

for any « € B,(zy), for a suitable, universal p > 0. Accordingly, F(z,u(x)) > const for
x € By(zo), which implies that

Folu) > const £(B,(0)) — 1£(Q) > 0 = (1) > Fo(u)
and this contradiction ends the proof of (33). O

In the light of (9) and Lemma 7, we deduce that the functional Eg admits two minimizers
in Wplég(Q), say u4, so that uy, = u_ + 2, satisfying

(38) ‘ui:Fl‘géo.

By elliptic regularity theory (see, e.g., [GT83] or [HL97]), we also have that ux € C1%(Q),
for all @ < 1. Let us notice that, if F(z,-) is strictly convex in [1 — dp,1 + Jg] and in
[—1—do, —1+ do], such minimizers are the only global minimizers of Eg in WS{,%(Q) We will
use these minimizers to construct a reduced energy functional (see (49) below).

We now continue with the proof of Theorem 4. For this scope, we take w € Q" \ {0}, the
irrational case being then easily obtained by a limit argument. We consider the following
equivalence relation ~ induced by w: we say that x ~ y if and only if z —y € Z" and
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w-(x—y) = 0. We will denote by R"/ ~ the quotient space, which, of course, is topologically
equivalent to the product of the (n — 1)-dimensional torus and the real line.

The equivalence relation ~ may be made explicit by taking an integer base of R* given by
suitable mutually orthogonal vectors K1), ... K™ ¢ Z" in such a way that w is parallel
to K and KM, ..., K®=1 gpan the set of the integer vectors orthogonal to w.

In this setting, given v € N, we consider the rectangle

n
RY = {thK(j), 0<t;1<1,...,0<t,-1 <1, —I/Stn<l/}.
j=1

We will now show that the minimizers constructed in Lemma 7 are also minimizers under
the periodicity induced by R%. That is, in analogy with (32), we define

WL RY) = {u € WH2(RY) such that

per
u(z) =u(z+ KV) = . =uz+ K" V) = u(z+ 21/K("))}
and we prove the following result:
Lemma 8. Any minimizer for Eq constructed in Lemma 7 is also a minimizer for Erw
. 1,2/ pw
in Wpi(RY).
Proof. Let u be a minimizer for Fg in Wéé%(Q) Let also v be a minimizer for Egw in Wplé% (R¥)
(whose existence is warranted in analogy with Lemma 7). Our scope is to show that
(39) Ery(v) = Ery(u).
It is elementary to see that, given any k € Z" the function vg(z) := v(z+k) is also in WSé?(R‘,‘,’)
and thus so are the functions min{v, vy} and max{v,v;}. Consequently,
Ere(v) < Ege(min{v,v}) and Ege(v) < Ere (max{v,v}).
Furthermore, by the integer periodicity of the functional (namely, by (2) and (8)), we see
that Erw(vy) = Erw(v). Accordingly,
2ERy(v) < Egry(min{v,v}) + Ery (max{v,vy})
Ere(v) + Ere (vk)
2E’R,§‘,’ (U) ’
which gives that
Ere(min{v,v;}) = Ere (max{v,v;}) = Ere (v)

and so both min{v, v} and max{v,v;} minimize Ez. in Wiz (RY). By repeating the argu-
ment, we see that if Z is any finite subset of Z", we have that the function

vz(z) := min {v(x+k), ke Z}

also minimizes Er» in Wgé%(R‘,j’)
We now choose Z to be the set of all vectors in Z" NRY. Since
RY + mi KD+ my K™ 4 2um, K™ for m1,...,my, € Z

is a tiling of R™, we have that for any k € e; + Z there exists a unique x(k) € Z in such a
way
k—r(k) =m KD+ +my, K"+ 2um, K™
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for suitable my1, ..., my, € Z and, viceversa, the set {k(k), k € e; + Z} agrees with Z.
Consequently,

vz(z+e) = mln{v z+k), kEel—l-Z}
= mln{vx—i-/ﬁ ,k661+Z}
= m1n{v:z:—|—h hEZ}

= vz(z),
due to the periodicity of v. Analogously,
vz(z+e1) =vz(z+e) - =vz(z+en) =vz(z),

thence vz € WS{;?(Q). The minimization property of u thus yields that

(40) Eq(u) < Eg(vz).

Our next target is to show that

(41) Ery(w) =Y Brrgw
keZ

for any w € Wple’%(R‘,j’) Though formula (40) is very close to common intuition (one may just
look at some pavement decorations to get convinced), we provide a rigorous proof of it (the
expert reader goes straight to (46)). To check (41), we first demonstrate that for any £ € RY
there exist k € Z and ¢1,...,4, € Z in such a way that

n—1
(42) E—k+ > 4GKD +26,K™ € Q.
j=1

To confirm this, let [-] denote the integer part of a real number and

SEN(GIN)E

Let Z; be the unique integer for which

KU)
€] - KOE +2;€[0,1) for1<j<n-—1and
K@) 11
6 g o € [ 53)
Let
n—1 '
(43) k=€ + Y 4GKD 4+ 200, KM
7j=1
Then, k € Z™ and, moreover,
K
. @) ; —
k |K(J)| [O |K |) for1<j<n-—1and
K@)
) — (n) (n)
ke € LV IR@LvIK®),



THE GEOMETRY OF MESOSCOPIC PHASE TRANSITION INTERFACES 17

hence k € RY and so k € Z. Moreover, the vector on the left hand side of (42) agrees with
€ —[€], due to (43), and so it has coordinates lying in [0, 1), thus completing the proof of (42).
We now denote ~,, the equivalence relation stating that z ~, y if and only if

n—1
rT—y= ZEjK(j) + 200, K™
j=1
for some ¢1,...,¢, € Z. Let 7, be the natural projection induced by ~,. Let
R:=JE+Q).
keZ

Then, (42) states that 7, (R) = RY/~, (and we may identify the latter with RY itself). We
now show that

(44) 7, 18, in fact, injective on R.

Indeed, assume that 7,(z) = 7,(z') with z, ' € R. Then, z = q+k, 2’ = ¢ + k' with ¢, ¢’ €
Q, k, k' € Z and

n—1 )

z—2a = ZQK(J) + 20l K™

j=1
for some ¢1,...,¢, € Z. In particular, g — ¢’ € Z™ and q- ek, ¢'-ex, € [0,1), for any 1 < k < n.
Thus, (¢ —¢') - e, € ZN (—1,1) = {0}, and so ¢ = ¢'. Accordingly,

n—1 )
(45) k=K => ;K9 + 200, KM

j=1

Since k € Z, we have that

() .
k- K. E[O,|K(])|) for 1<j<n-1and
| K )|
K®)
L - (n) (n)
k \K")|€[ v KO, | K®™)]),

for any 1 < j < n (and the same holds for k'). This and (45) yield that ¢; € (—1,1)
for 1 < j <n,so{; =0. Consequently, z = z’, proving (44).
As a consequence of (44), we have that, if w € Wpiz(RY), then

Bry(w) = Bryju, (w) = Egye, (w) = Br(w) =Y Eppo(w),
kez

that is, (40).
Then, using (40) and the periodicity relations in WS{,%(Q), we gather that

(46)  Bre(u) =Y Brig(u) =Y Bo(u) <> Eq(vz) = Y Briq(vz) = Brg(vz) .
keZ kezZ keZ kezZ

We infer from this and (40) that Ere (u) < Ere (v). Since Wpir(Q) € Wpir(RY), we obviously
have also the reverse inequality. This yields the proof of (39), as desired. O
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We now address the problem of comparing the energy of the minimizers in Wplé% (R¥) with
the ones in W2(R%/ ~), where ~ is the equivalence relation introduced on page 14, that
is, we estimate how much the periodicity conditions in the direction of w affect the minimal
energy. For this, we will prove an existence result for W12(RY / ~)-minimizers in Lemma 9
below and then perform the necessary energy estimates in Lemma 10.

Lemma 9. The functional Egs attains the minimum in WH%(RY [ ~) at a suitable u, sat-
isfying

(47) lslerrs ) < C.

for a suitable universal C > 0.

Proof. By performing a standard minimization argument as in formulas (34)—(37), we get
the existence of a minimizer u, € W12(RY/ ~) which is pointwise uniformly bounded.
Then, (47) is a consequence of the interior elliptic regularity theory (see, e.g. Theorem 3.13
in [HL9T)). O

Lemma 10. Let v > 4. Let u, a minimizer for Exe in WH2(RY/ ~), as constructed in
Lemma 9. Then,

ER:; (U+) S ER;) (u,,) + Cw,
for a suitable C, > 0 possibly depending on w, n and on the structural constants of the
problem (but independent of v).
Proof. Let T be a smooth cut-off functions, so that 0 < 7 < 1, |V7| < 10, 7(z) = 1 for
any x € R¥_, and 7(z) = 0 for any z € RY \ RY_,. Let v, := Tu,. By construction, v, may
be extended periodically in the w-direction outside RY, that is, there exists v, € Wéé%(R‘,‘j)
so that v, = v, in RY. As a consequence,

(48) Ery(vy) = Ery(0y) = Ere(us),

thanks to Lemma 8.
On the other hand, recalling (47),

Era\re_, (vv) < Cou
for a suitable Cp,, > 0 independent of v. Thence, from (48),
Ere(uy) < Epe_,(vy)+ Cou
< Ere_ (u—3)+ Cow,

being u,_3 be the minimizer in WH?(R¥_;/~). Since

Ere(uy) 2 Bre_ (uy) — Cru,
for a suitable Cy,, not depending on v, we thus conclude that

Ere_ (uy) < Bre_ (uy-3) + Cow + Clu

which yields the desired result up to replacing v — 3 by v. O

Given u € W23 (R" / ~), we define

loc

V——+00

Grn /o (1) := lim inf \Vu(z)|? + F(z,u(z)) + H(z) u(z)
(49) o /R;” (
— Vuy (@) 2 = F(z,us (2)) - H(z)uy (2)) do.
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We consider the space of periodic (with respect to the identification ~) functions for which
the above functional is well-defined, that is, we define

D, = {u € Wh2(R"/~) for which the liminf in (49) is ﬁnite} :

loc

Given Q C R"/ ~, we also define the functional Gy by replacing the domain of integration
in (49) by Q. Of course, if u € D,,, Gq is well-defined for any open €.
We observe that, given any u € D,,, from Lemma 10 we have

Orn jn (1) = lim inf G (u)

= liminf (Egs (u) — Bre (ug)) > —C,,.

v—+00

(50)

We fix now M > 8|w|, and we let @ to be a smooth function such that @(z) =uy f w-z <0
and u(z) = u_ if w-z > M. We define

Yy = {u € D, such that |u(z)| <14 g for any z € R",
u(x) >1—-6 ifw-2<0,
u(z) < —144dp ifw-z > M and
w— € WH(R'/~) NWHSR~) |
Note that @ € Yy, due to (38), and
(51) Ggn o (4) < +o0.
Also, the liminf in (49) is in fact a full limit for all v € )%;. Consequently, if u,v € V%,
O jo (1) + Gy (V)
(52) — lim_Gry(min{u,v}) + Gry (max(u,v))
> lim inf G, (min{u,v}) + lim inf G (max{u, )
= Ggn o (min{u, v}) + Ggn /o (max{u, v}),

that is, we recovered Lemma 4.1 of [Val04].

We would like now to investigate minimizers of Ggn /. in }§; (see Lemma 12 below). Since
the latter is not one of the standard functional spaces, some PDE trickeries will be needed.
Namely, we will join the direct minimization methods with a decay estimate for critical points,
which may be expressed as follows:

Lemma 11. Suppose that*
(53) F(z,u) is C? in u and strictly convez for u € [-1—£, -1+ U1 —£,1+4].
Suppose that w € Wlé’f(R”/N) is a (weak) solution of

Aw(z) = Fy(z,w(x)) + H(z)
in R"/ ~. Assume that |w(z)| < 1+ ¢ for any v € R*, w(z) > 1—3p if w-z < 0 and
w(r) < -1+ ifw-xz > M.

IThe “auxiliary assumption” (53) will then be removed on page 21.
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Then,
(54) jw —u_| < 28ge1 (@ /wl=M)
for any x so that x - w/|w| > M, and
(55) lw — uy| < 28pe~ 1@ w/lwl=M)
or any T so that x - w/|w| < —M, for a suitable universal c; > 0.
that <-M itabl ) l 0
Moreover,
(56) IV (w — us)| < cpe—calew/lull

for suitable universal co, c3 > 0

Proof. We only prove? the claim in (54), since the one in (55) is analogous and then (56)
follows from elliptic estimates (see, e.g., Theorem 8.32 of [GT83]). Let v := +w F u_ and

v(z) == /01 Fu (:E,Tw(ac) +(1- T)u,(m)> dr .

Note that, by (53), if u € [—1 — 28y, —1 + 2dg], we have that Fy,(z,u) € [C,C'], for some
C' > C > 0, as long as dp is small enough. Since |[v(z)| < 2§y if z - w/|w| > M, due to (38),
we gather that v(z) € [C,C'] if z - w/|w| > M.
Let @ > 0 and
B(z) = 200(€¥% 1) o(ayu-m) L 200 — e VC) Jowalwl-m)
e\/aa —eVCa e\/aa _ e—\/aa
Then, if z - w/|w| € {M, M + a}, f(z) = 2y > v(z), while, if z - w/|w| € [M, M + q]

AB—yB=(C—-7)B<0=Av— 0.
Hence, by the elliptic comparison principle (see, e.g., § 8.7 of [GT83]), v(z) < S(z) for any =
so that = - w/|w| € [M, M + a]. In particular, if z - w/|w| € [M, M + (a/2)],

o) < 200V D) oy wy | 201 =€) o
- 6\/50‘ _ e*\/aa 6\/50‘ _ e,\/aa .

By letting a — 400, it follows that
v(z) < 265e~VC @/ [wl=M)
as desired. O
We are now in position to minimize Ggn J~ in Yy
Lemma 12. Assume (53). The functional Ggn /.. attains its minimum on Vg

Proof. Given v € N, by arguing as in® the proof of Lemma 7, one finds v, which mini-
mizes Grw (u) among all the functions u so that u —u € WO1 2(R¥). Further, by the argument
on page 14, we have that |v,(z)| < 1+ §p. Then, by interior regularity estimates (see, e.g.,
Theorem 8.32 in [GT83]), we deduce that, up to subsequences,

(57) v, converges in CL. (R"/~) to a suitable v.

loc
2A different proof may be also obtained using the ring-shaped barrier of Lemma 3.3 in [GG03].
3Though the energy is bounded by below due to (50) and an upper bound for the minimizing energy is
given by (51), standard direct methods do not suffice to prove Lemma 12, since, in principle, the minimizer
could jump out of Y3;. Lemma 11 prevents this to occur.



THE GEOMETRY OF MESOSCOPIC PHASE TRANSITION INTERFACES 21

By construction, v is a local minimizer of G in any bounded subset Q of R” / ~, therefore v €
Vi, thanks to Lemma 11. We now show that, indeed, v minimizes Ggn /., in V. For this, take
any u € Y%¥,. Then, u—v belongs to WH(R? / ~)NW L2 (R" / ~) since the same holds for u—a
and v —u. Hence, we may consider a mollified sequence , say u;, so that u;—v € C§° (Rufzj /~)
for suitable R; > 0, in such a way

(58) uj approaches u in WhHI(R? /~)

with W1 (R" / ~)-norm bounded independently of j.

We also set u;, = u; —v +v,. Since u;, agrees with v, outside R‘;’zj/N, when v > R; the
minimizing property of v, yields that

Gry, (ujw) = Gry(ujv) = Gro\ry (4.0)

Y

Gre (vy) — Gre \RS,. (jw)

gR‘ﬁj (Uu) .

Since, by (57), u;, converges in C|.

loc(R™/~) to u; when v — 400, for fixed j, we thus gather
that

Ory, (uj) 2 Gry, (v)
and so, since u; and v agree outside RU}sza
G (1) > G (0)
Then, by letting j — 400, we deduce from the latter formula and (58) that
Oren (1) 2 G jo ()

and so v is the desired minimizer. O

The proof of Theorem 4 may now be obtained by repeating verbatim the arguments on
pages 169-170 and 162-164 of [Val04], replacing the density estimates in Proposition 10.4
of [Val04] with the ones in Theorem 3 here and using (52) here in the place of Lemma 4.1
there. This completes the proof of Theorem 4.

The careful reader noticed that Theorem 4 has been proved under the “auxiliary assump-
tion” (53), but she will be convinced that this hypothesis may be easily dropped by arguing
as follows. First of all, notice that even if the constants in Lemma 11 do depend on (53), the
constant My in Theorem 4 does not. This is due to the fact that Lemma 11 is only used to
show the existence of a minimizer in Lemma 12, while M is obtained by the independent
argument of [Val04]. Consequently, we may take a sequence of potential F(©) satisfying (53)
and approaching F in C1(R" x [—2,2]) as € — 0. Then, we have shown the existence of a
suitable u&f ) satisfying the theses of Theorem 4. Elliptic regularity estimates (see, e.g., Theo-
rem 8.32 in [GT83]) imply that, up to subsequences, u((f ) approaches a suitable u,, in Clloc(R”),
which is then the minimizer sought by Theorem 4. Under the additional assumption (53),
we also get that the two periodic minimizers uy are unique (in the class of functions of con-
stant sign), and the function u,, is a “heterocline” connecting these two minimizers, with an
exponential decay.
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